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Abstract
The present endeavour numerically exploits the use of a phase-field model to simulate and investigate fracture patterns,
deformation mechanisms, damage, and mechanical responses in a human vertebra after the incision of pedicle screws under
compressive regimes. Moreover, the proposed phase field framework can elucidate scenarios where different damage patterns,
such as crack nucleation sites and crack trajectories, play a role after the spine fusion procedure, considering several simulated
physiological movements of the vertebral body. Spatially heterogeneous elastic properties and phase field parameters have
been computationally derived from bone density estimation. A convergence analysis has been conducted for the vertebra-
screws model, considering several mesh refinements, which has demonstrated good agreement with the existing literature
on this topic. Consequently, by assuming different angles for the insertion of the pedicle screws and taking into account
a few vertebral motion loading regimes, a plethora of numerical results characterizing the damage occurring within the
vertebral model has been derived. Overall, the phase field results confirm and enrich the current literature, shed light on the
medical community, which will be useful in enhancing clinical interventions and reducing post-surgery bone failure and screw
loosening. The proposed computational approach also investigates the effects in terms of fracture and mechanical behaviour
of the vertebral-screws body within different metastatic lesions opening towards major life threatening scenarios.

Keywords Phase field approach to fracture · Human vertebra · Pedicle screws fixation · Numerical comparison

1 Introduction

Originated from mathematical techniques based on �−
convergence [1, 2] and tailored for the approximation of
free discontinuity problems [3, 4], the phase field regular-
ization of brittle fracture proposed by Francfort and Marigo
[5] has attracted a remarkable attention within the computa-
tional fracturemechanics community over the last decade.As
compared to other computational methods for damage and
fracture simulation in materials and components, such as for
instance the crack band model [6], the smeared crack model
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[7], non-local and diffuse damage models [8, 9], or gradi-
ent damage models [10], the phase field approach offers an
elegant solution for problems involving linear elastic frac-
ture mechanics. This solution is pursued through an energy
minimizationwhich, in the�-convergence limit, consistently
reproduces the Griffith theory of fracture. The phase field
approach to fracture, further analysed in [11, 12], has been
applied in a considerable series of works proposing compar-
isons with other non-local damage models and discussing
several detailed aspects regarding the finite element imple-
mentation [13–19]. In this context, it is worth recalling the
fundamental contribution by Miehe and co-workers [20, 21]
that were the first to propose a robust finite element imple-
mentation of the phase field for brittle fracture, specialized
to account for damage irreversibility and based on a suitable
degradation mechanism able to simulate situations involving
tensile stress states.

The state-of-the-art literature onphasefieldmodels clearly
shows that the approach is mature for technical applications.
In this regards, Tannè et al. [22] have recently assessed the
capabilities of the phase field approach (see in particular the
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AT1 and the AT2 models) to predict crack nucleation from
V-notches and from points with stress concentrations. Phase
field modelling has numerous applications, especially in the
field of biomedical engineering, particularly in the study of
bone fractures. In this regard, fractures in the vertebrae can be
challenging to analyse and treat due to their complex shapes
and locations [23, 24]. However, phase field modelling can
help by simulating the fracture process and shedding light
on the underlying mechanisms involved. In particular, phase
fieldmodelling can be used to investigate the impact of verte-
bral fixation and screw placement on the healing of vertebral
fractures. By incorporating the presence of screws and other
fixation devices into the simulation, researchers can evalu-
ate the mechanical stability of the fracture site and predict
the potential for screw loosening or failure [25]. Addition-
ally, researchers can gain insights into the effects of different
placement strategies on the fracture propagation process.

Quantitative and qualitative finite element models are
being developed to evaluate damage patterns and predict
crack propagation in biological tissues. Somuch so, recently,
the capability of a plethora of phase field implementations for
modelling and analysing crack growth in bone tissue has been
successfully applied [26–28], thus phase field theory seems a
promissory approach to assess bone fracture patterns. In this
context, the biomechanical problem of characterizing dam-
age and predicting crack trajectories in a humanvertebra after
the fixation procedure of pedicle screws (see Fig. 3a) can be
tackled utilizing a phase field method.

Screw fixation in vertebral surgery is a critical aspect
of spinal procedures aimed at stabilizing the spine, treat-
ing fractures, deformities, or degenerative conditions. While
advances in medical technology have significantly improved
the success rates of these interventions, clinical challenges
still exist, leading to caseswhere the fixationmay not work as
intended and might need for re-intervention, as, for instance,
demonstrated in the X-rays in Fig. 1, with the screw position-
ing as in [29]. Besides, achieving optimal screw placement
to provide stability without compromising nearby structures
such as nerves or blood vessels is a delicate balance. Screw
types, screw dimensions and insertion pathways can play an
important role in clinical interventions, as in in-vitro stud-
ies [29, 30]. Figure2 shows microradiographic images at
different fixation techniques placement in the lumbar ver-
tebral interface. To minimize the risk of fixation failure and
the need for re-intervention, the present numerical compu-
tational model based on the theory of phase field to fracture
can considerably contribute to enhance precision and reduce
complications of these challenging interventions.

Metallic pedicle screws are used in spine fusion proce-
dures when the intervertebral discs have been damaged by
ageing or any trauma, causing the vertebrae to rub against
each other and compress the nerves that pass through them.
Spinal fusion joins two or more diseased vertebrae together,

preventing motion at the vertebral segment. The screws are
inserted into the respective pedicle regions, connecting the
screws through a vertical rod, providing ameans for gripping
onto a vertebral segment and limiting its motion, resulting
in stable spine fixation. Bone damage and screw loosening
may occur due to various post-operative events [32]. Fur-
thermore, the mechanical behaviour of the pedicle screw
insertion angle has been experimentally investigated [29, 33].
Nonetheless, finite element analysis allows for the assess-
ment of numerous possible failure scenarios that may occur
after the surgical procedure requiring screw insertion, as well
as the characterization of fracture damage and estimation of
mechanical responses under varying screws fixation angles
[34, 35]. Thereby, the impact of screw configuration angular
parameters in fracture pattern and stress distributions were
investigated via computational model considering a stress-
based criterion [36, 37]. In the study by [23], the mechanical
behaviour of instrumented metastatic vertebra in presence of
pedicle screws has been investigated.

Bone metastases are the spread of cancer cells from a pri-
mary tumour to the bones [38]. There are two main types
of bone metastases: osteolytic and osteoblastic. Osteolytic
bonemetastases are caused by the destruction of normal bone
tissue. This occurs when cancer cells produce substances
that stimulate osteoclasts, the cells that break down bone.
Osteoblastic bone metastases are caused by the deposition of
new bone tissue. This occurs when cancer cells produce sub-
stances that stimulate osteoblasts, the cells that build bone.
The findings of study [23, 39] showed that the prediction of
mechanical properties has been affected by the size, location
and nature of themetastasis.Moreover, it has been concluded
that a metastasis situated near the screws produces a higher
influence on fracture load response compared to a metastasis
far from the screws. As a consequence, a finite element phase
field model has been hereof implemented in order to validate
numerically the existing outcomes in the literature resulting
from the variation of the screws insertion angle in a human
vertebra, with the aim of further developing a coupled model
with two or more fused vertebrae. To reduce discrepancies
between the current numerical implementation and the real
one, spatially heterogeneous elastic properties andphasefield
parameters have been meticulously derived through a com-
putational procedure based on the estimation of bone density
properties. This process has enabled the characterization and
modelling of elastic properties across spatial dimensions,
along with the nuanced determination of phase field parame-
ters, contributing to a more comprehensive understanding of
the damaged vertebral body.

The paper is organized as follows: Sect. 2 provides the
CAD models of the screws and the vertebra, which are
discretized and have their material properties set. It also cov-
ers the virtual insertion of pedicle screws into the vertebra.
Section3 introduces the phase field finite element method
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Fig. 1 The left image depicts the X-ray of the incorrect spinal stabilization procedure by the insertion of the pedicle screws in the vertebrae of the
lumbar region, whereas the right image shows the X-ray of the re-intervention showing the correct spinal stabilization (image taken from [31])

Fig. 2 Microradiographs showing different screw types and fixation trajectories. Cortical screw (left) and pedicle screw (right) placement (image
taken from [30])

strategy implemented in this study. The staggered and mono-
lithic phase field models are detailed in Sect. 4. Section5
presents the boundary conditions and parameter setup for
the numerical phase field method. Additionally, it includes
a mesh sensitivity analysis of the phase field framework
applied to several discretized models of vertebra-screws.
Finally, Sect. 6 presents the main results in terms of dam-
age patterns. It considers various screws insertion trajectories
for different vertebral movements and presents a discussion
comparing the outcomes with other relevant works in this
field. Lastly, Sect. 7 characterizes the mechanical responses
and fracture patterns of the vertebral body with the screws
inserted in the presence of metastatic conditions, namely
osteolytic and osteoblastic lesion types.

2 Human vertebra-pedicle screws finite
element model

2.1 Models andmaterials

TheL4 lumbar vertebramodelwasobtained fromaComputer
Tomography (CT) scan images from the spine of 49-year-
old female patient of 62Kg weight, as described in [34]. The
solid cylindrical pedicle screws have length of 40 mm. The
major and minor diameters of screws are 6.5 mm and 4.3
mm, respectively (please see [35] for additional details). The
CAD models of the pedicle screws virtually inserted in the
L4 vertebra are depicted in Fig. 3. The phase field model
has been evaluated for three different screws fixation angles,
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indicated by the vector �α = (α1, α2). Here, α1 represents
the insertion angle in the cranio-caudal (CC) direction, and
α2 indicates the insertion angle in the medio-lateral (ML)
direction [34], as shown in Fig. 3a. In particular, the mesh
sensitivity analysis is conducted using the screws insertion
trajectory combination �α = (−5, 0), which means that the
screws are fixed with a negative angle of −5◦ in the CC
direction and a neutral angle of 0◦ in the ML direction.

To import the combined vertebra-screws CAD model
into the finite element environment FEniCS [40], uniform
tetrahedral meshes are constructed. This is achieved by trans-
ferring the assembled STL model’s triangular mesh into the
pre-processing software HyperMesh [41], which generates
the required tetrahedral solid. The solid is then assessed and
converted into a MSH file using the Gmsh platform [42].
Multiple refined meshes have been created, ranging from 60
thousand elements to 700 thousand elements. Please refer to
Fig. 3b for visualization of these meshes.

Bone density properties have been considered for the
material of the L4 vertebra using CT data [43–45]. In this
regard, a constant Poisson’s ratio of ν = 0.3 was assumed,
and isotropic and linear elastic material properties were
adopted with a heterogeneous distribution of the Young’s
modulus E obtained from the interpolation of the spatial dis-
tribution of the material properties from the CT data of the
vertebra [34, 35]. Such distribution differentiates the cortical
bone from the trabecular bone. For trabecular bone, an elastic
modulus ranging between 0.4 and 3 GPa was derived, while
for cortical bone, the range was between 12 and 14 GPa,
as shown in Fig. 4a. In what regards to the pedicle screws,
surgical procedures commonly use biomedical implants or
replacements made of the titanium alloy Ti-6Al-4V [46, 47].
Therefore, the chosen mechanical properties for the pedicle
screws are a Young’s modulus of 110 GPa (Fig. 4b) and a
Poisson’s ratio of 0.4, as in [34, 48].

3 Phase-field approaches to fracture with
spectral decomposition

With reference to an arbitrary body occupying a domain
� ∈ R

ndim , with boundary ∂� ∈ R
ndim−1, in the Euclidean

space of dimension ndim , in which an evolving internal dis-
continuity� is postulated to exist, a material point is denoted
by x and body forces by b : � → R

ndim . Mixed conditions
are prescribed along non-overlapping Neumann and Dirich-
let regions of the boundary ∂�N ∪ ∂�D = ∂� in the usual
form

u = u on ∂�D and σ · n = T on ∂�N (1)

wheren denotes the outward unit normal to the boundary,u is
the displacement field andσ is theCauchy stress tensor,while
u and T are prescribed surface displacements and tractions.

3.1 The regularized variational formulation

Within the regularized framework of the phase field approach
[12, 20, 49, 50], the potential energy of the system can be
decomposed into two terms as following

�(u, s) =
∫

�

ψe(ε, s) dx +
∫

�

Gcγ (s,∇s) dx (2)

whereψe(ε, s) is the energydensity of the bulk, now function
of the damaged parameter s, and γ (s,∇s) is the crack density
functional, with ∇ denoting the spatial gradient operator. As
a result, the total free energy density of the bulk ψ̂ reads as

ψ̂(ε, s) = ψe(ε, s) + Gcγ (s,∇s).

The functional γ (s,∇s) is assumed to be a convex func-
tion of s and its gradient∇s and can be written, in agreement
with the following expressions characterizing theAT2model,
as

γ (s,∇s) = 1

2

(
s2

l0
+ l0|∇s|2

)
, (3)

where l0 stands for a regularisation characteristic length that
can be related to the Young’s modulus, the fracture tough-
ness, and the tensile strength of the material, as specified in
Sect. 5. To avoid the development of damage in compression,
so to allow fracture growth only under tensile stress states,
the following ‘tensile/compressive’ decomposition is herein
assumed for the energy density in the bulk ψe(ε, s) [20, 51–
54] and included in the formulation:

ψe(ε, s) = g(s)ψe+(ε) + ψe−(ε), (4)

where g(s) is a damage function that is assumed in the simple
form g(s) = (1 − s)2 + k, where k is a residual stiffness
(introduced to avoid ill-conditioning) and the positive and
negative parts of the energy density are defined as

ψe±(ε) = λ

2
〈±trε〉2 + μtr (ε±)2 , (5)

where λ andμ are the Lamé constants, tr(·) denotes the trace
operator and the positive and negative parts of the strain
ε± are defined as follows. With reference to the spectral
representation for the strain (with eigenvalues εi and unit
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Fig. 3 CAD-based finite element of the vertebra-screws model

Fig. 4 Interpolated Young’s modulus (GPa) distribution of the model vertebra-screws. For details of the distribution in (a), please see [34, 35]
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eigenvectors ei ), denoted as

ε =
3∑

i=1

εi ei ⊗ ei , (6)

the strain is additively decomposed as ε = ε+ + ε−, so that
the tensile and compressive parts associated to ε are

ε+ =
3∑

i=1

〈εi 〉ei ⊗ ei , and ε− = −
3∑

i=1

〈−εi 〉ei ⊗ ei ,

(7)

respectively, where the Macaulay bracket operator is defined
for every scalar x as 〈x〉 = (x + |x |)/2.
A standard derivation [55] leads Eq. (5) to the Cauchy stress
tensor from the strain energy density:

σ = g(s)σ+ + σ− = {(1 − s)2 + k} (λtrε+ I + 2με+)

+λtrε− I + 2με−, (8)

where I denotes the second-order identity tensor. The ther-
modynamic consistency of the above constitutive theory, in
agreement with the Clausius-Duhem inequality, has been
addressed in [20].

3.2 Weak form of the variational problem

The weak form corresponding to the phase field model for
brittle fracture can be derived following a standard Galerkin
procedure. In particular, the weak form of the coupled dis-
placement and phase field damage problem according to Eq.
(2) is:

δ� =
∫

�

σ (u) : ε(v) dx −
∫

�

2ψe+(ε)(1 − s)φ dx

+
∫

�

Gc
{ 1

l0
sφ + l0∇s · ∇φ

}
dx + δ�ext , (9)

where v is the vector of the displacement test functions
defined on H1

0(�), φ stands for the phase field test function
defined onH1

0(�). Equation (9) holds for every test functions
v and φ. The external contribution to the variation of the bulk
functional in Eq. (9) is defined as follows:

δ�ext(u, v) =
∫

∂�

T · v d� +
∫

�

b · v dx. (10)

4 Numerical FE schemes

4.1 Staggered solution scheme

The mechanical problem can be stated as: given the pre-
scribed loading condition un and Tn at step n, find u ∈ U ={
u |u = un on ∂�u,u ∈ H1(�)

}
such that

Eu(u, s; v) :=
∫

�

σ (u) : ε(v) dx −
∫

∂�

Tn · v d�

−
∫

�

b · v dx = 0, ∀v ∈ H1
0(�), (11)

while the phase field problem is formulated as: find s ∈ S ={
s | s = 1 on �, s ∈ H1(�)

}
such that ∀φ ∈ H1

0(�):

Es(u, s;φ) :=
∫
�
Gc l0 ∇s · ∇φ dx

+
∫
�

(Gc
l0

+ 2H

)
sφ dx −

∫
�
2Hφ dx = 0 , (12)

where H(ε) = maxτ∈[0,t]
{
ψe+(ε(τ ))

}
is the strain history

function, accounting for the irreversibility of crack formation
[17, 20].

To solve the quasi-static evolution problems for brittle
fracture, isoparametric linear triangular finite elements are
used for the spatial discretization, and a staggered solution
scheme is considered. Staggered schemes based on alternate
minimization exploit the convexity of the energy functional
with respect to each individual variable u and s [56]. Here,
an ad hoc developed solver has been implemented in the
software FEniCS, see Alg. 1 for the staggered algorithm
description. A series of benchmark tests taken from [20, 57]
has been carried out to validate the methodology.

4.2 Newton–Raphson procedure

Even if the mechanical problem has been split into Eqs. (11)
and (12), so that the phase field is reduced to a linear problem,
non-linearity still remains, becauseof the piece-wise linearity
of the constitutive law, which includes a spectral decompo-
sition of the strain. Therefore, a consistent linearization is
required, so that the linear form defined by the residual can
be written as:

Fu(u, s; v) =
∫

�

{
((1 − s)2 + k)σ+(u) : ε(v)

+σ−(u) : ε(v)} dx −
∫

∂�

T · v d�

−
∫

�

b · v dx. (13)

Given uk the current Newton–Raphson approximate solu-
tion at iteration k, the correction δu is therefore the solution
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of the following linear variational problem: find δu ∈ U0 ={
u |u = 0 on ∂�u,u ∈ H1(�)

}
such that Ju(δu,uk, s; v) =

−Fu(uk, s; v), ∀v ∈ H1
0(�) and then iterate as uk+1 =

uk + δu. The Jacobian entering the formulation is

Ju(δu,u, s; v) =
∫

�

{
((1 − s)2 + k)∂σ+(δu,u) : ε(v)

+∂σ−(δu,u) : ε(v)} dx ; (14)

for details about the terms ∂σ−, ∂σ+, please see [18].

Algorithm 1 Staggered iterative scheme for phase field frac-
ture at a step n ≥ 1
1: Input: Displacements and phase field (un−1, sn−1) and prescribed

loads (un,Tn):
2: Initialize (u0, s0) := (un−1, sn−1);
3: for k ≥ 1 staggered iteration do:
4: Given sk−1, solve themechanical problem (13): Eu(u, sk−1; v) =

0 for u, set u := uk ;
5: Given uk , solve the phase field problem (14): Es(uk , s; φ) = 0

for s, set s := sk ;
6: if max{||uk − uk−1||/||uk ||, |sk − sk−1|/|sk |} < tol: then
7: set (uk , sk) := (un, sn);
8: else k + 1 → k.
9: end if
10: end for
11: Output: (un, sn).

At this stage, it is fundamental to remark that, in order
to predict crack trajectories in human vertebrae under
tensile/compressive stress states, the phase field finite ele-
ment method will be formulated. This formulation involves
decomposing the strain energy density ψe(u, s) in Eq. (4)
based on spectral diagonalization, as described in [20], into
active and passive parts. This decomposition allows for the
application of material response degradation only in ten-
sion. The variational formulation is then implemented in the
FEniCS environment, utilizing the MPI (message passing
interface) parallelization library, which accelerates the com-
putational time.

4.3 Monolithic solution scheme

Amonolithic solver has also been implemented in FEniCS.
The tangent operator of the non-linear variational functional
given by:

Eu,s(u, s; v, φ) :=
∫

�

σ (u) : ε(v) dx

−
∫

�

2H(ε)(1 − s)φ dx

+
∫

�

Gc
{ 1

l0
sφ + l0∇s · ∇φ

}
dx

+
∫

∂�

T · v d� +
∫

�

b · v dx, (15)

is computed via the symbolic derivative derivative, the
monolithic algorithm scheme can be visualized in Alg. 2.

Algorithm2Monolithic iterative scheme for phasefield frac-
ture at a step n ≥ 1
1: Input: Displacements and phase field (un−1, sn−1) and prescribed

loads (un,Tn):
2: Solve the coupled non-linear variational problem via Newton-

Raphson iterative scheme:
3: Eu,s(un, sn; v, φ) = 0, ∀(v, φ) ∈ H1

0(�) × H1
0(�)

4: Output: (un, sn).

5 Phase fieldmodelling to pedicle screws in
human vertebra

5.1 Boundary conditions and numerical
implementation

Although spine models have been extensively exploited and
validated in the literature [58], the present finite element
phase field method focuses on a single vertebral body, as
observed in other studies [35, 59]. In this study, the load-
ings are addressed on the inserted screws in the L4 vertebra,
whichwill be simultaneously constrained. Throughout all the
numerical implementations, the boundary conditions were
set to replicate the principal movements permitted by the
vertebral column. For this purpose, the pedicle screws head
have been loaded to reproduce flexion (bending forward) and
extension (bending backwards) (green arrows in Fig. 5), rota-
tion (torsion/twisting) (red arrows in Fig. 5). The centre of the
L4 vertebra has been assumed as the rotation axis centre for
the twisting loading mode. Meanwhile, a compressive force
of Fv = 5 N has been applied over the superior endplate sur-
face of the vertebral body,while the inferior endplate has been
constrained. Furthermore, the vertebral fracture patterns have
been simulated by incrementally applying a quasi-static force
to the screw heads for all the studiedmovements. Fundamen-
tally, the total force applied at each loading step corresponds
to 10% of the constant compressive load Fv.

The numerical phase field procedures were implemented
in a high-performance computing (HPC) system, utilizing
parallel computing and dividing the model into three smaller
tasks. The computational time ranged from 2h for the coars-
est mesh to 30h for the finest mesh. Six cores were utilized,
with an average of 200 GB of RAMper core. It is worth men-
tioning that the extension and flexion loadingmodes required
more time for simulation, necessitating the use of additional
cores and computational memory to improve the efficiency
of these movement modes.
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Fig. 5 Boundary conditions and
loading regimes employed on
the vertebra-screws models for
numerical implementation

5.2 Parameters calibration andmesh sensitivity
analysis

With the aim of achieving an appropriate mesh discretization
for obtaining accurate numerical phase field responses for
various physiological motions, a meticulous mesh sensitiv-
ity analysis has been conducted using the staggered scheme
phase field finite element method reported in Alg. 1. The
vertebra-screws mesh model has been uniformly discretized
in tetrahedral elements at various refinement levels, ranging
from 60k to 350k degrees of freedom (DoFs).

Prior to conduct the mesh sensitivity analysis, it must be
recorded that the phase field parameters have to be deli-
cately calibrated. The critical energy release rate Gc plays
a crucial role in phase field modelling for bone applica-
tion, where throughout experiments, different values of Gc
have been obtained at different aged cortical bones [27, 60].
For those reasons, when a mesh sensitivity analysis is being
conducted in a biological material, the phase field parame-
ters must also be carefully examined. As such, a power-law
equality is usually assumed (see [61]) by which the critical
energy release rateGc is derived frombonedensity properties,
namely

Gc = Gc,0
(

E

E0

)β

, (16)

where the parameters have been set as E0 = 20 GPa, Gc,0 =
0.01 N/mm, and β = 0.8 are the base elastic modulus, the
base critical energy release rate and the power-law exponent,
respectively [36].

Through the implementation of the staggered phase field
schemeAlg. 1, Fig. 6 presents the numerical analysis compar-
ing the outcomes in the extension loading mode for different
mesh refinements, with the screws insertion angle set as

�α = (−5, 0). Fig. 6a depicts the load versus displacement
curves juxtaposed, indicating that as the mesh becomes finer,
the vertebra-screws model can bear more load. The error is
defined as 100%× |Fmax − F̂max|/|F̂max|, where Fmax is the
maximum peak load at the crack onset under extension load-
ing for each simulation and F̂max is the mean maximum peak
load at the crack onset under extension loading as reported in
[34]. Figure6b illustrates the relative error as the number of
elements increases. According to [34], it can be noticed that
mesh convergence is satisfactorily achieved at a relative error
of less than 5%. Therefore, assuming a mesh size between
200k and 350k elements is acceptable for characterizing the
fracture patterns in the simulated physiological movements.
Nonetheless, in terms of characterizing the damage patterns,
the present mesh sensitivity analysis revealed no significant
distinctions among the different mesh refinements. More-
over, the computational cost aligns well with the numerical
outcomes using a mesh with 200k elements. This is further
supported by Fig. 6c, which displays the fractured volume as
the loading step varies, and it can be noted that the curve of
200k elements deviates very little from the curve of 350k ele-
ments. The damaged volume was calculated at each loading
step by considering the number of finite elements in which
the phase field was in the interval [0.9, 1], divided by the
total number of elements of the mesh. Still, Fig. 7 delineates
a comprehensive comparison of distinct mesh refinements,
showcasing contour profiles of the phase field on a horizontal
cut at the same loading step under extension mode motion.
These convergence analyses demonstrate good agreement
with previous studies [34, 35]. In terms of damage type,
although the phase field model captured similar damage pat-
terns for allmesh refinements, coarsermeshes exhibitedmore
rapid fracture spread within the cortical part.

The length scale l0 parameter is deeply inserted for mod-
elling phase field, considering that for a sufficiently small
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Fig. 6 Mesh sensitivity analysis: Extension mode movement at screws fixation angle of �α = (−5, 0).

length scale l0, the functional (9) converges to the total poten-
tial energy functional, in the sense that the global minimizers
of �l0 will also converge to that of �. This entails that the
length scale must be carefully chosen, rather than setting it
arbitrarily.

Having said that, on one hand, the characteristic length
scale l0 that smears the regularized crack can be obtained
either from microscopic structural-related mechanisms [62,
63], and further derived from a formula combining the
Young’s modulus E , the critical energy release rate Gc and
the maximum strength of the material at failure σmax [64],
as evidenced in several studies [65–67]. However, this rela-
tion is known to be valid just in the case of uniaxial tension
of an one-dimensional bar and relies on the knowledge of

σmax , which is a difficult material parameter to be found in
literature.

On the other hand, the characteristic length scale l0 can
be interpreted, and therefore calibrated, as a structural factor
from bone properties [27, 61]. In particular, in a biological
material, as cortical bone for instance, the length scale can be
attributed to the lamellar microstructure, which may trap the
crack tip within it, deflecting or stopping the leading edge of
the crack [68]. Moreover, structural changes in cortical bone
due to ageing affect crack path and damage properties [43,
60, 69]. In accordance with the estimations made in [61, 70],
an examination of the role played by the characteristic length
scale l0 is also developed here.
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Fig. 7 Contour Profiles of the phase field variable for different mesh refinements at the same cutting plane and the same loading step

To address the problem of calibrating l0, a series of simu-
lations have been conducted varying l0 ∈ {5 ·10−5, 10−4, 5 ·
10−4} mm and the value of l0 = 10−4 mm has been selected
to be the one that provides the closest value of the peak load
in extension (Fmax = 2715 N)(refer to Fig. 8) compared to
the value reported in the literature [23], corresponding to
Fmax = 2929 N, corresponding to a relative error of 4.45%.
As mentioned in the previous section, from a biomechanical
standpoint, the characteristic fracture length scale l0 can be
associated with the typical size of bone microstructure, i.e.,
osteon (10 ÷ 500μm), lamellae (3 ÷ 7μm), and collagen
fibril (0.5μm). In these regards, image-based identification
procedures would be necessary to characterize the most crit-
ical scale involved in fracture phenomena.

Taking into consideration the previous mesh sensitivity
analysis, with a mesh of 200k elements, a screws insertion
angle of �α = (−5, 0) in extension mode motion, Fig. 8 indi-
cates that the apparent peak load from the phase field scheme
increases as the characteristic length scale l0 is reduced, as
expected based on previous results reported in the literature
[71, 72].

5.3 Staggered versus monolithic numerical schemes

A numerical comparison has been conducted to assess the
performances of both the staggered and monolithic numeri-
cal schemes, as described in Sects. 4.1 and 4.3, respectively,
in terms of their accuracy in reproducing the damage evolu-
tion patterns and the load versus displacement curves. The
outcomes of these campaigns are depicted in Fig. 9. For this
comparative analysis, the discretized vertebra-screws model
consisting of 300k elements has been considered, with the
screws inserted at an angle combination of �α = (−5, 0), in
a counter-clockwise torsion motion.

In terms of accuracy, the load versus displacement curves,
presented in Fig. 9a, are more accurate in the monolithic
scheme due to the fact that the binding reaction on the
vertebra endplate is zero and deviates very little. Further-
more, the fractioned volume outcomes are similar for both
approaches, as Fig. 9b displays. It can also be pointed out that,
the damage pattern obtained from the monolithic method
bears resemblance to the evolution of the damage observed
in the staggered simulation, see Fig. 9c. Nevertheless, con-
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Fig. 8 Load versus loading steps obtained for different values of the
length scale parameter l0. Extension mode movement at screws fixation
angle of �α = (−5, 0).

sidering the computational time consumed, the advantages
of using the staggered scheme outweigh the potential bene-
fits offered by the monolithic technique. While the staggered
simulation took approximately 3.5 h to be completed, the
monolithic running time exceeded 15 h.

6 Computational analysis

6.1 Characterization of loadingmodes

Continuing with the comparative investigation of the var-
ious screw insertion angles, namely �α = (−5, 0), �α =
(−5,−5), and �α = (+5,+5), Fig. 10 highlights how the
screw configuration influences the mechanical responses of
the vertebral body in different motion regimes. The load ver-
sus displacement curves generated from the phase field finite
element method are displayed in Figs. 10a–c, representing
the vertebral movements of extension, flexion, and torsion,
respectively. In these three cases analysed, the load has been
computed as the vincular reaction on the bottom of the ver-
tebra. In the cases of extension and flexion modes, it can be
seen a linear elastic phase, followed by a softening due to
the occurrence of fracture inside the vertebra, whereas in the
case of rotation movement, the vincular reaction on the bot-
tom is equal to zero, until a critical angle is reached and the
fracture is activated.

Regarding the damage patterns, the counter-clockwise tor-
sion motions simulated for the insertion angles �α = (−5, 0),
�α = (−5,−5), and �α = (+5,+5) were characterized by
the formation of asymmetric damage, where the damage
occurrence is more prominent on the side that experiences
greater loading as the steps increase. Additionally, in terms

of extension and flexion regimes, symmetrical patterns were
observed for all three screw fixation angle combinations,
as expected. The characterizations presented demonstrate
the effectiveness of the current phase field modelling as a
robust tool for capturing damage and delineating mechanical
aspects in biological tissues.Moreover, they alsodemonstrate
good agreement with recent works found in the literature [34,
35]. To achieve a precise estimation of sharp fracture, it is
necessary to employ mesh elements with a size, denoted as
h, considerably smaller than the characteristic length scale
l0 [12, 19]. However, in the current investigation, the phase
field model serves the dual purpose of representing dam-
age, encompassing more than just a sharp fracture pattern.
Consequently, the assumed value of l0 in the numerical cam-
paign suits and effectively characterizes the damage induced
by the pedicle screws within the vertebra model, as visually
demonstrated in Fig. 11, and which can be satisfactory con-
trasted to the evolution of the damage patterns from Fig. 9 in
[35], showing that the present phase field model accurately
captures the evolution of the damage within the vertebral
body. Figure11a, b show a symmetrical trend regarding the
evolution of the damage caused by the screws on exten-
sion and flexion movements, respectively. On the contrary,
the counter-clockwise rotation regime is characterised by an
asymmetrical evolution of the damage, as demonstrated in
Fig. 11c.

7 Osteolytic and osteoblastic metastatic
lesionmodels

In this section the damage patternswithin the vertebra-screws
model are assessed and characterised in the presence of
metastatic lesions by applying the phase field method. The
metastasis lesion types considered for the simulations are
osteolytic and osteoblastic. Bothmetastatic tissues have been
modelled following the material properties which accounts
for the interaction bone-metastasis as in [23, 39]. Figure12
illustrates the spherical metastatic lesions within the verte-
bral domain, centred at amaterial point (10, 20, 0), assuming
radii of 5 mm (Fig. 12a) and 10 mm (Fig. 12b).

Figure13 shows the altered Young’s modulus E, for the
metastatic vertebrae,which have been calibrated by consider-
ing a weakening effect following Gaussian-like distributions
centred at the centre of the spherical lesions at material point
(10, 20, 0) and radii of 5 mm and 10 mm [23]. In the case of
an osteolytic lesion, the Gaussian-like distribution was cho-
sen such as a local softening could be induced, as depicted
in Fig. 13a, b, whereas in the case of an osteoblastic metas-
tasis, the Gaussian-like distribution adopted creates a local
stiffening, seen in Figs. 13c, d. Likewise, the critical energy
release rate Gc for both metastatic lesions have been derived
following the relation stated in Eq. (16).
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Fig. 9 Staggered and monolithic phase field models contrasted on a counter-clockwise axial rotation regime

The mechanical responses have been derived by apply-
ing the phase field model to the aforementioned metastatic
lesions under the vertebral movement of vertical extension.
Figure14 shows the load versus displacement charts from the
osteolytic metastasis performances, see Fig. 14a, and from
the osteoblastic lesion simulations, see Fig. 14b. Overall, the
vertebrae within an osteoblastic are characterized by higher

load peaks in contrast to the vertebrae within the effect of an
osteolyticmetastasis.Moreover, the curve for the osteoblastic
lesion of radius 10 mm is characterized by a higher stiffness
than the osteolytic lesion of radius 10 mm. However, in the
case of a lesion with a radius of 5 mm, the osteolytic model
demonstrates a higher peak load value than the osteoblastic
model. Those outcomes are in good matching with the find-
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Fig. 10 Comparative analyses among the extension, flexion and torsion modes, at screws fixation angles of �α = (−5, 0), �α = (−5,−5) and
�α = (+5,+5)

ings in [23] considering the P2 position for the lesions (refer
to Figs. 7(b),(d) and 10(h) in [23]). Accordingly, as the oste-
olytic lesions increases in size, the peak load reduces, this
effect is well reported in [73], which states that as the region
of the metastasis increases, the stiffness of the vertebral body
reduces.

In terms of damage pattern, the influences of the induced
osteoblastic spherical lesions having radii respectively of 5
mm and 10 mm are depicted in Fig. 15. It can be observed
that, from Fig. 15a, it is worth adding that the damage pattern
of the model vertebra-screws within the osteoblastic metas-

tasis having radius of 5 mm resembles the fracture pattern of
a no lesion vertebra, reported in Fig. 11b. On the other hand,
the vertebra-screws model under the effect of a osteoblas-
tic spherical lesion having radius of 10 mm significantly
affect fracture characterization, demonstrating an asymmet-
ric trend, in which the damage has spread more rapidly in the
side where the metastasis is located, as seen in Fig. 15b.
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Fig. 11 Evolution of the damage pattern caused by loading regimes applied on the pedicle screws head: a extension motion; b flexion motion; and
c counter-clockwise axial rotation motion

8 Conclusions

A careful assessment of the fracture patterns and associated
mechanisms in a human vertebra after the insertion of pedi-
cle screws was scrutinized by implementing a finite element
phase field method. Although the outcomes of the present
phase field methodology is in good accordance with numer-
ical studies existing in literature, it is essential to emphasize
that confirming the accuracy of such a procedure entails
quantitative validation against experimental results. Conse-
quently, an extensive validation, encompassing both clinical
and experimental aspects, should be investigated.

Throughout the study, several aspects were pondered to
accurately investigate the fractures and crack trajectories,
such as maximum peak loads in load versus displacement
curves, critical energy release rate, and the characteristic
length scale. In particular the computational implementation

employed a spatially heterogeneous elastic modulus derived
from bone density properties. As a result, a heterogeneous
critical energy release rate based on those estimations is
derived as well.

The analysis of various fracture types was ensured by
conducting a mesh sensitivity study, which provided an opti-
mal mesh size balancing simulation running time and the
model’s capability to reproduce outcomes within a small rel-
ative error. These findingswere supported by comparing load
versus displacement curves for all considered mesh refine-
ments at the extension vertebral motion mode and a screws
insertion angle configuration of �α = (−5, 0). It is worth
mentioning that the damage responses in the vertebra from
the developed phase field model are affected when differ-
ent configurations of the pedicle screws fixation angle are
simulated.
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Fig. 12 Perspective and top
views of different spherical
metastatic lesions centred at the
material point (10, 20, 0) in
respect to the center of the
vertebra-screws model

In addition, a comparison between phase field finite
element approaches was also performed. Essentially, the
staggered phase field model makes headway in terms of
optimizing computational time consumption in relation to
characterizing the damage within the vertebra-screwsmodel,
when compared to the results obtained from the monolithic
phase field scheme. Last but not least, the phase field method
herein implemented could also evaluate the mechanical
responses of metastatic vertebra. The results were assessed
by analysing osteolytic and osteoblastic metastases, and by
varying the size of the lesions. The load versus displacement
lines were predicted and the evolution of the fracture patterns
have been reported.

Notwithstanding, several potential improvements of the
present model can be highlighted. Applications range from
spine section models, considering multiple vertebrae and
associated stabilization, to the improvement of the material
model accounting for multiscale couplings and growth and
remodelling both in health and disease. In particular, it is
worth mentioning the generalization of the phase field model
to incorporate osteon failure mechanics [74] by means mul-
tiscale approaches that interact with screws and affect the
onset and evolution of a fracture. In such a scenario, concur-
rent stress rearrangement is obtained, and time-dependent
phenomena occur. Additionally, the developed phase-field
model can be used in future applications to address a vari-
ety of specific problems in bone remodelling and implant
biodegradation [75–78]. For example, the model can be used
to predict the effects of implant interface biodegradation on

bone remodelling, which can help in the design of implants
that are more likely to promote bone integration.

Ageing and gender effects are to be addressed in future
works [43, 79, 80]. Figure16 [79] shows the changes in sex
hormone levels and bone mass density throughout men’s and
women’s lives. The curves reveal clearly that, in both gen-
ders, the bone density is tightly related to testosterone and
estrogen levels, and they vary throughout time, i.e. bonemass
is steadily decreasing, proving the bone quality deteriorates
while ageing. Such aspects might affect the damage patterns
of eventual osteon lesions. In [80] numerical simulations on
2D and 3D human femurs to investigate the impact of age and
gender on bone mass density variation were conducted. The
study revealed three key findings: under intensive loading,
bone accelerated formation in various regions; bone density
was higher in 20-year-olds, but densification decreased with
age, suggesting varying resorption rates; men exhibited a dis-
tinct bulk density evolution compared towomen,with greater
density increase at the femur head to the lower neck. The
work proposed a modelling framework for long-term bone
density evolution, allowing for the differentiation between
genders and age. This model should be incorporated into the
model detailed in the present work in order to be predictive
for long term scenarios. Starting from the patient reconstruc-
tion of the bone density via CT scan, this can be used as an
initial condition (together with the additional information on
the age and gender of the patient) for the model in [79] to
obtain the future density of the bone and apply the presented
fracture model.

123



Computational Mechanics

Fig. 13 Top and back views of the altered Young’s modulus E distribution in the bone induced by spherical osteolytic and osteoblastic metastases
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Fig. 14 Load versus displacement curves obtained for osteolytic and osteoblastic metastases induced by lesions of 5 mm and 10 mm radii centered
at the material point (10, 20, 0) in extension movement mode

Fig. 15 Evolution of the damage pattern caused by flexion motion regime for an osteoblastic metastasis
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Fig. 16 Diagrammatic
representation of the bone mass
life-line in both men and
women, with the evolution of
testosterone levels in men and
estrogen levels in women
(image taken from [79])
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