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Entanglement between different regions in momentum space is studied for ground states of some
spin-chain Hamiltonians: the XY model, the Ising model in a transverse field (ITF) and the XXZ
models. In the XY and ITF cases, entanglement only takes place between states with opposite
momenta. Thus, an anisotropy in the interaction induces entanglement in the momentum pairs. In
the ITF case, the ferromagnetic phase is characterized by a total entropy between left- and right-
moving modes which is independent on the external field. This result characterizes the Ising phase
transition in momentum space. In the critical XXZ case, we provide evidence that the maximal
entropy between energy modes around the Fermi point grows logarithmically with the system size,
with a prefactor which depends on the compactification radius. The slow growth of the entanglement
in Fourier space with the system size provides an explanation for the success of the renormalization
techniques in momentum space.

I. INTRODUCTION

Entanglement entropy (EE) and entanglement spectra
(ES) are concepts in quantum information theory which
have provided invaluable insight for quantum phase tran-
sitions and topological phases [1–3]. Area laws [4, 5] have
been put forward for the ground state (GS) of many lo-
cal Hamiltonians, stating that the EE of a block in real
space is proportional to the number of links which must
be broken in order to isolate the subsystem. A rigorous
proof can be given in few situations, such as 1D gapped
systems [6]. The EE for 1D critical states is known to re-
ceive a logarithmic correction proportional to the central
charge of the associated conformal field theory (CFT)
[7, 9]. The fact that entanglement is a resource for quan-
tum computation [10] can be reversed, to state that it
is the limiting feature for many numerical methods de-
signed to study quantum many-body problems [11], such
as the density matrix renormalizartion group (DMRG)
[8].

Most studies of entanglement are performed in real
space. Yet, many analytical and numerical methods for
quantum many-body systems rely on a Fourier space de-
scription. Real space sites and momentum sites consti-
tute two different tensor structures of the same many-
body Hilbert space, thus allowing for very different en-
tanglement patterns. The success of DMRG in momen-
tum space [13] and the relation between momentum-
space entanglement and renormalizability [12] suggest
that the dependence of the maximum entanglement with
the system size could be lower in momentum space than
in real space for many systems of interest. A duality
between entanglement in real and momentum space was
uncovered in [14, 16], which applies to free fermionic sys-

tems, but no general rule has been derived. Thus, while
[17] reports that the XXZ critical region does not have
any signatures in the ES or the EE, [18] shows that the
ES in energy space can provide a unified picture of the
phase diagram for p-wave superconductors, and [19] finds
similar traces of the transition of the extended Hubbard
model studying multipartite entanglement in momentum
space.

For a homogeneous system, the entanglement proper-
ties of a spatial block should only depend on the block
size. Fourier space, on the other hand, is inherently inho-
mogeneous. For systems with a Fermi surface structure,
the Fermi momentum kF is specially relevant. Thus,
it makes special sense to study the entanglement be-
tween blocks around kF and their complementary, and
the entanglement between levels below and above kF [16],
which has proved valuable in the study of superconduct-
ing systems [15, 18]. As we will see, it is thus crucial to
know the nature of our physical problem before deciding
which blocks might provide a deeper insight.

This article is organized as follows. A general dis-
cussion about the meaning of entanglement in Fourier
space is done in section II. Then, section III shows the
behaviour of the entanglement in momentum space for
the (generalized) XY model, computed analytically via
a Jordan-Wigner transformation. Section IV is devoted
to the (numerical) study of the entanglement in Fourier
space of the XXZ model. The article ends with a section
on conclusions and proposals for further work.

http://arxiv.org/abs/1602.04224v2
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II. ENTANGLEMENT FROM REAL TO

MOMENTUM SPACE

Let us consider a system of spinless fermions. Its
Hilbert space is the tensor product of N qubit Hilbert
spaces: H = C2 ⊗ · · · ⊗C2. A basis can be written using

the local creation operators c†i :

|n1 · · ·nN〉 =
N
∏

i=1

(c†i )
ni |0〉 , (1)

where ni ∈ {0, 1}. For any single-body unitary transfor-
mation U , we can define a new set of creation operators:

b†j =
∑

i Ujic
†
i . Now we can define a new basis:

|m1 · · ·mN 〉 =
N
∏

j=1

(b†j)
mj |0〉 , (2)

with mi ∈ {0, 1}. Defining ~n ≡ {n1, · · · , nN} and ~m ≡
{m1, · · · ,mN}, any pure state of H can be expressed in
both bases:

|Ψ〉 =
∑

~n

C~n |n1 · · ·nN〉 =
∑

~m

B~m |m1 · · ·mN 〉 . (3)

And we can write a change of basis matrix:

B~m =
∑

~n

Ω~m,~n C~n, (4)

where Ω~m,~n = 〈m1 · · ·mN |n1 · · ·nN 〉. In the particu-
lar case of fermionic states, both basis states are Slater
determinants, so the scalar products can be computed
efficiently:

Ω~m,~n = det (U~m,~n) , (5)

where we use the notation U~m,~n to be the (sub-)matrix
where we only pick the rows given by the values mj = 1
and the columns with ni = 1.
When the single-body unitary matrix U implements

the Fourier transform, then the coefficients B~m are read
as the Fourier expansion of the many-body wavefunc-
tion, which correspond to a different slicing of the Hilbert
space as a tensor product: each qubit space corresponds
now to a momentum site instead of a real space site.
Each index j corresponds to a certain momentum kj ,
determined by the size of the system and the boundary
conditions. We will focus on antiperiodic boundary con-
ditions with even N . Thus, we have k = (2p + 1)π/N ,
with integer p. This way, k = 0 and k = π are never
allowed. We always define our momenta to lie in (−π, π].
If a quantum single-body state is translationally in-

variant, it must have a well defined momentum. A trans-
lationally invariant quantum many-body state fulfills a

more involved constraint: its non-zero amplitudes B~m

all have
∑

j mjkj = 0 mod 2π.

Momentum space is inherently non-homogeneous, even
if real space can be considered to be so. When we study
entanglement in real space, typically we are only inter-
ested in the size of the block. But in momentum space,
we are also interested in the position of those blocks.
Thus, we have defined a few interesting possibilities, mo-
tivated by the physics of the problems that we will study,
depicted in Fig. 1.

+k

−k

−kF

+kF

+k

−k

pk

+k

−k

E4 E8 E12

+k

−k

Pn

FIG. 1. Illustration of the different blocks used to study the
entanglement entropy in momentum space. (A) momentum
space structure, showing in blue the momenta occupied by a
Fermi sea. (B) Positive momenta blocks, Pn contains the n
momenta closest to the positive Fermi level, +kF . (C) Pairing
of opposite momenta, block pk contains the momenta k and
−k. (D) Energy blocks, En contains the n momenta which
are closest to the Fermi energy.

Let us start our description with a Fermi sea, as de-
picted in Fig. 1 (A), where the Fermi momentum ±kF is
marked. The first type of blocks to be considered is Pn,
which contains n positive momenta around the positive
Fermi point, see Fig. 1 (B). Thus, PN/2 corresponds to
the block which contains all positive momenta, which we
will denote simply by P . Another natural set of blocks
can be formed by choosing the (−k, k) pairs with the
same energy, which we will call pk, as shown in Fig. 1
(C). Following [18], we can also consider blocks in en-

ergy space, assuming a relation E ∼ |k|, as in Fig. 1
(D), where En contains the n momenta whose energy are
closest to the Fermi energy.
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III. GENERALIZED XY MODEL

In this section we will present our first physical system,
the 1D XY model, and map it into a model of spinless
fermions. The XY Hamiltonian in a one-dimensional lat-
tice of N sites and periodic boundary conditions can be
written as:

H =
−1

2

N
∑

j=1

1

2

[

(1 + γ)σx
j σ

x
j+1 + (1− γ)σy

j σ
y
j+1

]

+ Jσz
j .

(6)
This system is exactly solvable [20]. The procedure

is to perform a Jordan-Wigner transformation, which
will bring it to a fermionic Hamiltonian without parti-
cle preservation, followed by a Fourier transform of the
resulting fermionic operators. One obtains the following
Hamiltonian:

H =
∑

j∈Ω

Aj d
†
j dj + i

Bj

2

[

d†jd
†
−j + djd−j

]

, (7)

where we defined Aj , Bj :

Aj = J − cos kj , Bj = −γ sin kj . (8)

and where kj = 2πj/N , and the set of allowed momenta

is Ω = {kj}N/2
j=−N/2. The operators dj are Fourier-space

fermionic operators annihilating a fermion with momen-
tum kj . In the fermionic formulation, the total z-axis

magnetization M (z) =
∑

j〈σz
j 〉 of the spin model is re-

lated with the number of fermions, nf =
∑

j〈d
†
jdj〉 as:

2nf − N = M (z). The following step is a Bogoliubov
transformation of the form

b†j = uj d
†
j + ıvj d−j ,

with u2
j + v2j = 1 and

u2
j − v2j = Aj/Ej ,

2ujvj = Bj/Ej , (9)

where Ej is the energy of the j-th free mode, satisfying
E2

j = A2
j +B2

j . Thus,

u2
j =

1

2

(

1 +
Aj

Ej

)

, v2j =
1

2

(

1− Aj

Ej

)

. (10)

Such a transformation brings the Hamiltonian into a
free Hamiltonian in the b-modes:

H =
∑

j

|Ej |b†jbj −
1

2

∑

j

Ej . (11)

For each eigenstate of the XY Hamiltonian (6), there
exists a corresponding eigenstate of (11) with equal en-
ergy, of the form:

|θ〉 =
∏

j

[

θjb
†
j + (1 − θj)

]

|g〉 , (12)

where |g〉 is annihilated by all bj ’s, and the state is char-
acterized by the set of occupations θj = 0, 1 in terms of

b-modes: θj = 〈θ| b†jbj |θ〉. The Hamiltonian ground state

|g〉 is related with the d’s zero in the following form:

|g〉 =
∏

j

bj |0〉 . (13)

Taking γ = 0 (XX model), the Hamiltonian (7) is al-
ready diagonal in the d-modes, so each dj is correlated

only with itself, 〈d†j dj′〉 = κjδj,j′ , where κj = 0, 1 is
the occupation of site j, and where the expected value
〈·〉 is taken with respect to the d operator vacuum, |0〉.
In other words, the eigenstates of the Hamiltonian are
product states in momentum space, hence presenting a
vanishing entanglement entropy in momentum space. For
γ 6= 0, however, the eigenstates (12) are such that mo-

ment k is only entangled to moment −k. Let us call
(k,−k) a momentum pair. Given any block B in momen-
tum space, we need only to consider its broken pairs: if
both k and −k belong to B, then they do not contribute
to entanglement. Thus, without any loss of generality.
let us only consider in the following blocks composed of
positive momenta, see Fig. 1.
The von Neumann and Rényi entropies quantifying the

amount of entanglement between B and its complemen-
tary can be exactly computed throught the fermionic cor-

relators 〈d†idj〉 of the model. Consider the ℓ × ℓ reduced

correlation matrix, C:

Cj,j′ = 〈θ| d†jdj′ |θ〉 kj , kj′ ∈ Aℓ. (14)

Using the inverse Bogoliubov transformation (9), it is
found to be

Ci,j = δi,jλj ,

λj ≡
[

u2
jθj + v2j (1− θ−j)

]

. (15)

Let us denote by ρB the reduced density matrix of the
state (12) in B, i.e., with the degrees of freedom of the
complementary of B traced out. It is a tensor product
of 2× 2 reduced density matrices in different sites of B:
ρB =

⊗

j∈B ̺j . The entropy of entanglement is obtained

from the eigenvalues of ̺j , {λj , 1 − λj}, being λj the
eigenvalue of the j-site reduced correlation matrix (15).
The von Neumann entropy is given by

S[ρB] =
∑

kj∈B

H2(λj), (16)
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where H2(x) ≡ − (x log x+ (1− x) log(1− x)). Equiva-
lently, the Rényi entropy of order α > 1 reads:

Sα[ρB] =
1

1− α

∑

kj∈B

log
[

λα
j + (1− λj)

α
]

. (17)

Alternatively, one can obtain Eqs. (16) and (17) com-
puting explicitly the reduced j-site correlation matrix us-
ing Eq. (13); in the θj = 0 case, for instance, it is simply:

̺j = v2j d
†
j |0〉j 〈0| dj + u2

j |0〉j 〈0|. Assuming even states
θj = θ−j, the entropies do not depend on the state θ:

S[ρB] =
∑

kj∈B

H2(u
2
j),

Sα[ρB] =
1

1− α

∑

kj∈B

log
[

u2α
j + v2αj

]

α > 1. (18)

Our preferred blocks to show the structure of the en-
tanglement in the XY model will be the positive momen-
tum blocks centered on the Fermi point, as illustrated in
1 (B), i.e., the Pn blocks.

A. XY model with J = 0

Let us illustrate the laws (18) in their particular re-
alizations for the XY model ground states. Our first
example is the J = 0 case. The model with J = 0 is
gapped except for the point γ = 0 which corresponds to
the XX model, whose ground state is a product state in
momentum space. The γ parameter may be regarded as
a mass term. For γ = 0, the state is

|g〉 =
∏

|kj |<π/2

d†j |0〉 . (19)

The diagonal of matrix C in Eq. (15) gives the occupa-

tions of d modes in the ground state, 〈g|d†jdj |g〉 = v2j ,

which are presented in Fig. 2 (A).
We also present the entanglement entropy of the single

momentum states, S[̺j], which are given by each one
of the terms in the sum of Eqs. (16, 17). Fig. 2 (B)
shows S[̺j ] for j = 0, . . . , N/2 as a function of both kj
and γ. While for small values of γ only those momenta
immediately around the Fermi point at kF = π/2 present
a significant amount of entanglement, as γ becomes larger
and larger the distribution of entanglement S[̺j ] as a
function of kj − kF becomes broader.
In Fig. 2 (C), we present the J = 0 entropy S(Pn) as

a function of n = 0, . . . , N/2 for 11 different values of γ
from 0 to 1.4 and N = 100. For γ = 0 one also observes
a vanishing entropy for all n, as already mentioned. Let
us remark that the critical case presents the minimum
momentum space entropy for all n, as opposed to the
behaviour of the real-space entanglement entropy. For
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FIG. 2. Entanglement in momentum space for the XY model
of Eq. (6) with J = 0, for different values of γ. (A) Occupa-

tions of the different modes, 〈g|d†jdj |g〉 = v2j vs. kj . (B) Con-
tribution of each mode k to the entanglement entropy, S[̺j ],
with γ ranging from 0 (identically zero) to 1.5 (red). (C) En-
tanglement entropy of positive momentum blocks S(Pn) as
a function of the block size x = n/N with N = 100, along
with the γ → ∞ limit, S(Pn) = n log 2. Again, for γ = 0 the
entropy is identically zero.

increasing γ we get increasing entropy. The γ → ∞ case
presents a linear growth of the entropy with the system
size, S(Pn) → n log 2, as can be analytically proved from
the exact solution.

Notice that, for γ → ∞, each pair (−k, k) becomes
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maximally entangled, contributing log(2) to the entropy
of the block of positive momenta. Thus, the entangle-
ment entropy of the block PN/2 tends to its maximal
possible value, N log(2)/2. Although it is tempting to
think of this state as a highly entangled state, we should
take into account that it depends on the neighborhood
structure that we impose on momentum space. If we con-
sider k to be neighbor to −k, then the entanglement is
only of short range.

B. Ising model

Let us now study the Ising model, Eq. (6) with γ = 1,
for different values of J . The system is gapped for all J 6=
1, and for J = 1 it presents a quantum phase transition.
The J < 1 phase is ferromagnetic, while for J > 1 the
system is paramagnetic.

The ground state occupations 〈d†jdj〉 are shown in Fig.

3 (A). As opposed to the previous case, the number of
fermions nf (i.e., the sum of v2j for all j) is not constant,
but decreases with J , as illustrated in Fig. 3 (A, inset).
This fact indicates that the blocks Pn defined in Fig. 1
have lost its special relevance, since the Fermi point is
no longer defined independently of J . However, we will
concentrate on the entanglement of individual momen-
tum pairs, S[̺j], and the total entanglement of positive
versus negative momenta, PN/2.

Fig. 3 (B) shows the entanglement entropy contributed
by each pair (kj ,−kj), S[̺j ], for different values of J ,
given by

s(k, J) = H2





1

2
+

J − cos k

2
√

(J − cos k)2 + sin2 k



 (20)

The value J = 0 corresponds to the blue centered line.
Let kc(J) denote the momentum for which s(kc, J) at-
tains is maximum. For J ≤ 1, kc = arccos(J), and
s(kc, J) = log 2, i.e. that mode is maximally entangled.
For J = 1, kc = 0, the maximally entangled mode is
the zero mode. For J > 1, in the paramagnetic phase,
the maximal value maxk s(k, J) decreases with J and kc
increases again.

In Fig. 4 (A) we show the entropy of finite blocks
around the Fermi point, S(Pn, J) (check Fig. 1), as a
function of x = n/N for different values of J in a finite
system with N = 200. For J = 0 the entropy is maximal
for all x, see the top blue curve in Fig. 3 (C). The curve
becomes a straight line for the critical value, J = 1. No-
tice that, for all J ≤ 1 the x = 1/2 entropy is constant.
In other terms, along the ferromagnetic phase, the en-
tanglement between the positive and negative momenta
is independent of J . This value, S(PN/2, J), is given by
the expression
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FIG. 3. Entanglement in momentum space of the Ising model
in a transverse field (ITF) defined in (6) for γ = 1. (A)
Occupations of the different modes, v2j vs. kj . Inset: total
number of particles, as a function of J . Notice the larger
slope for J = 1. (B) Contribution of each mode k to the
entanglement entropy, s(k, J) = S[̺j ] for different values of J .
The blue line, J = 0, is symmetrical with respect to kc = π/2.
The momentum of maximal entropy, kc = arccos J decreases
with J until, for J = 1, it reaches zero. The maximal entropy
contribution s(kc(J), J) = log 2 for J ≤ 1. For J > 1 (red
lines), the maximal entropy is lower than log 2.

S(PN/2, J) =
∑

0<kj<π

H2

(

u2
j(J)

)

≈ N

π

∫ π

0

dk s(k, J)

(21)
where the last step is taken in the thermodynamic limit,
and corresponds to the area under each of the curves of
Fig. 3 (B). The area under all these curves is equal for
J ≤ 1, and the following result can be proved:

s0 ≡ lim
N→∞

S(PN/2, J)

N
= log 2− 1/2 ≈ 0.193 if J ≤ 1

(22)

The point at which it is simplest to evaluate the inte-
gral is at J = 0, where it becomes:
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s0 =
1

π

∫ π/2

0

dφ H2(cos
2(φ)) (23)

Fig. 4 (B) shows the value of the entropy per site
between the positive and negative momenta, sN (J) ≡
S(PN/2, J)/N for some finite-size values (dots) and the
thermodynamical limit (continuous black line), where we
can see that it stays constant for J ≤ 1 and decays lin-
early shortly after J > 1. The derivative is, therefore,
discontinuous at that point.
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FIG. 4. Entanglement of blocks of positive momenta Pn ITF
model, Eq. (6) with γ = 1. (A) Entropy of the Pn block,
S(Pn), as a function of the block size fraction, x = n/N , for
different values of J for N = 200. Notice that the maximal
value of S(Pn) remains constant for all J ≤ 1, and decreases
for J > 1. (B) Entanglement between positive and negative
momenta for the ITF model per site, sN(J) = S(PN/2, J)/N ,
for different sizes. Notice how, in the thermodynamic limit
(continuous black line), the entanglement is constant for
J ≤ 1 and decays linearly for J > 1. Moreover, the col-
ored continuous lines are given by approximation (25), which
singles out the lowest mode. Inset: collapse of the finite-size
curves, s̃(J̃), see Eq. (24).

The finite-size entropies shown by the dots in Fig. 4
(B) provide very relevant information. They all follow
the scaling form

sN (J) ≈ s0 + s̃(J̃) (24)

where J̃ = N(J−1), which can be understood as a scaling
variable since J − 1 is the inverse of a correlation length.
The inset of Fig. 4 (B) shows the collapse of the s̃ =

sN (J) − s0 curves, when expressed as a function of J̃ ,

in both phases. The origin of this s̃(J̃) scaling lies in
the fact that the deviation from the continuum limit is
due mostly to the the smallest momentum, ΛN = π/N .
If we single out its contribution from the sum, as it is
customary in the study of Bose-Einstein condensation,
we obtain the approximation

S(PN/2, J) ≈ H2(u
2(ΛN )) +

N

2π

∫ π

2π/N

dφH2(u
2(φ)),

(25)
which is shown by the colored continuous lines of Fig. 4
(B). This approximation is very accurate in the vicinity
of the phase transition, and we can see that the position
of their maxima are precisely reproduced.

IV. ENTANGLEMENT IN THE XXZ MODEL

Let us now investigate the entanglement entropy in
momentum space of the XXZ model. Through the
Jordan-Wigner transformation, this corresponds to an
interacting fermionic model, which we can write as

HXXZ = −1

2

∑

i

c†ici+1 + h.c. + ∆
∑

i

nini+1, (26)

where ni = c†i ci and endowed with anti-periodic bound-

ary conditions (APBC), i.e., c†N+1 ≡ −c†1. Notice that
the number of particles is preserved in this case, so we can
restrict ourselves to the case of half-filling. This model is
known to be critical for ∆ ∈ (−1, 1], with central charge
c = 1. Moreover, the GS of Eq. (26) describes a Luttinger
liquid [24], which is characterized by Luttinger parameter

K =
π

2(π − acos(∆))
. (27)

A. The Néel limit

In the limit where ∆ → +∞ the ground state of (26)
becomes a Néel state, which is a superposition of two
factorized states in real space,

|Ψ〉 = 1√
2
(|101010 · · · 〉+ |010101 · · · 〉) (28)

Let us consider the relevant momenta {kj}, j ∈
{1, · · · , N} ordered from −π to π and symmetrically
placed around zero, so that kj = −kN+1−j. The basis
states can be written as

∣

∣m1 · · ·mN/2;mN/2+1 · · ·mN

〉

,
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with mj ∈ {0, 1} the occupation of the momentum kj .
Then, the Néel state can be written as

|Ψ〉 =
∑

m1···mN/2

Cm1···mN/2

∣

∣m1 · · ·mN/2; m̄N/2 · · · m̄1

〉

(29)
where m̄j = 1 − mj , i.e. the occupation of level kj
is always the opposite of level −kj. The amplitudes
Cm1···mN/2

, disregarding normalization, are given by:

Cm1···mN/2
= Even





N/2
∑

i=1

mi



 (−1)
∑N/4

p=1
m2p , (30)

where Even(n) is defined as 1 if n is even and zero oth-
erwise. This expression means that the non-zero wave-
function components have an even number of particles
with positive (negative) momenta. Moreover, all the am-
plitudes are equal in absolute value, and their sign is
given by the parity of the occupation of the even-indexed
momenta. Notice that all modes are equally occupied,
〈mj〉 = 1/2.
The entanglement structure of this state is as follows:

• The entropy of the positive momenta blocks Pn

(Fig. 1 (B)), is S(Pn) = n log 2 if n <= N − 2.

• The block which contains all positive momenta,
PN/2, is special, and its entropy is S(PN/2) =
(N − 1) log 2.

• All the momentum pair blocks, pk which contain a
pair {k,−k} (Fig. 1 (C)), have entropy log(2).

• Blocks with two momenta which do not correspond
to the same energy, on the other hand, present max-
imal entropy 2 log(2).

• Energy blocks En, Fig. 1 (D), also have entropy
log(2).

B. Entanglement in Fourier space of the the XXZ

model

We have obtained numerically the GS of Hamilto-
nian (26) for N up to 20, and performed a numerical
many-body Fourier transform of the resulting GS, as de-
scribed in section II. Due to the APBC, the set of al-
lowed momenta come always in pairs ki = ±iπ/N and
i ∈ {1, 3, · · · , N − 1}. For L = 2 mod 4, the GS is ex-
actly degenerate for all ∆, so we restrict ourselves to N
multiple of 4.
First of all, we have investigated the occupation num-

ber of each momentum, in order to check the known re-
sults regarding Luttinger liquid theory. Fig. 5 shows

the occupation of each k-mode, nk ≡ 〈Ψ| b†kbk |Ψ〉 for
N = 20 and several values of ∆ = {0, 0.2, 0.4, · · · , 1.4},
along with a fit to the Luttinger liquid expression
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FIG. 5. Momentum space occupations for the GS of the XXZ
model, obtained numerically for N = 20 and several values
of ∆, and their fit to the Luttinger prediction (31). The
dependence of the occupation exponent with the anisotropy
∆ is shown in the inset, along with the theoretical prediction,
given by Eqs. (31) complemented with (27) and (32).

nk ≈ |k − kF |α. (31)

The value of the exponent α is related to the Luttinger
parameter K through the following expression

α =
1

2

(

K +K−1
)

− 1, (32)

and this last relation is checked in the inset of Fig. 5.
The entropy of the positive vs negative momenta,

S(PN/2) (see Fig. 1) is shown in Fig. 6 (A) as a function
of the system size, N for several values of ∆, where we
show only positive values of ∆ for clarity. The depen-
dence with the system size is linear for all values of ∆.
The inset shows the dependence of the entropy between
positive and negative modes with ∆ for N = 20. A very
good fit can be made to a power law, with a different
exponent for positive and negative ∆: S(PN/2) ∼ ∆1.62

for ∆ > 0 and ∆1.83 for ∆ < 0.
The right panel, Fig. 6 (B), shows the entropy of blocks

of the form pk (see Fig. 1), which contain only a pair of
opposite momenta, as a function of k, for N = 20 and
several values of ∆ > 0. Notice that, in the XY and ITF
model, all those entropies were zero. In all cases, this
entropy is highest for k ≈ kF , and decays exponentially
away from the Fermi point. The fits in Fig. 6 (B) are
done to an expression of the form

Sk ≈ SkF exp(−|k − kF |/σ) + S0, (33)

where σ provides a measure of the extent to which mo-
menta away from the Fermi surface can be removed with-
out alteration of the rest of the state. This σ parameter
grows as |∆| does.
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S ∼ ∆1.83. (B) Entropy of the block containing only an opposite pair of momenta, S(pk) as a function of k, which takes the
maximal value for k ≈ kF . In all cases, the entropy decays as a power-law of the distance to the Fermi momentum.

We have also studied the blocks containing the n mo-
menta which are closest to the Fermi energy, denoted by
En in Fig. 1. Fig. 7 (A) shows the entropy S(En) as
a function of n for N = 20 for different positive values
of ∆. This case bears the strongest similarity to the en-
ergy blocks studied previously in [18]. It can be noticed
that the value S(En) always decreases for large n, show-
ing that separating the momenta which are further away
from the Fermi surface always has a smaller entropic cost.
The maximal value of S(En), Smax is always found for
small values of n.
The panel (B) of Fig. 7 shows the maximal entropy

Smax as a function of N for different positive values of
∆. When ∆ is in the critical region, ∆ ∈ (−1, 1], the
best fit is always to the form

Slog(N) = Θ log(N) + β + γ/N2, (34)

i.e., a logarithmic growth with a finite-size correction of
N−2. Outside the critical region, and even for ∆ = 1, the
best fit is not logarithmic, but to a power-law growth.
The inset of Fig. 7 (B) shows the logarithmic growth
prefactor, Θ, as a function of ∆. It presents a minimum,
Θ = 0, for the XX case, ∆ = 0, and appears to grow
linearly for positive ∆.

V. CONCLUSIONS

The structure of a many-body quantum state can be
studied by slicing the Hilbert space in different ways.
Traditionally, we consider the entanglement of real space
blocks, but in some cases we can gather useful informa-
tion using other bases, such as Fourier space. The success
of DMRG in momentum space for different models points
at a slow growth of entropy with the system size if the

path is chosen appropriately. In this work we have stud-
ied the entanglement structure in Fourier space of spin
chains, described as fermionic states through the Jordan-
Wigner transformation. We have benefitted from both
analytical and numerical tools in our study.
First, we have studied the generalized XY model,

which can be analytically solved using a Bogoliubov
transformation. In all cases, momentum k is only coupled
to its conjugate −k. For the XX model, the wavefunc-
tion is factorizable. Introducing the γ parameter, which
measures the anisotropy between the X and Y axes, we
couple the momenta pairs, which for γ → ∞ become
maximally entangled. The Ising model in a transverse
field (ITF) can also be studied analytically. In that case,
we find that the entanglement entropy per site between
the positive and negative momenta is constant in the fer-
romagnetic phase and decreases linearly with the exter-
nal field in the paramagnetic phase for J close to J = 1.
Thus, there is a clear signature of the quantum phase
transition. Near the critical point, the finite size correc-
tions to the entropy can be obtained by singling out the
contribution of the lowest momentum.
We have also studied the XXZ model numerically, with

sizes up to N = 20. In this case, the most salient fea-
ture is that the maximal entropy among the energy-space
blocks En, which contain the n closest momenta to the
Fermi energy, grows with log(N) in the critical region.
The prefactor, nonetheless, is not related to the central
charge, but instead it depends on the compactification ra-
dius, which is given by the anisotropy parameter ∆. Out
of the critical region, the entropy of energy blocks grows
faster than logarithmically, very likely as a power-law.
The Néel state, which is the limit for infinite anisotropy,
has also very peculiar features in Fourier space, such as
a constant entropy for all of energy blocks.
Is there a complementarity relation between entangle-

ment in real and momentum space? The question is even
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FIG. 7. (A) Entanglement entropy of blocks formed by the n
energy levels closest to the Fermi energy, En (see Fig. 1), for
different positive values of ∆, also for N = 20. (B) Maximal
entanglement entropy of the En blocks, Smax as a function
of N , for different values of positive ∆. The best fit is to a
logarithmic growth, (34) with N−2 corrections. Inset: prefac-
tor of the logarithmic term as a function of ∆, both positive
and negative. In all cases, the fit error is less than 10−7 for
∆ ∈ (−1, 1).

difficult to formulate rigorously, due to the inherent in-
homogeneity of momentum space. For example, which
blocks should be used for the comparison? One may

characterize the maximal entanglement SM in momen-
tum space using a minimax definition. Let P be the
set of all permutations of the (momentum) sites. Given
p = {s1, · · · , sN} ∈ P , we may obtain the maximal en-
tropy among the blocks starting from s1, and define:

SM ≡ min
P

max
m

S({s1, · · · , sm}). (35)

(See [25] for a similar idea in the application of the
DMRG on networks). Equivalently, we can consider the
minimal entropy among all blocks of a given size m, and
maximize on m:

SM ≡ max
n

min
|B|=n

S(B). (36)

Both expressions must yield the same result. For
example, for a 1D translation-invariant system in real
space, the minimax entropy block will contain no holes,
and the optimal permutation will follow the 1D struc-
ture. For the XXZ model in momentum space we conjec-
ture that the minimax entropy takes place for the energy
blocks around the Fermi surface. Thus, we propose to
investigate the relation between these minimax entropies
in real and momentum space.
Moreover, it is relevant to ask whether the signatures

for critical behavior in Fourier space that we have dis-
cussed can be summed up into a universal criterion, at
least for 1D systems. Numerical investigation of the
many-body Fourier transform is very demanding compu-
tationally, thus a conceptual breakthrough is necessary
at this step.
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