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Learning leads to rapid microstructural changes in gray (GM) and white (WM) matter. Do these changes contin-
ue to accumulate if task training continues, and can they be reverted by sleep? We addressed these questions by
combining structural and diffusion weighted MRI and high-density EEG in 16 subjects studied during the phys-
iological sleep/wake cycle, after 12 h and 24 h of intense practice in two different tasks, and after post-training
sleep. Compared to baseline wake, 12 h of training led to a decline in cortical mean diffusivity. The decrease be-
came even more significant after 24 h of task practice combined with sleep deprivation. Prolonged practice also
resulted in decreased ventricular volume and increased GM and WM subcortical volumes. All changes reverted
after recovery sleep. Moreover, these structural alterations predicted cognitive performance at the individual
level, suggesting that sleep's ability to counteract performance deficits is linked to its effects on the brain micro-
structure. The cellular mechanisms that account for the structural effects of sleep are unknown, but they may be
linked to its role in promoting the production of cerebrospinal fluid and the decrease in synapse size and strength,
as well as to its recently discovered ability to enhance the extracellular space and the clearance of brain
metabolites.

© 2016 Elsevier Inc. All rights reserved.

Introduction

slow wave activity (SWA), the EEG power between 0.5 and 4.5 Hz dur-
ing non-rapid eye movement (NREM) sleep, is an established marker of

Sleep deprivation has long been known to result in longer and/or
deeper sleep. Recent studies, however, show that sleep need increases
not only with the duration of wake, but also with its “intensity”, and
specifically with the amount of experience-dependent plasticity and
learning, a finding confirmed in insects, rodents, and humans (Tononi
and Cirelli, 2014). Fruit flies, for instance, sleep longer after being
awake in an enriched environment than in isolation (Bushey et al.,
2011; Donlea et al., 2009; Ganguly-Fitzgerald et al., 2006). In mammals,
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sleep need and intensity, since it increases with wake duration, declines
in the course of sleep, and is positively correlated with arousal threshold
during sleep (Vyazovskiy et al., 2011). Rats that spent time exploring
new objects later show higher NREM SWA relative to rats that ignored
the objects, even though wake duration was the same in all animals
(Huber et al., 2007). In humans, high-density EEG (hd-EEG) experi-
ments also show that SWA can be regulated locally, depending on the
specific wake experience. For example, SWA peaks in left frontal cortex
after training in a language task, and in parietal regions after learning a
visuo-motor task (Huber et al., 2004; Hung et al., 2013). Thus, there is
strong electrophysiological evidence that wake-related learning and
sleep need are linked.

Long or enriched wake also leads to structural changes in neurons. In
the fly brain, dendritic branches and synaptic puncta increase with
wake and decrease with sleep (Bushey et al,, 2011; Donlea et al.,
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2009; Donlea et al., 2011). In the adolescent mouse cortex, wake leads
to net spine formation while sleep results in net spine elimination
(Maret et al.,, 2011; Yang and Gan, 2012). Electron microscopy studies
also show that wake/sleep dependent structural changes also occur in
astrocytes. Thus, astrocytic processes move closer to the synaptic cleft
after short sleep deprivation, and astrocytic coverage of cortical spines
increases after chronic sleep loss (Bellesi et al., 2015). While direct evi-
dence for similar changes in the human brain cannot be easily achieved,
diffusion weighted imaging (DWI) is widely used to derive several indi-
ces reflecting the micron-scale density and organization of brain tissues
(Sagi et al,, 2012). In particular, mean diffusivity (MD) - a measure of
tissue density based on the rate of water diffusion - has been proposed
as a potential marker for the detection of relatively rapid changes in the
microstructure of gray matter (GM) and white matter (WM). Indeed,
careful investigations have shown that MD decreases in hippocampus,
parahippocampus and fornix after just a few hours of visuo-spatial
training (Hofstetter et al., 2013; Sagi et al., 2012; Tavor et al., 2013). Sim-
ilar changes occur in the rat hippocampus, presumably due to an in-
crease in glial cell volume and/or a decrease in extracellular space
(Hofstetter et al., 2013; Sagi et al., 2012; Tavor et al., 2013). These find-
ings, however, raise some fundamental questions. If the brain's ultra-
structure can be altered so quickly after a few hours of training, what
happens if subjects continue to practice? Do these structural changes
continue to accumulate if subjects are kept awake and continue to prac-
tice a task at night, when they would normally be asleep? And if so, can
sleep revert them? To address these questions we performed structural
Magnetic Resonance Imaging (MRI) and DWI during the physiological
sleep/wake cycle, after 12-24 h of intense task training, and after
post-training sleep.

Material and methods
Participants

Sixteen healthy volunteers (age 24.0 + 3.4 years, 8 females; 13
right-handed) were recruited from the University of Wisconsin-
Madison campus. All participants had sleep duration of ~7 h/night, con-
sistent bed/rise times, no daytime nap habit, no excessive daytime
sleepiness (total scores in the Epworth Sleepiness Scale <10) and no his-
tory of sleep, medical, or psychiatric disorders as assessed by a clinical
interview and by one 8 h night sleep recording with hd-EEG. Polysom-
nographic parameters (see Table 4), including total sleep time and the
percentage of different sleep stages were comparable to those of
healthy individuals of similar age (Ohayon et al., 2004). Sleep scoring
was performed over 30 s epochs according to standard criteria by a
sleep medicine board certified physician (Silber et al., 2007). Subjects
were asked to maintain a regular sleep-wake schedule for at least one
week before each experiment, and compliance was verified with sleep
diaries and wrist-worn actimeters (Actiwatch 64, MiniMitter). Use of
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alcohol and caffeine-containing beverages was prohibited starting the
day of the first MRI scan and throughout each experiment. The study
was approved by the local IRB. Each participant signed an IRB approved
informed consent form before enrollment into the study.

Experimental design

This study was part of a project assessing the effects of extended
wake with training and post-training sleep on EEG, behavioral, and
structural measures (Bernardi et al., 2015). Each subject participated
in two experiments (DS and EF, see below), spaced at least 2 weeks
apart (Fig. 1). Each experiment included 5 consecutive MRI sessions
(every ~12 h) with both functional and structural scans, all occurring
in quiet wake: 1) W® (wake baseline) at ~7 pm, after a wake day
spent outside the lab without any specific training; 2) S® (sleep base-
line) the next morning at ~8 am, after subjects slept at home as usual;
3) W2 (wake with training) ~8 pm, after 12 h of wake with extensive
training in the lab; 4) W™ (extended wake with training) ~8 am, after
24 h of continuous wake with extensive training in the lab; 5) S® (sleep
recovery) ~8 pm, after ~8 h of recovery sleep with hd-EEG recording in
the lab (256 channels; Electrical Geodesics Inc.; recovery sleep onset
~10 am). During the 24 h of continuous wake all subjects completed
six 2 h-training sessions (12 h total of training) of either a mouse-
controlled driving simulation game (DS experiment), or a battery of
tasks based on impulse control, decision-making and conflict resolution
(executive functions, EF experiment). As discussed in previous work
(Bernardi et al., 2015), the two tasks were selected to involve cognitive
domains and brain cortical networks that were as distinct as possible,
namely a bilateral occipito-parietal and motor network for DS and a net-
work that includes inferior frontal gyrus, medial prefrontal cortex, cin-
gulate cortex and pre-supplementary motor area for EF. The order of
the two experiments was randomly assigned and counterbalanced
across subjects. During the 24 h of wake, subjects alternated between
2 h-training sessions of task practice (DS or EF) and ~1 h blocks of be-
havioral tests and hd-EEG recordings. Each test-block included two
4 min eyes-open and eyes-closed recordings, a 5 min psychomotor vig-
ilance test (PVT), 3 trials of a response inhibition test, 3 trials of a visuo-
motor coordination test, and self-rating questionnaires that were used
to assess subjective sleepiness (Bernardi et al., 2015). Two experi-
menters took turns attending to the participants to prevent them from
falling asleep and to ensure adherence to the protocol throughout the
experiment.

MRI data acquisition

During each MRI session (3 T scanner, Discovery MR750, GE
Healthcare) subjects underwent a 5 min eyes-closed EPI resting-state
scan (as reported in previous work Bernardi et al., 2015) and a high-
resolution 3D inversion-prepared fast spoiled gradient echo (IR-
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Fig. 1. Experimental design. Each subject completed two experiments (DS and EF), spaced at least 2 weeks apart. During both experiments MRI sessions were performed every ~12 h: W8
(wake baseline), after a wake day spent outside the lab without any specific training; S® (sleep baseline) the next morning, after subjects slept at home as usual; W''? (wake with training),
after 12 h of wake with extensive training in the lab; W' (extended wake with training), after 24 h of continuous wake with extensive training in the lab; S® (sleep recovery), after ~8 h of
recovery sleep with hd-EEG recording in the lab. Each MRI session included a high-resolution anatomical scan, a 5-min eyes-closed resting state functional scan, and a diffusion weighted

scan (DWI).
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fSPGR) T1-weighted (T1w) anatomical scan (inversion time: 450 ms,
repetition time: 8.2 ms, echo time: 3.2 ms, flip angle: 12°, voxel size:
1 x 1 x 1 mm, in-plane matrix: 256 x 256, number of slices: 156).
DWI data were acquired using repetition time = 7000 ms, echo
time = 66.3 ms, flip angle = 90°, acquisition matrix = 96 x 96, field
of view = 230 mm, in-plane resolution = 2.396 x 2.396 mm (resolu-
tion after on-scanner interpolation = 0.898 x 0.898 mm), and slice
thickness = 2.3 mm with no gap. Diffusion-sensitizing gradient
encoding was applied in 52 directions with three different diffusion-
weighted factors, corresponding to b = 400, 800 and 1200 s/mm?. Six
images (bo image) were acquired without use of a diffusion gradient.
For each encoding direction, 61 axial images were acquired to cover
the entire brain. Due to technical problems, MRI data were not obtained
in subjects SO5 and S14 (males, 1 left handed) during experiment EF. In
addition, structural data were not obtained in S® of subjects SO7 and S®
of subject S15 during experiment EF (females, right handed), and in ses-
sion W® of subject SO8 (female, right handed) during experiment DS.

Structural data preprocessing

High-resolution T1w images were automatically processed using the
Freesurfer longitudinal pipeline (Reuter et al., 2012). Differently from
common procedures for structural analysis, the longitudinal approach
allows to obtain more reliable cortical and subcortical morphological
measurements by incorporating temporal information. Specifically, an
unbiased within-subject template was created using robust, inverse
consistent registration (Reuter et al., 2010). Then, subsequent prepro-
cessing steps, including skull stripping, standard-space transformation,
atlas registration and spherical surface maps generation and
parcellations were performed using common information from the
within-subject template (Reuter et al., 2012). Thus, for each subject
and time-point, the software automatically assigned neuroanatomical
labels to each brain location using probabilistic information estimated
from both geometric data derived from the cortical model and neuroan-
atomical convention obtained from a pre-labeled training set (Desikan
et al., 2006; Fischl et al., 2004). Importantly, this parcellation strategy
allowed to minimize potential biases related to inter-subject anatomical
differences and alignment issues caused by data transformation in a
common reference system, as well as to take into account relative with-
in subject structural variations.

Analysis of diffusion images was performed using the FSL software
package (Smith et al.,, 2004). For each session and subject, all diffusion
weighted and by images were affinely coregistered to the by image of
the first repetition using FLIRT (FMRIB's Linear Image Registration Tool,
Jenkinson and Smith, 2001), to correct both for eddy current induced
distortion (eddy_correct tool) and subject's motion effects. Moreover,
computed motion parameters were used to adjust the direction of gra-
dient vectors. A brain mask was created from the first by image using
BET (Brain extraction Tool; Smith, 2002) and used to constrain the tensor
fitting within voxels of interest. A linear least squares (LLS) approach
was used to fit the tensor models at each voxel (FDT, FMRIB's Diffusion
Toolbox; Behrens et al., 2003) and compute the MD maps (of note, par-
tially different absolute MD values, but analogous statistical results were
obtained if the weighted linear least squares approach was used instead).
Finally, DWI data were aligned to the Freesurfer within-subject template
using a two-step procedure. First, using an affine linear registration
(FLIRT, 12 degrees of freedom), the average b, image of each DWI
scan was coregistered to the by image obtained in the same MRI session
of the T1w image representing the reference of the anatomical tem-
plate. Then, 3dQwarp (Cox, 2012) was used to perform a constrained
non-linear registration to the obtained by images and match the
within-subject anatomical template. Importantly, a cost function that
is insensitive to contrast differences (mutual information) was adopted
to optimize correction of geometrical distortions in DWI data
(Gholipour et al., 2006). Resulting transformation matrices and

deformation fields were then concatenated and applied to individual
MD maps (Fig. S1).

Brain structural changes associated with intensive practice and sleep
deprivation

Global and regional changes in structural measures

MD was measured in four large regions of interest (ROIs; Fig. 2): cor-
tical gray matter (GM), subcortical GM, white matter (WM) and ventri-
cles. In the same ROIs we also measured volume (cortical and
subcortical GM, WM and ventricles). Cortical GM thickness was mea-
sured instead of cortical volume because the latter is affected both by
cortical thickness and by area, and thus its variations may be more dif-
ficult to interpret (Winkler et al., 2010). These measures were extracted
for each subject, experimental condition (DS, EF) and available time
point (1-5). To improve the accuracy of MD calculation for each ROI,
structure-specific masks were created for each time-point and subject,
using the segmentation information previously obtained in Freesurfer.
In addition, to minimize biases related to potential changes in the num-
ber of voxels included in each time point, we created a unique conjunc-
tion mask (logical AND) for each subject and structure of interest (Table
S1). Thus, only voxels for which the ‘structural labeling’ did not change
across scans were included in the MD analysis. Mean MD values were
subsequently extracted from the obtained masks. For measures of MD,
volume, and cortical thickness, we performed a three-way repeated
measures (rm)-ANOVA in SPSS Statistics 21 (IBM Corporation), includ-
ing training condition (W&, SB vs. WT'2, W™4), time-of-day (8 am vs. 8
pm), and task (DS vs. EF) as within-subjects factors. To ensure a bal-
anced design with no missing data, only the 12 subjects having all
time points were included in these analyses. However, to better charac-
terize reliability of potential findings, analyses were also repeated using
analytical models allowing for the inclusion of all subjects (N = 16) and
time-points (linear mixed effect analysis, LME). Results of these auxilia-
ry analyses are reported in Table S2. Planned post-hoc comparisons test-
ed the effects of normal sleep (W® vs. SB), 12 h of wake with training
(WB vs. WT2), and sleep deprivation with training (W2 vs. WT24),
as well as differences between morning and evening time points
(morning: S® vs. WT™*; evening: W® vs. WT12), Statistical significance
accounting for multiple comparisons was assessed by applying the
Bonferroni-Holm adjustment. finally, the effect of recovery sleep was
investigated through paired t-tests comparing W™ and S®.

To investigate smaller scale structural modifications and evaluate
local effects related to the practiced task we also performed additional
ROI-based analyses using the 40 cortical and subcortical regions of the
Desikan-Killiany Atlas (Fischl et al., 2004). Given that no lateralization
of the effects of interest was expected, extracted values of MD, cortical
thickness, or volume were averaged across homolog areas of the two
hemispheres. Then, independent rmANOVAs were performed at each
ROI for either thickness/volume or MD, and the obtained p-value of

Fig. 2. Large-scale ROIs used for the analyses of global brain changes. The four ROIs (here
shown in a representative subject) are: [green] subcortical gray matter (GM), [yellow]
white matter (WM), [blue] ventricles and [red] cortical GM. Moreover, a mid-GM
cortical mask was generated in order to eliminate voxels characterized by a high
probability of containing mixed tissues (see text for details).
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each tested effect was subsequently adjusted to account for multiple
comparisons. Specifically, a Bonferroni-Holm correction was applied
across the 40 ROIs and the significance threshold was set to corrected
p <0.05.

Investigation of partial volume effects

MD measurements are known to be potentially affected by the so
called “partial volume effect”, that is, the presence of multiple tissue
types within the same voxels (Alexander et al., 2001). Specifically, CSF
contamination in GM or WM may be responsible for erroneous estima-
tions of diffusivity measures. We addressed this issue using a combina-
tion of different approaches. First, we performed a serial visual
inspection of MD distributions in each ROI to exclude the possible influ-
ence of partial volume effects. Specifically, for each subject and time
point we divided MD values in 0.1 x 102 mm?/s bins (from 0 to
3 x 103 mm?/s) and determined the percentage of voxels included
in each bin. The distributions of the group-averaged values in the base-
line condition without training (SB) and in the experimental condition
with training (W2, W™4) were plotted and qualitatively compared.
Second, in order to further evaluate the possible influence of partial vol-
ume artifacts on our results, we repeated the cortical GM analysis using
an approach based on a “skeletonized” cortical mid-GM mask excluding
voxels with a high probability of containing multiple tissues (Ball et al,,
2013). Specifically, segmentation maps obtained in Freesurfer were ini-
tially used to identify the WM-GM and the GM-CSF boundaries. Then, a
mid-GM mask was defined as the line passing at equal distance from the
two boundaries (i.e., 50% of cortical thickness) in each point. Finally,
voxels lying along this line, and included in the previously defined con-
junction cortical mask, were used to create a final “mid-GM mask”
(Figs. S2 and S3). This procedure allowed to retain only voxels relatively
distant from both the WM-GM and the GM-CSF boundaries, and thus
characterized by a minimal probability of containing mixed tissues.
The obtained mid-GM mask included 60.4 + 1.4% less voxels than the
conjunction cortical mask. Cortical MD values were extracted from
this new mask and analyzed as previously described. Moreover, given
that a few voxels affected by CSF contamination may have remained in-
cluded also in the mid-GM mask, the above calculations were repeated
after further discarding voxels containing MD values greater than
1.0 x 1073 mm?/s.

Investigation of other potential confounding factors

Recent findings suggest that the human brain may undergo
morning-to-evening size variations and it has been suggested that
these changes may depend on a redistribution of body fluids
(Nakamura et al., 2015). However, global or structure-specific volumet-
ric variations may also reflect other underlying phenomena potentially
associated with changes in water diffusivity (e.g., compression). In these
conditions MD and volumetric measures are expected to covary. These
observations highlighted the need to evaluate global brain volumetric
changes in our samples and to explore their possible relationship with
MD measures. Importantly, however, recent studies also suggested
that head movement could lead to erroneous estimations of
diffusivity-based measures and recommended to include head motion
as a nuisance variable in statistical analyses to reduce the risk of biases
related to this potential confounding factor (Yendiki et al., 2014). There-
fore, statistical LME models were specifically computed with the inclu-
sion of covariates represented by the total in-scanner head movement
(estimated from the coregistration of DWI volumes using the RMS devi-
ation measure; Jenkinson, 1999) and either the total brain volume (cal-
culated here as the sum of the volumes of cortical GM, subcortical GM
and WM) or the total volume of each examined structure (e.g., cortical
GM). The models included the same within subject factors introduced
in the rmANOVAs (task, time-of-day, training condition). Finally, rela-
tive global volumetric changes were also investigated using a
rmANOVA, as previously described.

Relationship between sleep parameters and structural recovery

We tested whether global changes in MD, volume or cortical thick-
ness that occurred after recovery sleep (SR vs. W'4) correlated with dif-
ferent sleep parameters, including total SWA and changes in SWA and
slow wave amplitude. EEG recordings were first-order high-pass fil-
tered (0.1 Hz) and band-pass filtered between 0.5 and 58 Hz. For scoring
purposes, four of the 256 electrodes placed at the outer canthi of the
eyes were used to monitor eye movements (electro-oculography),
while electrodes located in the chin-cheek region were used to evaluate
muscular activity (electromyography). Due to technical problems dur-
ing the recordings, EEG data were not available in subjects S03 and
S07 (experiments EF and DS, respectively). Bad channels were visually
identified, rejected, and replaced with data interpolated from nearby
channels using spherical splines (NetStation, Electrical Geodesics Inc.).
SWA activity was calculated for each NREM epoch as the spectral
power in the range between 0.5 and 4.5 Hz. Specifically, after excluding
electrodes located on the neck/face region, the signal of each channel
was re-referenced to the average of the remaining 185 electrodes, and
the power spectral density estimates were computed using the Welch's
method (pwelch function, MATLAB signal processing toolbox) in 2 s data
segments (Hamming windows, 8 sections, 50% overlap). The resulting
power spectral densities in the SWA range were then averaged across
the 185 electrodes and within each epoch.

For the slow wave detection procedure, preprocessed EEG signals
from each NREM epoch and channel were initially referenced to the av-
erage of the two mastoid electrodes. Then, an automatic detection algo-
rithm adapted from a previous study (Siclari et al., 2014) was applied.
Specifically, we first created a single timing reference by calculating
the negative-going signal envelope, defined as the 0.025 quantile of
the signal values detected across all channels for each point in time.
The resulting signal was broadband filtered (0.5-40 Hz, stop-band at
0.1 and 60 Hz) prior to the application of the wave detection. Only
slow waves with a duration of 0.25-1.25 s between consecutive zero
crossings were further evaluated. Additional criteria were applied to ex-
clude negative signal deflections of potential artifactual origin. Specifi-
cally, for each slow wave we first calculated the scalp involvement as
the mean signal achieved in the 20 ms around the wave peak in each
channel. Then, the top 5% electrodes showing the lowest EEG signal
values (maximal involvement) were identified. A slow wave was
discarded if at least half of these electrodes were located in the neck/
face regions (possible muscular artifact) or around both eyes but not
in the medial and lateral frontal areas (possible ocular artifact).

Finally, for each subject and experimental condition, we calculated
the total number of detected slow waves, the total SWA (defined as
the mean SWA computed across all NREM epochs), and the variation
in slow wave amplitude and SWA from the first to the last NREM
sleep cycle (difference last-first). The Pearson's coefficient was used to
investigate the potential correlation between structural changes follow-
ing recovery sleep and examined sleep parameters (p < 0.05,
Bonferroni-Holm correction). The correlations with total sleep time and
N2, N3 and REM time were also examined.

Analysis of the relationship between structural changes and behavioral
correlates

Relationship between structural changes and vigilance levels

Vigilance levels were measured by calculating the mean reaction
time during PVT (Bernardi et al., 2015) for test blocks completed in tem-
poral proximity with each MRI scan except the first one (PVT was not
performed before the first scan). A machine learning procedure was de-
veloped using MATLAB (The MathWorks, Inc.) and LibSVM (Wang et al.,
2011) to assess the potential relationship between structural changes
and variations in vigilance levels. Specifically, using support vector re-
gression (SVR) machines (Drucker et al., 1997), PVT reaction times
were predicted from the 8 measures derived from the global structural
analyses (MD, volumes and cortical thickness for the 4 ROIs) in both DS
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and EF experiments. Reaction times and MRI measures were normalized
(subtracting the mean and dividing it by the standard deviation) across
sessions and within each subject. A leave-one-subject-out cross-
validation procedure (based on the removal of all time-points of the
test subject) was then used to train and test linear SVR machines,
which resulted in predicted reaction times for the left-out subject across
MRI sessions. The mean squared error (MSE) was estimated by compar-
ing real and predicted data. Moreover, to assess the goodness of the pre-
diction, a procedure based on permutation tests was developed (1000
repetitions). Specifically, a MSE null distribution was obtained by train-
ing and testing SVR machines with data shuffled across subjects and
within each time point. Collected MSE values from the permutation pro-
cedure were compared to the MSE estimated from real data with a one-
tailed rank test (p < 0.05). Importantly, the leave-one-subject-out pro-
cedure allowed excluding a possible bias of subject-specific values on
the prediction accuracy. Moreover, the null distribution obtained from
the permutation test allowed ruling out a possible generalized mean ef-
fect related to the examined time points (i.e., an identical effect of the
time-of-day in all subjects). The R? coefficient between predicted and
original data was calculated for each subject.

Relationship between structural changes and cognitive
performance

A machine learning procedure similar to the one applied to explore
the relationship between structural changes and vigilance level was
used on behavioral parameters reflecting the individual performance
in the response inhibition test and in the visuo-motor test (Bernardi
et al.,, 2015). As described in previous work, the response inhibition
test consisted of a classical Go/NoGo test during which a stream of visual
stimuli, that are capital letters X or Y, was presented in alternating order
(1Hz). Subjects were requested to press a button for every stimulus that
followed a different stimulus (Go), and to withhold their response each
time two identical stimuli followed each other (NoGo). The proportion
of commission errors (i.e., cases in which the subject responded despite
a NoGo stimulus was presented) and the intraindividual coefficient of
variation (ICV, defined as the standard deviation of reaction time divid-
ed by the individual mean) were used as indices of inhibitory efficiency.
Differently, during the visuo-motor test, participants were required to
perform straight, out and back movements of a tracker, held with the
dominant hand, from a central starting area to one of 8 radial targets
(time interval = 1.5 s). The movement time (time from movement
onset to reversal) and the linear error (distance of the reversal point
from the center of the target) of each movement were collected and
used as measures of visuo-motor control efficiency. As described
above, impulse control and visuo-motor performance levels were calcu-
lated in test blocks completed in temporal proximity with each MRI
scan except the first one.

Reliability of the prediction of behavioral parameters from structural
data

Given that the present study design does not include indepen-
dent datasets for training and testing the SVM classifier, a relative
risk of “overfitting” is implied in the adopted leave-one-out proce-
dure. Thus, in order to evaluate stability and reliability of obtained
results, all analyses were repeated while replacing the leave-one-
out method with a recursive half-split of the examined sample.
Thus, for each of 1000 iterations, available subjects were equally di-
vided in a training sample, used to train the classifier, and in a test
sample, used to evaluate accuracy of the prediction of behavioral
performance in the remaining participants. As described for the
leave-one-out procedure, the goodness of the prediction was
assessed using permutation tests through a shuffling of available
data across subjects and within time-points. Results of this auxiliary
analysis are reported in Table S9.

Results

All subjects except one participated in two experiments (S14 com-
pleted only DS; see below). Each experiment included 5 MRI scans ac-
quired following baseline wake without training (W®), baseline sleep
(SB), 12 h and 24 h of wake with training (W2 W™%), and post-
training recovery sleep (S®) (Fig. 1). The only difference between the
two experiments was in the practiced task, either a driving simulation
task (DS) involving visuo-motor areas, or a battery of executive function
tasks (EF) mainly relying on prefrontal cortex.

Global changes in MD

MD was measured in four large regions of interest (ROIs; Fig. 2, Table
S1): cortical gray matter (GM), subcortical GM, white matter (WM) and
ventricles. As a first step, a three-way repeated measures (rm)-ANOVA
- including training condition (with, without), time-of-day (am, pm),
and task (DS, EF) as within-subjects factors — was run using the 12 sub-
jects for which time points from W® to W™ (4 in DS, 4 in EF) were
available (Table 1; also see Table S2). Neither the main effect of task,
nor its interactions with other factors, reached statistical significance
in any of the examined ROIs. By contrast, a significant main effect of
training was identified in cortical GM (corrected p < 0.05). Importantly,
this result was confirmed by statistical models that included total in-
scanner head movement and either total brain volume or cortical vol-
ume as covariates (Table S3). No significant effects were seen in WM,
subcortical GM and ventricles (Fig. S4B-D; Table 1). Next, planned
post-hoc comparisons tested the effects of sleep and wake in the ab-
sence of training (S® vs. W), training during the first 12 h of wake, i.e.
without sleep deprivation (WT'2 vs. WB), and sleep deprivation with
training (W™ vs. W2), Finally, the effect of recovery sleep was inves-
tigated through paired t-tests by comparing S® and W™, Relative to
baseline sleep (S®), a decrease in MD was already evident in cortical
GM after the first 12 h of wake with training (mean variation =+ SE, com-
puted across subjects after averaging across ROI voxels, SB-
W2 = —0.52 £ 0.17%), but not after 12 h of baseline wake (Fig. 3A, Ta-
bles S4-S5). After 24 h of training, cortical MD continued to decrease
(SB-WT™* = —0.94 + 0.15%), and this trend was reverted by subse-
quent recovery sleep

Of note, typical MD values are substantially different in GM
(~0.8 x 107> mm?/s), WM (~0.7 x 10> mm?/s), and most notably, ce-
rebrospinal fluid (CSF, ~3.0 x 102 mm?/s). Thus, DWI analyses can be
affected by confounds related to the partial volume effect, that is, the in-
clusion of voxels representing a mixture of multiple tissue types
(Alexander et al., 2001), with erroneous estimations of diffusivity aris-
ing especially because of CSF contamination. However, a serial visual in-
spection of the distributions of MD values in the cortical ROI allowed to
identify a clear shift of the histograms' peak after prolonged training: in
fact, W™ had a relatively higher percentage of voxels in the 0.6-
0.8 x 10~2 mm?/s range, while S had relatively more voxels in the
0.8-1.0 x 10~2 mm?/s range. No clear differences were observed in
the tails of the distributions, which contain voxels with higher probabil-
ity of being affected by partial volume artifacts. Moreover, we repeated
the rmANOVA using MD values extracted from a cortical mid-GM mask
that excluded voxels along the WM-GM and the GM-CSF interfaces (Ball
et al, 2013). This approach confirmed the existence of a strong and sig-
nificant effect of training condition in cortical GM, which survived after
the further removal of voxels with MD value greater than
1.0 x 103 mm?/s (Table S6, Fig. 3B). Of note, the independence of de-
tected MD variations from potential partial volume artifacts was also
supported by the additional ROI analysis described below, in which
we found that MD changes are relatively widespread (i.e., do not de-
pend on few outlier regions). Finally, we found that MD changes are rel-
atively independent from variations in brain or cortical volumes, and
from relative changes in the extent of head movements (Table S3).
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Table 1

Results of the rmANOVAs exploring global MD changes. Significant effects surviving after correction for multiple comparisons (p < 0.05, Bonferroni-Holm) are marked in bold text.

rmANOVA (MD) Cortical GM Subcortical GM WM Ventricles

P Faan P Faan P Faan P Faan
Time (am, pm) 1557 2.3233 .1069 3.0835 6917 1658 .0266 6.5406
Condition (with/out training) .0002 29.2218 .0716 3.9756 1619 2.2479 .0318 6.0426
Task (DS, EF) 3076 1.1448 .2682 1.3601 .3081 1.1419 1693 2.1642
Time x condition .0424 5.2651 3370 1.0080 .0358 5.7178 1910 1.9419
Time x task 6952 1619 3186 1.0911 7971 .0694 .6905 1672
Condition x task 6925 1648 .6683 1937 3727 .8634 .8815 .0233
Time x condition x task .6524 2144 3548 9333 4679 .5653 .2439 1.5160

Regional changes in MD

To test for regional effects, a three-way rmANOVA (training condi-
tion, time-of-day, task) was run using the 40 cortical and subcortical re-
gions of the Desikan-Killiany Atlas (Fischl et al., 2004). Significant effects
of training condition were found in several brain areas, including supe-
rior temporal sulcus, inferior temporal cortex, middle temporal cortex,
lateral and medial orbitofrontal cortex (corrected p < 0.05; Table 2;
Fig. S5). Moreover, the rmANOVA revealed a significant time by condi-
tion interaction in the superior temporal cortex and in the pars
triangularis of the inferior frontal gyrus.

Analyses based on LME models taking into account changes in total
head movement and in brain volume were also used to evaluate the po-
tential influence of these possible confounding factors. Importantly, re-
sults of this additional analysis confirmed the effects detected in the
inferior frontal gyrus and in the middle, inferior and superior temporal
cortices. Differently, the main effects of experimental condition identi-
fied by the rmANOVA in superior temporal sulcus and medial/lateral
orbitofrontal cortex did not reach the set threshold for statistical signif-
icance, although a clear trend was observed (uncorrected p < .008;
Table S7). On the other hand, the LME analysis identified an additional
condition effect in the fusiform gyrus, and time by condition interac-
tions in the rostral anterior cingulate cortex and in the pars orbitalis of
the inferior frontal gyrus. Overall, obtained results point to a distributed
effect of the experimental condition on cortical MD, with the strongest
variations in temporal and prefrontal brain areas. Finally, the LME
models also detected significant main effects of the task (DS, EF) in
mid/posterior cingulate cortex and in superior temporal cortex, al-
though no interactions with other examined factors emerged.

Post-hoc tests confirmed the existence of a significant MD decrease
after prolonged task practice in ROIs characterized by a significant con-
dition effect or time by condition interaction. Recovery sleep was
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Fig. 3. Comparison of MD variations detected using the cortical GM mask (A) and the mid-
GM mask (B) excluding voxels along the WM-GM and GM-CSF interfaces. On average the
mid-GM mask included 60.4 4- 1.4% less voxels than the original cortical mask. Large
circles represent the group-level average, while each small circle represents a different
subject (black bars indicate one standard deviation from the mean). Values were zero-
mean normalized by subtracting the across-time-points mean. *, significant differences
for planned comparisons (p < 0.05, after Bonferroni-Holm adjustment; N = 12); 4,
significant effect of recovery sleep (paired t-test).

associated with a significant MD increase relative to the end of the
sleep deprivation period.

Global changes in volume and cortical thickness

We then focused on other structural parameters, namely cortical
thickness and volume of subcortical GM, WM, and ventricles. The
rmANOVA identified significant main effects of training on all 3 volu-
metric measures, but not on cortical thickness (corrected p < 0.05;
Table 3; also see Table S2). A time of day effect was present in the ven-
tricles, while neither the main effect of task, nor its interaction with
other factors, was significant. Significant time by training interactions
were present for cortical thickness and ventricular volume. Planned
post-hoc comparisons identified no significant change in cortical thick-
ness between baseline sleep and the first 12 h of training (Fig. 4A, Tables
S4-S5), although a relative increase was observed in most subjects (S5-
WT12 = +0.26 + 0.19). Similarly, there was no significant difference
between 12 h and 24 h of training, although a trend towards a decrease
was present (W'2-W™4 = —0.88 + 0.31%; p < 0.05, uncorrected). By
contrast, a significant increase in cortical thickness was found after re-
covery sleep relative to a night of sleep deprivation (Fig. 4A)

Planned post-hoc comparisons for other structural parameters also
found that relative to baseline sleep, volumetric changes were present
after 12 and/or 24 h of training in all three ROIs, but in different direc-
tions, with increases in subcortical GM and WM and decreases in the
ventricles (Fig. 4B-D). All these changes were reverted by recovery
sleep. No regional changes were found using the ROI-based analysis of
thickness and volume in cortical and subcortical structures, with the ex-
ception of the thalamus, where a significant increase in volume was
found after 24 h of training (S®-W™* = 4 0.64 + 0.13%).

All described structural changes were not accompanied by signifi-
cant variations in total brain volume (calculated as the sum of cortical
GM, subcortical GM and WM). In fact, the rmANOVA (task, time-of-
day, training condition) failed to identify any significant effects
(Table S8). Moreover, evening-to-morning changes - specifically ex-
plored through paired t-test in light of recent findings suggesting the
existence of diurnal brain volumetric variations (Nakamura et al.,
2015) - were not found in either the “baseline” condition (WB-S®: p >
0.18) or the “experimental” condition (W''2-W™*: p>0.31).

Sleep parameters and structural measures of recovery

All subjects had the possibility to sleep for ~8 h during the day after
the end of 24 h of training (Table 4). Although recovery sleep occurred
at the wrong circadian time (sleep onset ~10 am), most of its features,
including the proportion of NREM (N2 + N3) and REM stages, were
not different from those of baseline sleep during the night. However,
in all subjects of both DS and EF the latency of the first REM sleep epi-
sode was significantly reduced (p < 0.05, Bonferroni-Holm correction),
a sign of high REM sleep pressure likely due to the combined effect of
sleep deprivation and sleeping during the day (Dijk and Czeisler,
1995). Moreover, in both experiments the proportion of time spent in
deep sleep (N3) increased in recovery sleep as compared to baseline
sleep, mainly at the expenses of the proportion of light sleep (N2).
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Table 2

Results of the rmANOVAs exploring regional MD changes. Only statistically significant effects surviving Bonferroni-Holm adjustment are shown (p < 0.05). The last column shows the
mean relative MD change following 24 h spent awake (S®-W"™* variation). Given that no significant effects of the task were observed, the reported variation was calculated after averaging

DS and EF measures. PT, Pars Triangularis.

rmANOVA Significant effects
Bank superior temporal sulcus Condition
Inferior temporal cortex Condition
Middle temporal cortex Condition
Superior temporal cortex Time x condition
Lateral orbitofrontal cortex Condition
Medial orbitofrontal cortex Condition

Inferior frontal gyrus (PT) Time x condition

Significance % MD variation
level (£SE)

p = .0013; Fq,11) = 18.498 —1.14 (.33)

p = .0004; F(q11y) = 25.250 —1.17 (.25)

p = .0001; F1,11) = 36.456 —1.16 (.15)

p = .0004; F(1,11) = 25.799 —1.36 (.26)

p = .0002; Fq11) = 28.434 —1.98 (.38)

p =.0002; Fq,11) = 29.604 —2.70 (.57)

p =.0005; F(y,11) = 23.521 —1.64 (.35)

Actual sleep time, including all non-wake epochs, corresponded to
6.8 + 1.3 hin DS, and to 7.1 4 0.9 h in EF. Overall, no significant differ-
ences were observed between recovery sleep of DS and that of EF (all p >
0.05, uncorrected). In both experiments no correlation was found be-
tween total sleep time, or time spent in REM, N2 and N3, and any of
the structural parameters that showed a significant change between
24 h of training and recovery sleep (GM thickness and MD, subcortical
GM volume and MD, WM volume, ventricular volume and MD). Total
SWA, total number of detected slow waves, as well as changes in SWA
and slow wave amplitude between the first and the last NREM sleep
cycle also did not correlate with any structural measure of recovery
(p <0.05, corrected).

Relationship between structural changes and vigilance level

Next, we examined whether global structural variations were reflected
in vigilance changes, measured using the mean reaction time during the
PVT (Bernardi et al., 2015), a sustained vigilance task known to be highly
sensitive to sleep loss (Basner and Dinges, 2011). In the previous study
that used the same subjects we confirmed that PVT performance declines
in the course of the 24 h of practice and renormalizes after recovery sleep
(Bernardi et al., 2015). Here mean PVT reaction times for test blocks com-
pleted in temporal proximity with each MRI scan were predicted from the
8 measures derived from the global structural analyses (MD, volumes and
cortical thickness for the 4 large ROIs). The regression procedure identified
a significant relationship between structural changes and variations in
vigilance level in both DS (average R? across subjects & SD = 0.46 +
0.30; p < 0.001) and EF (R?> = 0.47 4+ 0.31; p < 0.001). Thus, variations
in global structural measures were able to predict to some extent changes
in sustained attention (Fig. 5; also see Table S9). Based on a qualitative
evaluation across the two experimental conditions, we found that the
most relevant predictors were represented by ventricular volume, MD of
cortical GM and WM volume.

Table 3

Relationship between structural changes and cognitive performance

Finally, by applying the same procedure described above, we tested
whether global structural changes were reflected in performance
changes in two tests used to track variations in impulse control and
visuo-motor coordination. In the previous study (Bernardi et al.,
2015), we demonstrated that performance in the response inhibition
test, as measured using the number of commission errors or the
intraindividual coefficient of variation in reaction time (ICV), is character-
ized by a time-course similar to the one described for the PVT test, sug-
gesting a relevant influence of the vigilance level. Indeed, ICV values
were successfully predicted by global structural changes in both DS
(R* =051+ 0.35; p<0.001) and EF (R* = 0.32 + 0.33; p = 0.017) ex-
periments (Fig. S6). Differently, prediction accuracy for commission er-
rors reached significance in DS (R? = 0.64 -+ 0.30; p < 0.001) but not
in EF (R? = 0.26 £ 0.27; p = 0.053), perhaps due to lower statistical
power in this latter condition (N = 13 in EF; N = 15 in DS). Of note,
however, the quality of the prediction in EF may have been also nega-
tively affected by local, experience-dependent changes in the impulse
control network, which seem to be independent from changes in the
general vigilance level. Indeed, in line with a possible dissociation be-
tween EF performance and vigilance levels, we previously showed
that prolonged practice with tasks based on executive functions was as-
sociated with a relative performance impairment during the test-block
corresponding to W2, although no differences in the PVT performance
were present between DS and EF in the same time-point (Bernardi et al.,
2015). With regard to the visuo-motor test (Fig. S7), both linear error
(LE, a measure of movement accuracy) and movement time (MT, an
index of eye-hand coordination efficiency) were not predicted by global
structural changes in either DS (LE: R? = 0.40 & 0.32; p = 0.288 — MT:
R?=0.16 4 0.16; p = 0.233) or EF (LE: R = 0.33 & 0.39; p = 0.218 —
MT: R> = 0.28 & 0.28; p = 0.207). These findings are consistent with
previous observations suggesting a lower vulnerability of the visuo-
motor function to the effects of sleep deprivation (Bernardi et al.,

Results of the rmANOVAs exploring other global structural changes. Significant effects surviving after correction for multiple comparisons (p < 0.05, Bonferroni-Holm) are marked in bold

text.

rmANOVA Cortical Subcort. GM volume WM volume Ventricular volume
(thickness, volume) thickness
P Faan P Faan P Faan P Faan

Time (am, pm) 1457 2.4520 .6453 2239 .0596 4.4082 .0024 15.3479
Condition (with/out training) 7126 1429 0071 10.8941 0116 9.1358 <.0001 42.4533
Task (DS, EF) 1564 23144 1947 1.9066 3214 1.0781 .7666 .0926
Time x condition 0139 8.5438 7993 .0679 2138 1.7408 0110 9.3109
Time x task 2774 1.3058 3346 1.0184 4970 4933 3915 7955
Condition x task 1768 2.0833 4821 5292 .0726 3.9415 .5520 3765
Time x condition x task .8476 .0387 3051 1.1572 3999 7669 4830 5271
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Fig. 4. Global changes in cortical thickness (A) and volume changes in subcortical GM, WM
and ventricles (B-D). Large circles represent the group-level average, while each small
circle represents a different subject (black bars indicate one standard deviation). Values
were zero-mean normalized by subtracting the across-time-points mean. *, significant
differences for planned comparisons (p < 0.05, after Bonferroni-Holm adjustment; N =
12); 4, significant effect of recovery sleep (paired t-test).

2015), and potentially reflect a lower dependence of these parameters
on the global vigilance state.

Discussion

Extended task practice is associated with a decrease in cortical
diffusivity

We found that MD declined in cortical GM after 12 h of wake with
intensive task practice, both compared to wake after a night of sleep
and relative to 12 h of wake without task practice. Moreover, we

Table 4

Polysomnographic parameters. Sleep parameters (group average + SD) during the first
baseline night (BL) and the recovery sleep periods of the two experiments (DS, EF). Per-
centages are expressed relative to total sleep time. Latency of the first N2, N3 and REM pe-
riod is expressed from the first non-wake (N1) epoch. No significant differences were
observed between recovery sleep of DS and EF (p < 0.05, uncorrected).

BL DS EF

Total sleep time [pn 415.1 £ 83.2 406.7 + 81.0 423.8 + 53.1
N1 time jmin) 232 4+ 15.7 139+ 9.1 169 + 14.3
N2 time jmin 2149 + 594 176.0 4 46.9 175.8 & 45.5
N3 time (i) 83.5 + 31.7 1169 + 32.4° 120.1 + 18.17
REM time [min] 93.5 4 32.1 99.9 + 464 1109 4+ 42.6
N1% 58 +44 3.7+3.0 4.2 + 3.8
N2% 51.7 £ 9.1 433 4 8.3° 41.0 + 8.3°
N3% 20.54+6.9 292 4+ 7.3* 28.8 + 5.8*
REM % 220463 238+ 76 26.0 + 8.0
N2 latency (min] 44429 13.6 £ 175 12.1 £ 276
N3 latency (minj 2254172 26.1 + 18.6 32.6 +£263
REM latency (min] 85.7 £ 30.2 26.3 + 28.0° 21.3 + 25.6*

@ Significant differences between DS/EF and BL (p < 0.05, unpaired t-tests, Bonferroni—
Holm correction for multiple comparisons).
> p <0.05 uncorrected.
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Fig. 5. Prediction of vigilance level based on structural parameters. For both DS (top) and
EF (bottom), the graphs show the “real” (purple) vigilance level observed during sessions
SB W2 W4 and SR (measured as the reaction time during the PVT test), in comparison
with the vigilance level predicted based on global structural parameters (green), in a
representative subject (S06).

observed that cortical MD declined even further after 24 h relative to
12 h of practice, and that all changes were reverted by ~7 h of sleep.

Recent studies in humans and rats had shown a link between short-
term learning, such as practicing a visuo-spatial task for less than 2 h,
and decreases of MD (Hofstetter et al., 2013; Sagi et al., 2012). These
studies also demonstrated that MD changes are due to learning rather
than movement and general activity (Hofstetter et al., 2013; Sagi et al.,
2012). Other studies had examined MD changes in the context of chron-
ic sleep disorders and found heterogeneous local changes, including an
increase in the upper brainstem with REM sleep behavior disorder
(Scherfler et al.,, 2011), an increase in hypothalamus and frontal cortex
with narcolepsy-cataplexy (Scherfler et al., 2012), and a decrease in
some cortical and subcortical areas with obstructive sleep apnea, an ef-
fect that reverts after treatment (refs in Castronovo et al., 2014).

MD reflects tissue density, and thus its decrease in GM may result
from several not mutually exclusive factors including increase in synap-
se size, cell swelling, changes in extracellular space, and/or increase in
glial cell volume. Although synaptic strength, which is correlated with
size (Meyer et al., 2014), is known to increase with wake and decrease
with sleep (Tononi and Cirelli, 2014), synapses contribute little to the
overall GM volume, making it unlikely that rapid changes in MD after
training and extended wake can be accounted for primarily by synaptic
changes per se. More likely candidates are microstructural changes that
are triggered by and/or are associated with synaptic activity and plastic-
ity, such as variations in the ratio between intra- and extracellular vol-
umes and astrocytic changes (Assaf and Pasternak, 2008). For
instance, neuronal activity leads to a decrease in extracellular space
(Ransom et al., 1985), and learning, sustained neuronal activity, or in-
duction of long-term potentiation result in astrocytic hypertrophy and
increased astrocytic coverage of synaptic processes (Anderson et al.,
1994; Bernardinelli et al., 2014; Genoud et al., 2006; Jones and Gree-
nough, 1996; Wenzel et al., 1991). Using serial-block-face electron mi-
croscopy, we recently found that after extended wake peripheral
astrocytic processes in mouse frontal cortex move closer to the synaptic
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cleft, expand, and increase their surface to volume ratio (Bellesi et al.,
2015). These changes likely enhance the housekeeping functions of as-
trocytes and promote glutamate clearance from the cleft. At the same
time, however, since the neuropil is filled with astrocytic processes,
their wake-related “expansion” may impair the diffusion of water and
other small molecules, potentially accounting for changes in MD.

In our paradigm, we did not detect a significant global change in MD
after sleep following baseline wake. A previous study using voxel-based
analyses found large local increases in brain diffusivity in the morning
relative to the evening in the absence of training (4.4-5.6% increase in
apparent diffusion coefficient) (Jiang et al., 2014). Voxel-based analysis
may permit a more powerful detection of localized MD changes, but it
can also lead to spurious results if partial volume effects or within-
subject and across-subjects alignment issues are not adequately con-
trolled for. Our analytical approaches were selected to minimize these
problems.

Acute sleep deprivation and cortical thickness

While MD changes occur early during wake with practice and are
sensitive to training per se, no significant global or regional changes in
cortical thickness were found after 12 h of training relative to baseline
(after wake and/or after sleep), although there was a tendency towards
an increase. The subsequent change from 12 h to 24 h of practice was
significantly different from the variation in the normal sleep night
(WB-SB), although we detected no significant differences between indi-
vidual time points. Moreover, recovery sleep was associated with a sig-
nificant cortical thickness increase. Changes in cortical thickness have
been observed mainly during development, aging, or in response to
chronic manipulations. A case in point is adolescence, during which cor-
tical GM shows a progressive thinning, a phenomenon that has been
linked to improvement in cognitive functions and may result from se-
lective pruning of inefficient synaptic connections and increases in
myelination (Schnack et al., 2014). Changes in cortical thickness have
also been reported in chronic primary insomnia, but results are incon-
sistent (Dang-Vu, 2013). Finally, increases in GM thickness have been
described after weeks or months of training (May, 2011), but not after
short training.

In our case, cortical thickness trended in opposite directions after
12 h (increase) and 24 h (decrease) of practice. This result suggests
that sleep loss per se may have a more prominent influence on this pa-
rameter than synaptic plasticity, but more experiments are needed to
test this hypothesis.

Volumetric changes potentially reflect an altered circulation of intersti-
tial fluids

Training and extended wake also led to increased volume in subcor-
tical GM and WM and decreased volume in the ventricles, and all chang-
es were reverted by recovery sleep. These findings may be related to the
recently discovered role of sleep in modulating circulation of interstitial
fluids (ISF) (Xie et al., 2013). In fact, CSF is known to interchange with
the brain ISF, and their combined movement allows the clearance of sol-
utes from the brain (Brinker et al., 2014; Iliff et al., 2012). CSF production
as measured by phase-contrast MRI also shows a strong circadian pat-
tern in humans, being lower during the day and peaking at night
(Nilsson et al., 1992). Importantly, the CSF-ISF movement is favored
by sleep and impaired by wake (Xie et al., 2013) and sleep deprivation
(Plog et al., 2015). Given these premises, sleep deprivation at night
may have significantly reduced CSF-ISF movement and CSF production,
impairing the clearance of brain metabolites and causing a reduction in
ventricular volume and a compensatory expansion, or a swelling, of
nearby structures such as subcortical GM and WM. Recovery sleep
would revert described changes by promoting CSF-ISF movement and
CSF production.

Importantly, all described structural modifications do not simply re-
flect alterations determining global, uniform variations in brain size, as
indicated by the absence of significant changes in total brain volume
throughout the experiments. The apparent contrast with recent work
suggesting the existence of brain diurnal volumetric fluctuations
(Nakamura et al., 2015) may depend on several differences in experi-
mental design, since we only included healthy young adult volunteers
who were not assuming any medications, and who were kept in homo-
geneous and controlled (although “extreme”) experimental conditions.
On the other hand, we cannot exclude that modest global volumetric
variations could have remained undetected in our dataset due to our
smaller sample size.

Relationship between structural changes and sleep or behavioral
parameters

Structural changes associated with recovery sleep did not correlate
with any single sleep parameter that we tested. This may suggest that
sleep as a whole, or at least several sleep features together, contributed
to the effect. Other factors however, cannot be ruled out, including a
“ceiling effect” caused by the high efficiency of sleep in all subjects,
most likely due to the combination of 24 h of continuous wake with
the intense task practice.

Previous studies suggested that specific structural measures taken at
rest may reflect the degree of individual cognitive vulnerability to sleep
deprivation (Cui et al., 2015; Rocklage et al., 2009). Here, we found that
structural changes occurring during extended wake can be used to pre-
dict individual vigilance levels, and may partially contribute to predict
variation in specific behavioral measures related to performance in an
impulse control test. Thus, our results confirm and support the exis-
tence of a link between microstructural alterations and cognitive perfor-
mance, and suggest that some individuals may be more resilient to sleep
loss because of an optimal initial “structural reserve” that makes them
less vulnerable to the microstructural alterations occurring during ex-
tended wake. Overall, they suggest that sleep's ability to counteract per-
formance deficits is linked to its effects on the brain microstructure.

Methodological considerations

Our study has several limitations. First, MRI-based approaches can
only provide indirect measures of microstructural changes occurring
within the human brain. Consequently, hypotheses regarding the link
between variations in MRI-based parameters and the underlying bio-
logical mechanisms will require verification in different experimental
models. On the other hand, several previous studies support the reliabil-
ity of MRI-derived indices for studying a variety of physiological pro-
cesses, including experience-dependent learning (Johansen-Berg et al.,
2012; Zatorre et al.,, 2012), thus providing a solid foundation for the in-
terpretation of present findings.

MRI-based parameters, and in particular measures related to water
diffusivity, can be influenced by many confounds, including the partial
volume effect (Alexander et al., 2001). While there are currently no
commonly accepted gold-standard methods to address this problem,
here we applied several strategies to minimize the potential impact of
artifacts related to the partial volume effect, including the exclusion of
voxels with a high probability of CSF contamination, and the adjustment
of statistical models based on volumetric changes (associated to relative
variations of the GM-CSF boundary). The obtained results suggest that
changes in CSF contamination cannot account, alone, for the observed
variations in cortical MD. This conclusion is further supported by the ob-
servation, during prolonged wakefulness, of parallel changes in cortical
MD and thickness, and by the detected relationship between changes in
cortical MD and in vigilance level. We acknowledge, however, that fu-
ture studies using additional methods to limit the partial volume effect
are required to provide an independent validation of the present results.
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Another potential issue is the occurrence of wake-sleep transitions
during the acquisition of DWI-scans, especially because deep sleep is
known to be associated with relative changes in participants' move-
ments and in brain temperature (Franken et al., 1992; Ogilvie, 2001),
which, in turn, may affect diffusivity measures. The most accurate ap-
proach to control for this confound is MRI-EEG co-registration. Howev-
er, this solution was not appropriate in the context of the present study
for at least two reasons: i) the complexity of the experimental setup, to-
gether with technical and temporal constraints, limited the possibility
to prepare a MRI-compatible EEG registration in our samples; ii) the
EEG-net is known to affect the MRI signal, potentially leading to alter-
ations of the estimation of structural parameters (Klein et al., 2015;
Luo and Glover, 2012). On the other hand, several observations suggest
that changes in behavioral state (wake/sleep) cannot account for our
findings. First, the inclusion of head motion as a nuisance variable in sta-
tistical analyses had no relevant impact on our results. Moreover, the in-
fluence of a general decrease in brain temperature appears implausible,
because relative changes in MD occurred with different timings in dif-
ferent structures. Of note, the initial MD decrease in cortical GM was
also observed at a time-of-day typically associated with the circadian
minimum in sleep pressure (Lavie, 1986). In summary, several empiri-
cal and theoretical considerations indicate that the possible occurrence
of a transition to sleep in some of the subjects would not be sufficient to
account for our results, leaving the change in tissue microstructure as
the most plausible explanation.
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