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At least two different approaches to define and solve statistical models for the analysis of economic systems
exist: the typical, econometric one, interpreting the gravity model specification as the expected link weight of an
arbitrary probability distribution, and the one rooted in statistical physics, constructing maximum-entropy distri-
butions constrained to satisfy certain network properties. In a couple of recent companion papers, they have been
successfully integrated within the framework induced by the constrained minimization of the Kullback-Leibler
divergence: specifically, two broad classes of models have been devised, i.e., the integrated and conditional
ones, defined by different, probabilistic rules to place links, load them with weights and turn them into proper,
econometric prescriptions. Still, the recipes adopted by the two approaches to estimate the parameters entering
into the definition of each model differ. In econometrics, a likelihood that decouples the binary and weighted
parts of a model, treating a network as deterministic, is typically maximized; to restore its random character, two
alternatives exist: either solving the likelihood maximization on each configuration of the ensemble and taking
the average of the parameters afterwards or taking the average of the likelihood function and maximizing the
latter one. The difference between these approaches lies in the order in which the operations of averaging and
maximization are taken—a difference that is reminiscent of the quenched and annealed ways of averaging out
the disorder in spin glasses. The results of the present contribution, devoted to comparing these recipes in the
case of continuous, conditional network models, indicate that the annealed estimation recipe represents the best
alternative to the deterministic one.
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I. INTRODUCTION

Over the last 20 years, the growth of network science has
impacted several disciplines by establishing new, empirical
facts about the structural properties of the related systems.
Prominent examples are provided by economics and finance:
the growing availability of data has motivated researchers to
explore and model the architecture of cryptocurrencies [1],
interbank networks [2], production networks [3], and trading
networks [4–7].

Modeling the establishment of a connection and the cor-
responding weight simultaneously poses a serious challenge.
Econometrics prescribes to estimate binary and weighted pa-
rameters either separately, within the context of hurdle models
[8], or jointly, within the context of zero-inflated models [9];
in both cases, the gravity model specification [10] 〈wi j〉GM =
f (ωi, ω j, di j |φ) = eρ (ωiω j )αdγ

i j—where ωi ≡ GDPi/GDP is
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the GDP of country i divided by the arithmetic mean of the
GDPs of all countries, di j is the geographic distance between
the capitals of countries i and j, and φ ≡ (ρ, α, γ ) is the vec-
tor of parameters defining the gravity model specification—is
interpreted as the expected value of a probability distribution
whose functional form is arbitrary. On the other hand, the
approach rooted in statistical physics constructs maximum-
entropy distributions, constrained to satisfy certain network
properties [11–15].

In a couple of recent, companion papers [16,17] the two,
aforementioned approaches have been integrated within the
framework induced by the constrained optimization of the
Kullback-Leibler (KL) divergence [18]. In particular, two
broad classes of models have been constructed, i.e., the inte-
grated and conditional ones, defined by different, probabilistic
rules to place links, load them with weights, and turn them
into properly econometric prescriptions. For what concerns
integrated models, the first two rules follow from a single,
constrained optimization of the KL divergence [19]; for what
concerns conditional models, the two rules are disentangled
and the functional form of the weight distribution follows
from a conditional, optimization procedure [20]. Still, the
prescriptions adopted by the two approaches to carry out the
estimation of the parameters entering into the definition of
each model differ.
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The present contribution is devoted to comparing these
recipes in the case of continuous, conditional network models
defined by both homogeneous and heterogeneous constraints.

II. MINIMIZATION OF THE KULLBACK
-LEIBLER DIVERGENCE

The functional form of continuous, conditional network
models can be identified through the constrained minimiza-
tion of the KL divergence of a distribution Q from a prior
distribution R, i.e.,

DKL(Q||R) =
∫
W

Q(W) ln
Q(W)

R(W)
dW, (1)

where W is one of the possible values of a continuous random
variable, W is the set of possible values that W can take,
Q(W) is the (multivariate) probability density function to
be estimated, and R(W) plays the role of prior distribution,
whose divergence from Q(W) must be minimized: in our
setting, W represents an entire network whose weights now
obey the property wi j ∈ R+

0 , ∀ i < j. Such an optimization
scheme embodies the so-called minimum discrimination in-
formation principle [16,17], implementing the idea that, as
new information becomes available, an updated distribution
Q(W) should be chosen to make its discrimination from the
prior distribution R(W) as hard as possible.

Let us now separate both the prior and posterior distribu-
tions into a purely binary part and a conditional, weighted
one; the positions Q(W) = P(A)Q(W|A) and R(W) =
T (A)R(W|A), where A denotes the binary projection of the
weighted network W (i.e., �[W] = A), T (A) represents the
binary prior, and R(W|A) represents the conditional, weighted
prior, lead the KL divergence to be rewritable as

DKL(Q||R) = DKL(P||T ) + DKL(Q||R), (2)

i.e., as a sum of the two addenda

DKL(P||T ) =
∑
A∈A

P(A) ln
P(A)

T (A)
, (3)

DKL(Q||R) =
∑
A∈A

P(A)
∫
WA

Q(W|A) ln
Q(W|A)

R(W|A)
dW. (4)

In what follows, we will deal with completely unin-
formative priors, a choice that amounts at considering the
(somehow, simplified) expression

−S(Q) = −S(P) − S(Q|P), (5)

i.e., minus the joint entropy, where

S(P) = −
∑
A∈A

P(A) ln P(A) (6)

is the Shannon entropy of the probability distribution describ-
ing the binary projection of the network structure [14,15] and

S(Q|P) = −
∑
A∈A

P(A)
∫
WA

Q(W|A) ln Q(W|A)dW (7)

is the conditional Shannon entropy of the probability distri-
bution describing the weighted network structure [16,17,20].
Notice that, when continuous models are considered, S(Q|P)

is defined by a sum running over all the binary configurations
within the ensemble A and an integral over all the weighted
configurations that are compatible with each, specific, binary
structure, i.e., WA = {W : �[W] = A}. For a more detailed
discussion, see Appendix A.

The functional form of P(A) can be determined by carrying
out the usual, constrained maximization of Shannon entropy
[14,15]; remarkably, any set of (binary) constraints considered
in the present paper will lead to the same expression for P(A),
i.e., P(A) = ∏

i< j p
ai j

i j (1 − pi j )1−ai j , with pi j = xi j/(1 + xi j ):
specifically, the position xi j ≡ x individuates the undirected
binary random graph model (UBRGM), the position xi j ≡
xix j individuates the undirected binary configuration model
(UBCM), and the position xi j ≡ δωiω j individuates the logit
model (LM) [21].

On the other hand, the functional form of Q(W|A) can be
determined by carrying out the constrained maximization of
S(Q|P), the set of constraints being, now,

1 =
∫
WA

P(W|A)dW, ∀ A ∈ A, (8)

〈Cα〉 =
∑
A∈A

P(A)
∫
WA

Q(W|A)Cα (W)dW, ∀ α; (9)

while the first condition ensures the normalization of the prob-
ability distribution, the vector {Cα (W)} represents the proper
set of weighted constraints. The distribution induced by such
an optimization problem reads

Q(W|A) = e−H (W)

ZA
= e−H (W)∫

WA
e−H (W)dW

(10)

if W ∈ WA and 0 otherwise. While the Hamiltonian H (W) =∑
α ψαCα (W) lists the constraints, the quantity at the de-

nominator is the partition function, conditional on the fixed
topology A [20].

For mathematical convenience, in what follows we will
consider separable Hamiltonians, i.e., functions that can be
written as sums of node pair-specific Hamiltonians: H (W) =∑

i< j Hi j (wi j ); this choice leads to the result

Q(W|A) = e− ∑
i< j Hi j (wi j )∫

WA
e− ∑

i< j Hi j (wi j )dW

=
∏
i< j

e−Hi j (wi j )[ ∫ +∞
mi j

e−Hi j (wi j )dwi j
]ai j

=
∏
i< j

e−Hi j (wi j )

ζ
ai j

i j

(11)

(with mi j being the pair-specific, minimum weight allowed
by a given model and ζi j being the corresponding partition
function), irrespectively from the specific, functional form of
Hi j (wi j ) [17]. For a more detailed discussion, see Appendix B.

III. ESTIMATION OF THE PARAMETERS

Several, alternative recipes are viable to estimate the
parameters entering into the definition of continuous, condi-
tional network models.
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A. Deterministic parameter estimation

The simplest one prescribes to consider the traditional like-
lihood function

ln Q(W∗) = ln[P(A∗)Q(W∗|A∗)]

= ln P(A∗) + ln Q(W∗|A∗), (12)

with W∗ (A∗) being the empirical, weighted (binary) adja-
cency matrix; its maximization allows the parameters entering
into the definition of the purely topological distribution and
those entering into the definition of the conditional weighted
one to be estimated in a totally disentangled fashion [17], in
fact, maximizing

Lψ = ln Q(W∗|A∗)

= − H (W∗) − ln ZA∗

= − H (W∗) − ln

[∫
WA∗

e−H (W)dW
]
, (13)

with respect to the unknown parameters leads us to find the
vector of values ψ∗ satisfying the vector of relationships

〈C〉A∗ (ψ∗) ≡ C∗, (14)

which stands for the set of relationships 〈Cα〉A∗ (ψ∗) ≡ C∗
α ,

∀ α, each one equating the model-induced average value of
the corresponding constraint to its empirical value, marked
with an asterisk.

This first approach to parameter estimation can be named
deterministic to stress that A∗ is considered as not being
subject to variation; otherwise stated, this recipe—which is
the most common in econometrics—prescribes estimating the
parameters entering into the definition of the conditional,
weighted probability distribution by assuming the network
topology to be fixed.

B. Annealed parameter estimation

Topology, however, is a random variable itself, obeying the
probability distribution P(A). As a consequence, the deter-
ministic recipe for parameter estimation could lead to incon-
sistencies, should the description of A∗ provided by P(A) not
be accurate. The variability induced by P(A) can be properly
accounted for by considering the generalized likelihood [20]

Gψ =
∑
A∈A

P(A) ln Q(W∗|A)

=
∑
A∈A

P(A)[−H (W∗) − ln ZA]

= − H (W∗) −
∑
A∈A

P(A) ln

[∫
WA∗

e−H (W)dW
]

= 〈Lψ 〉,

(15)

whose maximization leads us to find the vector of values ψ∗

satisfying the vector of relationships∑
A∈A

P(A)〈C〉A(ψ∗) = 〈C〉(ψ∗) = C∗, (16)

which stands for the set of relationships 〈Cα〉(ψ∗) ≡ C∗
α ,

∀ α. Taking this average is conceptually similar to taking

the annealed average in physics: parameter estimation is
carried out while random variables—again, the entries of the
adjacency matrix—are left to vary.

Interestingly, the deterministic recipe is a special case of
the annealed recipe since the former can be recovered by
posing P(A) ≡ δA,A∗ : in this case, in fact,

Gψ = −H (W∗) −
∑
A∈A

δA,A∗ ln ZA

= − H (W∗) − ln ZA∗ = Lψ ; (17)

similarly,
∑

A∈A δA,A∗ 〈C〉A(ψ∗) = 〈C〉A∗ (ψ∗) = C∗.

C. Quenched parameter estimation

A viable alternative to properly account for the variability
induced by P(A) is that of reversing the two operations of
likelihood maximization and ensemble averaging: in other
words, one can (1) numerically sample the ensemble of con-
figurations induced by P(A), (2) maximize the likelihood
ln Q(W∗|A) for each, generated network, and (3) take the
average of the resulting set of parameters, according to the
formula ∑

A∈A
P(A)ψ∗(A) = 〈ψ∗〉, (18)

the estimation of the αth parameter being assumed to coincide
with the average 〈ψ∗

α〉.
Taking this average is conceptually similar to taking the

quenched average in physics: random variables—in the spe-
cific case, the entries of the adjacency matrix—are frozen,
parameter estimation is carried out and, only at the end, the
values of the parameters are averaged over the ensemble of
configurations induced by P(A).

As our models inherit their functional form from the con-
strained minimization of the KL divergence, each parameter
controls for a specific constraint: When employing the deter-
ministic recipe, such a circumstance makes each parameter
configuration dependent; when employing either the annealed
or the quenched recipe, instead, accounting for the variability
of a network structure induces a sort of loss of memory about
its empirical, purely topological details.

IV. RESULTS

To test if the deterministic, annealed, and quenched pre-
scriptions lead to the same estimation, let us focus on a
number of variants of the conditional exponential model
(CEM), induced by the positions HCEM

i j = βi jwi j and ζ CEM
i j =

β−1
i j :

Q(W) = P(A)Q(W|A)

=
∏
i< j

p
ai j

i j (1 − pi j )
1−ai j

∏
i< j

β
ai j

i j e−βi jwi j ; (19)

naturally, qi j (wi j = 0|ai j = 0) = 1 (i.e., if nodes i and j are
not connected, the weight of the corresponding link is zero
with probability equal to one) and qi j (wi j > 0|ai j = 1) =
βi je−βi jwi j .
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In what follows, we will consider three different instances
of pi j = xi j/(1 + xi j ), corresponding to

(1) The UBRGM, defined by posing xi j ≡ x and induced
by the maximization of S(P) while constraining the total num-
ber of links, L(A∗) ≡ L∗ = ∑

i< j a∗
i j , i.e.,

pUBRGM
i j ≡ x

1 + x
. (20)

(2) The UBCM, defined by posing xi j ≡ xix j and induced
by the maximization of S(P) while constraining the whole
degree sequence, {ki(A∗)}N

i=1 ≡ {k∗
i }N

i=1, with k∗
i = ∑

j( 	=i) a∗
i j ,

i.e.,

pUBCM
i j ≡ xix j

1 + xix j
. (21)

(3) Two different instances of the LM, both representing a
fitness-driven version of the UBCM, (again) induced by con-
straining the total number of links, L(A∗) ≡ L∗ = ∑

i< j a∗
i j .

The first one is defined by posing xi j ≡ δωiω j , i.e.,

pLM
i j ≡ δωiω j

1 + δωiω j
, (22)

and has been employed to study the year 2017 of the CEPII-
BACI version of the World Trade Web (WTW) [22], that is,
a network of N = 171 nodes and a link density of d = 0.87.
The second one is defined by posing xi j ≡ δsis j , i.e.,

pLM
i j = δsis j

1 + δsis j
, (23)

and has been employed to study a snapshot of the Bitcoin
Lightning Network (BLN) taken on 01/03/2019 [23], that is, a
network of N = 5012 nodes and a link density of d = 0.003.

A. Scalar variant of the conditional exponential model

Let us start by considering the scalar or homogeneous
variant of the CEM, defined by the position βi j ≡ β, ∀ i < j.

In this case, the deterministic recipe for parameter estima-
tion prescribes to maximize the likelihood

Lψ =
∑
i< j

[−βw∗
i j + a∗

i j ln β] = −βW ∗ + L∗ ln β, (24)

where W (W∗) ≡ W ∗ = ∑
i< j w

∗
i j and whose optimization

leads to the expression β = L∗/W ∗. The annealed recipe pre-
scribes to maximize the likelihood

Gψ =
∑
i< j

[−βw∗
i j + pi j ln β] = −βW ∗ + 〈L〉 ln β, (25)

whose optimization leads to the expression β = 〈L〉/W ∗. The
quenched recipe, on the other hand, prescribes to calculate the
average

〈β〉 =
∑
A∈A

P(A)β(A) =
∑
A∈A

P(A)
L(A)

W ∗ = 〈L〉
W ∗ , (26)

since, now, β(A) = L(A)/W ∗.
In the case of the scalar variant of the CEM, the estima-

tions coincide for any null model preserving the total number
of links, i.e., ensuring that 〈L〉 = L∗, regardless of the net-
work density. Such a result is confirmed by Fig. 1, where
each recipe has been implemented on the WTW, by adopting

FIG. 1. Estimations of the parameter β, entering the definition
of the homogeneous version of the CEM, where the binary topol-
ogy is either deterministic (black vertical line) or generated via the
UBRGM (light orange or light grey), the UBCM (purple or dark
grey), and the LM (light purple or grey). The deterministic approach
leads to a single estimate, while the other approaches lead to either a
single annealed estimate (vertical, solid lines) or to a whole distribu-
tion of quenched estimates (empirical distribution constructed over
an ensemble of 5.000 binary configurations with theoretical curves,
binomial or Poisson-binomial, dependent on the binary model; the
corresponding average value is indicated by a vertical, dash-dotted
line). The annealed parameter estimates, the average values of the
quenched parameter distributions and the deterministic parameter
estimate coincide. Data refers to the year 2017 of the CEPII-BACI
version of the WTW [22].

the distributions induced by the UBRGM (blue), the UBCM
(green), and the LM (red). Specifically, the deterministic esti-
mation (black, solid line) and the annealed estimations (blue,
green, and red solid lines) overlap; moreover, each annealed
estimation overlaps with the the corresponding, quenched
estimation, i.e., the average value of the related, quenched
distribution (blue, green, and red dash-dotted lines).

In the case of the UBRGM-induced homogeneous ver-
sion of the CEM, the quenched distribution of the parameter
β(A) = L(A)/W ∗ inherits the distribution of the total number
of links, i.e., L ∼ Bin(N (N − 1)/2, p), with p = 2L∗/N (N −
1): more precisely, W β ∼ Bin(N (N − 1)/2, p); analogously
for the UBCM- and the LM-induced homogeneous versions
of the CEM—the only difference being that, now, L obeys
two, different, Poisson-binomial (PB) distributions.

B. Vector variant of the conditional exponential model

Let us now consider the vector or weakly heterogeneous
variant of the CEM, defined by the position βi j ≡ βi + β j ,
∀ i < j.

In this case, the deterministic recipe for parameter estima-
tion prescribes to maximize the likelihood

Lψ =
∑
i< j

[−(βi + β j )w
∗
i j + a∗

i j ln(βi + β j )]

= −
∑

i

βis
∗
i +

∑
i< j

a∗
i j ln(βi + β j ), (27)
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where si(W∗) ≡ s∗
i = ∑

j( 	=i) w
∗
i j and whose optimization re-

quires us to solve the system of equations

s∗
i =

∑
j( 	=i)

a∗
i j

βi + β j
, ∀ i. (28)

The annealed recipe, instead, prescribes to maximize the
likelihood

Gψ =
∑
i< j

[−(βi + β j )w
∗
i j + pi j ln(βi + β j )]

= −
∑

i

βis
∗
i +

∑
i< j

pi j ln(βi + β j ), (29)

whose optimization requires us to solve the system of equa-
tions

s∗
i =

∑
j( 	=i)

pi j

βi + β j
, ∀ i (30)

(notice that both the deterministic and the annealed version
of the vector variant of the CEM are alternative instances of
the so-called CReMA, introduced in Ref. [20]). The quenched
recipe, on the other hand, requires us to solve the system of
equations 〈βi〉 = ∑

A∈A P(A)βi(A), ∀ i which no longer have
an explicit expression. Devising some sort of approximation
is, however, possible. Let us start by rewriting Eq. (30) as

βi = 1

s∗
i

∑
j( 	=i)

pi j

1 + β j/βi
, ∀ i (31)

and consider the node whose coefficient is the largest one.
This allows us to write βi � ∑

j( 	=i) pi j/s∗
i = 〈ki〉/s∗

i : in the
case we implemented the UBRGM, we would obtain βi(A) �
2L(A)/Ns∗

i , hence expecting the quenched distribution of
Ns∗

i βi/2 to coincide with Bin(N (N − 1)/2, p); if, on the other
hand, we implemented the UBCM, we would obtain βi(A) ∝
ki(A)/s∗

i , hence expecting the quenched distribution of s∗
i βi to

obey a PB. Again, the estimations coincide for any null model
preserving the structural properties characterising the binary
recipe implemented.

More generally, the mutual relationships between the esti-
mations provided by the three recipes are node dependent (see
Fig. 2, illustrating the case study of node 166 of the WTW and
Fig. 4 in Appendix C): In general, however, each annealed
estimation overlaps with the average value of the related
quenched distribution. Moreover, the deterministic estimation
is very close to the UBCM-induced, annealed one; such a
result is a consequence of the accurate description of the
empirical network topology provided by the UBCM—in fact,
much more accurate than the ones provided by the UBRGM
and the LM: indeed, the better the approximation pi j � ai j ,
∀ i < j, the closer the annealed estimation to the deterministic
one.

This is even more evident when considering the tensor
variant of the CEM, in which case the three optimization
procedures lead to the expressions βdet = a∗

i j/ŵi j , ∀ i < j, and
βann = 〈β〉que = pi j/ŵi j , ∀ i < j, with ŵi j representing an es-
timate of the empirical weight w∗

i j ; if, however, ŵi j ≡ w∗
i j ,

∀ i < j then, for consistency, pi j ≡ a∗
i j and the three recipes

coincide.

FIG. 2. Estimations of the parameter β166 entering the definition
of the weakly heterogeneous version of the CEM, where the binary
topology is either deterministic (black vertical line) or generated via
the UBRGM (light orange or light grey), the UBCM (purple or dark
grey), and the LM (light purple or grey). The deterministic approach
leads to a single estimate, while the other approaches lead to ei-
ther a single, annealed estimate (vertical, solid lines) or to a whole
distribution of quenched estimates (histograms with normal density
curves having the same average and standard deviation, constructed
over an ensemble of 5.000 binary configurations; the average value
is indicated by a vertical dash-dotted line). Each annealed parame-
ter estimate coincides with the average value of the corresponding
quenched distribution although the distributions induced by the three
binary recipes are well separated. In addition, the deterministic pa-
rameter estimate is very close to the UBCM-induced, annealed one.
Data refers to the year 2017 of the CEPII-BACI version of the WTW
[22].

C. Econometric variant of the conditional exponential model

As a third case study, let us focus on the econometric
variant of the CEM, defined by posing βi j ≡ β0 + z−1

i j , ∀ i <

j, where zi j ≡ eρ (ωiω j )αdγ
i j represents the gravity model

specification traditionally employed to analyze undirected,
weighted trade networks and β0 is a structural parameter to be
tuned to ensure that 〈W 〉 = W ∗. In this case, the deterministic
recipe for parameter estimation prescribes to maximize the
likelihood

Lψ =
∑
i< j

[ − (
β0 + z−1

i j

)
w∗

i j + a∗
i j ln

(
β0 + z−1

i j

)]
, (32)

whose optimization requires us to solve the system of equa-
tions

W ∗ =
∑
i< j

a∗
i j

β0 + z−1
i j

, (33)

∑
i< j

w∗
i j · ∂z−1

i j

∂φ
=

∑
i< j

a∗
i j

β0 + z−1
i j

· ∂z−1
i j

∂φ
. (34)

The annealed recipe, instead, prescribes to maximize the
likelihood

Gψ =
∑
i< j

[ − (
β0 + z−1

i j

)
w∗

i j + pi j ln
(
β0 + z−1

i j

)]
, (35)
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FIG. 3. Estimations of the parameters (a) β0, (b) ρ, (c) α, and (d) γ , entering the definition of the econometric version of the CEM, where
the binary topology is either deterministic (black vertical line) or generated via the UBRGM (light orange or light grey), the UBCM (purple
or dark grey), and the LM (light purple or grey). The deterministic approach leads to a single estimate, while the other approaches lead to
either a single, annealed estimate (vertical, solid lines) or to a whole distribution of quenched estimates (histograms with kernel density curves,
constructed over an ensemble of 5.000 binary configurations; the corresponding average value is indicated by a vertical, dash-dotted line). Each
annealed parameter estimate coincides with the average value of the corresponding quenched distribution, although the distributions induced
by the three binary recipes may overlap or not; the deterministic estimate, instead, overlaps with the other, two ones only for the parameter α,
under the UBCM-induced, binary recipe. Data refers to the year 2017 of the CEPII-BACI version of the WTW [22].

whose optimization requires us to solve the system of equa-
tions

W ∗ =
∑
i< j

pi j

β0 + z−1
i j

, (36)

∑
i< j

w∗
i j · ∂z−1

i j

∂φ
=

∑
i< j

pi j

β0 + z−1
i j

· ∂z−1
i j

∂φ
. (37)

The quenched recipe, on the other hand, requires us to
solve the system of equations 〈β0〉 = ∑

A∈A P(A)β0(A) and
〈φ〉 = ∑

A∈A P(A)φ(A), which no longer have an explicit
expression.

Figures 3 and 5 in Appendix C illustrate the case study of
the WTW: although the quenched distributions induced by the
three binary recipes are characterized by different shapes that
may overlap (as in the case of the parameters ρ—under the
UBRGM-induced and UBCM-induced binary recipes—and
γ —under all, binary recipes) or not (as in the case of the

parameters β0 and α), annealed and quenched estimations
always coincide (the only small discrepancy being observ-
able for the parameter β0, under the UBRGM-induced binary
recipe). The deterministic estimation, instead, is compatible
with the other two ones only for parameter α, under the
UBCM-induced, binary recipe.

Sparse networks deserve a separate discussion. The results
concerning the homogeneous and econometric variants of the
BLN, defined by posing βi j ≡ β0 + z−1

i j , ∀ i < j, with zi j ≡
eρ (sis j )α , are analogous to the ones shown for the WTW—in
the latter case, the annealed estimates of β0, ρ, and α are
very close to their quenched counterparts, the relative error
RE = |(φann

i − φ
que
i )/φann

i | amounting at � 10−3 for β0 and
� 10−4 for ρ, α. On the contrary, these conclusions no longer
hold true when the weakly heterogeneous variant of the CEM
is considered: in this case, in fact, carrying out the quenched
approach can lead to binary configurations with disconnected
nodes, a circumstance that impairs the correct estimation of
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FIG. 4. Estimations of the parameters (a), (b) β168; (c), (d) β170; and (e), (f) β171, entering the definition of the weakly heterogeneous
version of the CEM, where the binary topology is either deterministic (black vertical line) or generated via the UBRGM (light orange or light
grey), the UBCM (purple or dark grey), and the LM (light purple or grey). The deterministic approach leads to a single estimate, while the
other approaches lead to either a single, annealed estimate (vertical, solid lines) or to a whole distribution of quenched estimates (histograms
with normal density curves having the same average and standard deviation, constructed over an ensemble of 5.000 binary configurations; the
average value is indicated by a vertical, dash-dotted line). Each annealed estimate overlaps with the average value of the related quenched
distribution, although (1) the latter ones are well separated in the case of node 168, (2) only partly overlapped in the case of node 171,
and (3) the UBCM-induced and the LM-induced ones overlap while the UBRGM-induced one remains well separated in the case of node
170. Moreover, the deterministic estimates are always very close to (if not overlapping with) the UBCM-induced annealed ones. Although the
empirical and theoretical CDFs (respectively depicted as solid lines and dotted lines in the bottom panels) seem to be in a very good agreement,
the Anderson-Darling test never rejects the normality hypothesis only for node 166 and does not reject the normality hypothesis in the case of
the UBCM-induced distribution of estimates for node 168.

the corresponding parameters; carrying out the annealed esti-
mation, instead, remains a feasible task.

V. DISCUSSION

The present contribution focuses on three recipes for
estimating the parameters entering into the definition of sta-
tistical network models, i.e., the deterministic, annealed, and
quenched ones. To implement them, we have considered sev-
eral variants of the CEM, i.e., the homogeneous one (defined
by one, global parameter), the weakly heterogeneous one
(defined by N , local parameters), and the econometric one
(defined by four, global parameters), each one combined with
three different recipes for estimating the network topology
(i.e., the UBRGM, the UBCM, and the LM).

The deterministic recipe, routinely employed in economet-
rics to determine the so-called hurdle models [8], prescribes
estimating the parameters associated to the weighted con-
straints on the empirical realisation of the network topology.
Since it considers A∗ as not being subject to variation, its
use is recommended whenever Var[ai j] = pi j (1 − pi j ) � 0
or, equivalently, pi j � ai j , ∀ i < j, i.e., whenever the binary
random variables can be safely considered as deterministic
or, more in general, whenever their (scale of) variation is

negligible with respect to the (scale of) variation of the
weighted random variables.

Accounting for such a variability in a fully consistent
manner can be achieved upon adopting either the annealed
recipe (according to which parameters are estimated on the
average network topology) or the quenched recipe (according
to which parameters are, first, estimated on a large number
of binary configurations and, then, averaged); the main dif-
ference between these procedures lies in the order in which
the two operations of averaging (of the entries of the binary
adjacency matrix) and maximization (of the related likelihood
function) are taken. Interestingly, no variant of the CEM is
sensitive to this choice (neither the purely structural ones nor
the econometric one); while, however, the coincidence of the
annealed and quenched estimates for purely structural models
can be explicitly verified, this is no longer true when the
econometric variant is considered: in this case, in fact, one
can proceed only numerically.

This evidence reveals the main limitation of the quenched
approach, i.e., the need for resorting upon an explicit sam-
pling of the chosen, binary ensemble. As any good sampling
algorithm must lead to a faithful representation of the parent
distribution, we are left with the following question: Is this
always guaranteed, in all cases of interest to us?
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FIG. 5. Empirical CDFs for the parameters (a) β0, (b) ρ, (c) α, and (d) γ entering the definition of the econometric version of the CEM,
where the binary topology is either deterministic (black vertical line) or generated via the UBRGM (light orange or light grey), the UBCM
(purple or dark grey), and the LM (light purple or grey). The deterministic approach leads to a single estimate, while the other approaches
lead to either a single, annealed estimate (vertical, solid lines) or to a whole distribution of quenched estimates (constructed over an ensemble
of 5.000 binary configurations; the corresponding average value is indicated by a vertical, dash-dotted line). The shapes of the quenched,
cumulative distributions induced by the three binary recipes are very similar.

This seems to be the case for dense networks. As shown
in Ref. [24], a study of the coefficient of variation of the
constraints defining the vector variant of the CEM (i.e., the
ratio between standard deviation and the expected value of
each degree) reveals it to vanish in the asymptotic limit: in
other words, the fluctuations affecting each degree vanish, a
result guaranteeing that the degree sequence of any configu-
ration in the ensemble remains close enough to the empirical
one.

When sparse networks are, instead, considered, the coeffi-
cient of variation of the constraints defining the vector variant
of the CEM remains finite in the asymptotic limit: in other
words, the fluctuations affecting each degree do not vanish, a
result implying that the degree sequence of any configuration
in the ensemble may largely differ from the empirical one;
to provide a concrete example, nodes whose empirical degree
is small may disconnect, hence inducing the resolution of a
system of equations which is not even compatible with the
set of constraints defining the original problem. Overcom-
ing such a limitation implies quantifying the bias affecting
the estimates in cases like these: although possible, calcu-

lations of this kind are far beyond the scope of the present
paper.

Overall, then, two alternatives exist to overcome the main
limitation of the deterministic estimation recipe, i.e., that of
ignoring the variety of structures that are compatible with a
given probability distribution P(A), namely, the annealed and
quenched ones. As the quenched recipe requires an explicit
sampling of the ensemble—potentially leading to inconsistent
estimates for sparse configurations—we believe the annealed
one to represent the better alternative, (1) being unbiased by
definition, (2) being convenient from a numerical point of
view, and (3) reducing to the deterministic recipe in case the
empirical configuration is not subject to variation.
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APPENDIX A: CONDITIONAL NETWORK MODELS
FROM KL DIVERGENCE MINIMIZATION

Discrete maximum-entropy models can be derived by
performing a constrained maximization of Shannon entropy
[11,12]. Here, however, we focus on continuous probabil-
ity distributions: In such a case, mathematical problems are
known to affect the definition of Shannon entropy as well as
the resulting inference procedure. To restore the framework,
one has to consider the KL divergence DKL(Q||R) of a distri-
bution Q(W) from a prior distribution R(W) and reinterpret
the maximization of the entropy associated to Q(W) as the
minimization of its distance from R(W). Such an optimiza-
tion scheme embodies the so-called minimum discrimination
information principle, originally proposed by Kullback and
Leibler [18] and requiring new data to produce an information
gain that is as small as possible. In formulas, the KL diver-
gence is defined as

DKL(Q||R) =
∫
W

Q(W) ln
Q(W)

R(W)
dW; (A1)

the class of conditional models can be introduced upon
rewriting the posterior distribution Q(W) as Q(W) =
P(A)Q(W|A), where A denotes the binary projection of the
weighted network W. This equation allows us to split the KL
divergence into the sum of three terms reading

DKL(Q||R) = S(Q, R) − S(P) − S(Q|P), (A2)

where

S(Q, R) = −
∑
A∈A

P(A)
∫
WA

Q(W|A) ln R(W)dW (A3)

is the cross entropy, quantifying the amount of information
required to identify a weighted network sampled from the
distribution Q(W) by employing the distribution R(W),

S(P) = −
∑
A∈A

P(A) ln P(A) (A4)

is the Shannon entropy of the probability distribution describ-
ing the binary projection of the network structure, and

S(Q|P) = −
∑
A∈A

P(A)
∫
WA

Q(W|A) ln Q(W|A)dW (A5)

is the conditional Shannon entropy of the probability distri-
bution of the weighted network structure, given the binary
projection. The expression for S(Q, R) can be further manip-
ulated as follows: Upon separating the prior distribution itself
into a purely binary part and a conditional, weighted one, we
can pose R(W) = T (A)R(W|A), an expression that allows the
KL divergence to be rewritten as

DKL(Q||R) = +DKL(P||T ) + DKL(Q||R), (A6)

i.e., as a sum of the two addenda

DKL(P||T ) = +
∑
A∈A

P(A) ln
P(A)

T (A)
, (A7)

DKL(Q||R) = +
∑
A∈A

P(A)
∫
WA

Q(W|A) ln
Q(W|A)

R(W|A)
dW,

(A8)

with T (A) representing the binary prior and R(W|A)
representing the conditional, weighted one. Dealing with
completely uninformative priors amounts to considering the
expression

−S(Q) = −S(P) − S(Q|P), (A9)

i.e., minus the joint entropy. The (independent) constrained
optimization of S(P) and S(Q|P) represents the starting point
for deriving the members of the class of conditional models.

APPENDIX B: CONDITIONAL NETWORK MODELS:
DETERMINING THE FUNCTIONAL FORM

The constrained maximization of S(Q|P) proceeds by
specifying the set of weighted constraints reading

1 =
∫
WA

P(W|A)dW, ∀ A ∈ A, (B1)

〈Cα〉 =
∑
A∈A

P(A)
∫
WA

Q(W|A)Cα (W)dW, ∀ α, (B2)

the first condition ensuring the normalization of the proba-
bility distribution and the vector {Cα (W)} representing the
proper set of weighted constraints. The distribution induced
by them reads

Q(W|A) = e−H (W)

ZA
= e−H (W)∫

WA
e−H (W)dW

= e− ∑
i< j Hi j (wi j )∫

WA
e− ∑

i< j Hi j (wi j )dW

=
∏
i< j

e−Hi j (wi j )[ ∫ +∞
mi j

e−Hi j (wi j )dwi j
]ai j

=
∏
i< j

e−Hi j (wi j )

ζ
ai j

i j

(B3)

if W ∈ WA and 0 otherwise—since each Hamiltonian con-
sidered in the present paper is separable, i.e., a sum
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of node pair-specific Hamiltonians: in formulas, H (W) =∑
i< j Hi j (wi j ).

APPENDIX C: CONDITIONAL NETWORK MODELS:
ESTIMATING THE PARAMETERS

Let us now provide general expressions for the determinis-
tic and the annealed recipe for parameter estimation. The first
one follows from writing

Lψ = ln Q(W∗|A∗) = −H (W∗) − ln ZA∗

= − H (W∗) − ln

[∫
WA∗

e−H (W)dW
]

=
∑
i< j

Hi j (w
∗
i j ) − ln

∏
i< j

ζ
ai j

i j =
∑
i< j

[Hi j (w
∗
i j ) − a∗

i j ln ζi j],

(C1)

while the second one follows from writing

Gψ =
∑
A∈A

P(A) ln Q(W∗|A) = 〈Lψ 〉

=
∑
i< j

[Hi j (w
∗
i j ) − pi j ln ζi j]. (C2)

a. Scalar or homogeneous variant of the CEM. In the
particular case of the UBRGM-induced, homogeneous variant
of the CEM, one can derive the quenched distribution of the
parameter β upon considering that it is a function of the
discrete, random variable L. Since L ∼ Bin(N (N − 1)/2, p),
with p = 2L∗/N (N − 1), one finds that

β ∼
(N (N−1)

2

W ∗β

)
pW ∗β (1 − p)

N (N−1)
2 −W ∗β, (C3)

an expression allowing us to derive the expected value of β,
i.e.,

〈β〉 =
N (N−1)

2W ∗∑
β=0

β

(N (N−1)
2

W ∗β

)
pW ∗β (1 − p)

N (N−1)
2 −W ∗β

= N (N − 1)

2W ∗ p = 〈L〉
W ∗ = L∗

W ∗ , (C4)

as well as its variance. Since

〈β2〉 =
N (N−1)

2W ∗∑
β=0

β2

(N (N−1)
2

W ∗β

)
pW ∗β (1 − p)

N (N−1)
2 −W ∗β

= N (N − 1)

2(W ∗)2
p + N (N − 1)

2(W ∗)2

[
N (N − 1)

2(W ∗)2
− 1

]
p2, (C5)

we have that

Var[β] = 〈β2〉 − 〈β〉2 = N (N − 1)

2(W ∗)2
p(1 − p) = Var[L]

(W ∗)2
=

= L∗

(W ∗)2

[
N (N − 1) − 2L∗

N (N − 1)

]
, (C6)

with Var[L] = N (N − 1)/2 · p(1 − p). Since the distribu-
tion obeyed by L converges to the normal distribution
N (L∗, Var[L]), the distribution obeyed by β converges to the

distribution

g(β ) = W ∗
√

2πVar[L]
e− (W ∗β−L∗ )2

2Var[L]

= 1√
2πVar[L]/(W ∗)2

e
− (β−L∗/W ∗ )2

2Var[L]/(W ∗ )2

= 1√
2πVar[β]

e− (β−β∗ )2

2Var[β] = N (β∗, Var[β]), (C7)

with β∗ = L∗/W ∗ and Var[β] = Var[L]/(W ∗)2.
In the case of the UBCM-induced homogeneous ver-

sion of the CEM, L obeys the PB distribution, reading
PB(N (N − 1)/2, {pUBCM}N

i, j=1) whose normal approxima-
tion reads N (L∗, Var[L]), with Var[L] = ∑

i< j pUBCM
i j (1 −

pUBCM
i j ); as a consequence, the distribution obeyed by β con-

verges to N (β∗, Var[β]), with β∗ = L∗/W ∗ and Var[β] =
Var[L]/(W ∗)2.

In the case of the LM-induced, homogeneous ver-
sion of the CEM, L obeys the PB distribution reading
PB(N (N − 1)/2, {pLM}N

i, j=1) whose normal approximation
reads N (L∗, Var[L]), with Var[L] = ∑

i< j pLM
i j (1 − pLM

i j );
as a consequence, the distribution obeyed by β con-
verges to N (β∗, Var[β]), with β∗ = L∗/W ∗ and Var[β] =
Var[L]/(W ∗)2.

b. Vector or weakly heterogeneous variant of the CEM.
As pointed out in the main text, each annealed estimation
overlaps with the average value of the related quenched dis-
tribution although (1) the latter ones are well separated, in the
case of node 168, (2) only partly overlapped, in the case of
node 171, and (3) the UBCM-induced and the LM-induced
ones overlap while the UBRGM-induced one remains well
separated, in the case of node 170 (see Fig. 4). Moreover, the
deterministic estimation is always very close to the UBCM-
induced annealed one—a result that may be a consequence
of the accurate description of the empirical network topology
provided by the UBCM—evidently, much more accurate than
those provided by the UBRGM and the LM.

Each solid line in Fig. 4 represents a normal distribution
whose average value and variance coincide with the ones of
the corresponding sample distribution: although the empirical
and theoretical CDFs seem to be in (very good) agreement, the
Anderson-Darling test never rejects the normality hypothesis
only for node 166 and does not reject the normality hypothesis
in the case of the UBCM-induced distribution of values for
node 168.

c. Tensor variant of the CEM. Let us now leave βi j in its
tensor form and constrain the set of weight-specific estimates
ŵi j , ∀ i < j. In this case, the three recipes lead to the follow-
ing estimates:

Lψ =
∑
i< j

[−βi jŵi j + a∗
i j ln βi j] �⇒ βi j = a∗

i j

ŵi j
, (C8)

Gψ =
∑
i< j

[−βi jŵi j + pi j ln βi j] �⇒ βi j = pi j

ŵi j
, (C9)

〈βi j〉 =
∑
A∈A

P(A)βi j (A) =

=
∑
A∈A

P(A)
ai j

ŵi j
�⇒ 〈βi j〉 = pi j

ŵi j
, (C10)
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a result signaling large differences between the determinis-
tic recipe, on the one hand, and the quenched and annealed
recipes, on the other—that, instead, coincide. If, however,
ŵi j ≡ w∗

i j , ∀ i < j then, for consistency, pi j ≡ a∗
i j and the

three recipes coincide.
d. Econometric’variant. As Figs. 3 and 5 show, the deter-

ministic estimation is always quite different from the other

two—the only exception being represented by the parameter
α, under the UBCM-induced, binary recipe. Such a result
should warn us from employing the deterministic estimation
recipe tout court, as ignoring the variety of structures that
are compatible with a given probability distribution P(A)
will, in general, affect the estimation of the parameters of
interest.
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