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It is generally believed that, in the thermodynamic limit, the microcanonical description as a function of
energy coincides with the canonical description as a function of temperature. However, various examples
of systems for which the microcanonical and canonical ensembles are not equivalent have been identified.
A complete theory of this intriguing phenomenon is still missing. Here we show that ensemble
nonequivalence can manifest itself also in random graphs with topological constraints. We find that,
while graphs with a given number of links are ensemble equivalent, graphs with a given degree sequence
are not. This result holds irrespective of whether the energy is nonadditive (as in unipartite graphs) or
additive (as in bipartite graphs). In contrast with previous expectations, our results show that (1) physically,
nonequivalence can be induced by an extensive number of local constraints, and not necessarily by long-
range interactions or nonadditivity, (2) mathematically, nonequivalence is determined by a different
large-deviation behavior of microcanonical and canonical probabilities for a single microstate, and not
necessarily for almost all microstates. The latter criterion, which is entirely local, is not restricted to
networks and holds in general.
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Background.—In statistical physics, calculating the equi-
librium properties of a system with a given energy requires
averaging over the so-called microcanonical ensemble
[1,2], i.e., the uniform distribution on the set of all particle
configurations having a prescribed energy. Apart from
trivial examples, this is a mathematically challenging task.
Moreover, it is difficult to physically realize a situation
where there is no uncertainty in the energy of the system.
Therefore, it is often preferable to work with the so-called
canonical ensemble [2], i.e., a probability distribution with
maximal entropy on an extended set of configurations that
“violate” the desired energy, but in such a way that the
average energy matches the prescribed value. This is
achieved through an appropriate temperature, mathemati-
cally arising as the Lagrange multiplier enforcing the
prescribed average energy.
Starting with the work of Gibbs [2], the microcanonical

and canonical ensembles have been shown to be equivalent
in the thermodynamic limit (i.e., when the number of
particles in the system tends to infinity) for physical
systems with short-range interactions. The original argu-
ment is that in the canonical ensemble at fixed temperature
the energy fluctuations are negligible with respect to the
average energy, so that in the thermodynamic limit the
canonical ensemble is effectively microcanonical with a

sharp value of the energy. Today, most textbooks in
statistical physics still convey the message that equivalence
of ensembles holds universally for every physical system,
justifying the use of energy and temperature as two
different parameters giving an equivalent description.
However, in the past decades various studies have

highlighted that ensemble equivalence breaks down in
certain models of fluid turbulence [3,4], quantum phase
separation [5–7], star formation [8,9], nuclear fragmenta-
tion [10], and networks [11–13]. Physically, it is believed
that nonequivalence is associated with long-range inter-
actions or other forms of nonadditivity [14]. However, a
complete theoretical understanding of the phenomenon is
still missing. Mathematically, ensemble nonequivalence
has been approached in various ways [15,16]. In particular,
the microcanonical and canonical ensembles are said to be
thermodynamically equivalent [7] when the entropy and the
free energy of the system are one-to-one related via a
Legendre transform. The ensembles are said to be macro-
state equivalent [15] when the sets of equilibrium values of
the macrostate (energy, magnetization, etc.) are the same.
Finally, a recent and mathematically appealing definition is
that of measure equivalence [16], according to which the
ensembles are said to be equivalent when the canonical
probability distribution converges to the microcanonical
probability distribution in the thermodynamic limit. Under
certain hypotheses, the three definitions have been shown to
be equivalent [16]. Moreover, large deviation theory [17]
shows that theensemblesarenonequivalentonall three levels
when the microcanonical specific entropy is nonconcave
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as a function of the energy density in the thermodynamic
limit [16].
Here we study ensemble nonequivalence for networks

with topological constraints [18–20]. Usually, ensemble
nonequivalence is studied for systems in which the
Boltzmann distribution describes a certain physical inter-
action that is encapsulated in the energy. However, as
already shown by Jaynes [21], the Boltzmann distribution
describes much more general ensembles of systems with
given constraints, namely, all solutions to the maximum-
entropy problem of inference from partial information.
We argue that, for any discrete enumeration problem where
we need to count microcanonical configurations compat-
ible with a given constraint, there exists a “dual” problem
involving canonical configurations induced by the same
constraint. We prove a general result relating measure
equivalence to equivalence of the large deviation properties
of microcanonical and canonical probabilities, and provide
examples of networks that exhibit nonequivalence when-
ever the number of constraints is extensive.
Ensembles.—For N ∈ N, let GN denote the discrete set of

all configurations with N particles (in the examples below,
all graphs with N nodes). Let ~C denote a vector-valued
function on GN . The microcanonical distribution with hard
constraint ~C⋆ is defined as

PmicðGÞ ¼
�
1=Ω~C⋆ if ~CðGÞ ¼ ~C⋆

0 else;
ð1Þ

where Ω~C⋆ ¼ jfG ∈ GN∶ ~CðGÞ ¼ ~C⋆gj is the number of

configurations that realize ~C⋆. Following Jaynes [21],
we introduce a dual problem involving a canonical prob-
ability distribution PcanðGÞ defined as the solution of
the maximization of the Shannon entropy SNðPcanÞ ¼
−
P

G∈GN
PcanðGÞ lnPcanðGÞ subject to the soft constraint

h~Ci ¼ ~C⋆, where h·i denotes the average with respect to
Pcan, and to the normalization condition

P
G∈GN

PcanðGÞ ¼
1 [18]. This gives

PcanðGÞ ¼ exp½−HðG; ~θ⋆Þ�
Zð~θ⋆Þ

; ð2Þ

where HðG; ~θÞ≡ ~θ · ~CðGÞ is the Hamiltonian and Zð~θÞ≡P
G∈GN

exp½−HðG; ~θÞ� is the partition function. Note that

in Eq. (2) the parameter ~θ must be set to the particular value
~θ⋆ that realizes h~Ci ¼ ~C⋆ [20]. This value also maximizes
the likelihood [22].
Specific relative entropy and large deviations.—The

relative entropy of Pmic with respect to Pcan is

SNðPmic∥PcanÞ ¼
X
G∈GN

PmicðGÞ lnPmicðGÞ
PcanðGÞ : ð3Þ

Following Ref. [16], we say that the two ensembles are
measure equivalent if their specific relative entropy is zero:

s ¼ lim
N→∞

SNðPmic∥PcanÞ
N

¼ 0: ð4Þ

Before considering specific cases, we make a crucial
observation. Noting from the form of HðG; ~θÞ that
PcanðG1Þ ¼ PcanðG2Þ when ~CðG1Þ ¼ ~CðG2Þ (the canoni-
cal probability is the same for all configurations with the
same value of the constraint), we rewrite Eq. (3) as

SNðPmic∥PcanÞ ¼ ln
PmicðG⋆Þ
PcanðG⋆Þ ; ð5Þ

where G⋆ is any configuration in GN such that
~CðG⋆Þ ¼ ~C⋆. The equivalence condition in Eq. (4) then
becomes

lim
N→∞

1

N
½lnPmicðG⋆Þ − lnPcanðG⋆Þ� ¼ 0; ð6Þ

which demonstrates that nonequivalence coincides with
PmicðG⋆Þ and PcanðG⋆Þ having different large deviation
behavior [17]. Importantly, this condition is purely local as
it involves the microcanonical and canonical probabilities
of a single microstate G⋆ realizing the hard constraint. This
greatly simplifies previously studied global conditions
involving almost all microstates [16].
Unipartite networks.—We now apply the above concepts

to the class of unipartite graphs, where there is a single set
of nodes among which all possible links are allowed.
Let us first consider graphs with a fixed number of links

L; i.e., ~C≡ L. Writing L ¼ λV, where V ≡ NðN − 1Þ=2 is
the number of pairs of nodes and λ is the fraction of realized
links, in the microcanonical ensemble we have

ΩL⋆ ¼
�
V
L⋆

�
¼

�
V
λ⋆V

�
; 0 < λ⋆ < 1: ð7Þ

The canonical ensemble can be obtained from Eq. (2) by
setting HðG; θÞ ¼ θLðGÞ and p⋆ ≡ ðe−θ⋆=1þ e−θ

⋆Þ ¼ λ⋆
[20]. This produces the Erdős-Rényi random graph where
each pair of nodes is connected with equal probability p⋆:

PcanðGÞ ¼ ðp⋆ÞLðGÞð1 − p⋆ÞV−LðGÞ: ð8Þ

We can now compute the relative entropy from Eq. (5) as

SðPmic∥PcanÞ ¼ −λ⋆V ln λ⋆ − ð1 − λ⋆ÞV lnð1 − λ⋆Þ

− ln

�
V
λ⋆V

�
¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πλ⋆ð1 − λ⋆ÞV

p
þOð1=VÞ; ð9Þ

where we have used Stirling’s formula n! ¼ ðn=eÞn ffiffiffiffiffiffiffiffi
2πn

p
½1þOð1=nÞ�, n → ∞. This gives
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s ¼ lim
N→∞

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πλ⋆ð1 − λ⋆ÞVp

N
¼ 0; ð10Þ

proving ensemble equivalence. In other words, when
N → ∞, most graphs have a number of links that is close
to the average number of links.
We next consider graphs with a fixed degree sequence,

i.e., ~C ¼ ~k ¼ ðk1;…; kNÞ, where ki is the number of links
of node i. This is known as the configuration model [18].
The microcanonical number Ω~k⋆ is not known in general,
but asymptotic results exist in the “sparse case,” where

kmax ¼ max
1≤i≤N

ki ¼ oð
ffiffiffiffi
N

p
Þ: ð11Þ

In this regime it is known that [23,24]

Ω~k⋆ ¼
ffiffiffi
2

p ð2L⋆
e ÞL⋆

Q
N
i¼1 k

⋆
i !

e−ðk⋆2=2k⋆Þ2þ1=4þoðN−1k⋆3Þ; ð12Þ

where k⋆l ¼ N−1PN
i¼1 k

⋆
i
l is the l-th moment of the degree

distribution and L ¼ Nk⋆=2 is the total number of links.
The canonical ensemble is described [20] by Eq. (2), where

HðG; ~θÞ ¼ ~θ · ~kðGÞ and ~θ⋆ is such that

X
j≠i

e−θ
⋆
i −θ

⋆
j

1þ e−θ
⋆
i −θ

⋆
j
¼ k⋆i ∀ i: ð13Þ

Setting p⋆
ij ≡ e−θ

⋆
i −θ

⋆
j =ð1þ e−θ

⋆
i −θ

⋆
j Þ, we have

PcanðGÞ ¼
Y
i;j

ðp⋆
ijÞgijð1 − p⋆

ijÞ1−gij ; ð14Þ

where
Q

i;j ≡Q
N
i¼1

Q
j<i and gij is the entry of the

adjacency matrix of G. Equation (11) ensures that
kmax ¼ oð ffiffiffiffi

L
p Þ, a condition under which Eq. (13) is solved

as [20]

p⋆
ij ∼ e−θ

⋆
i −θ

⋆
j ¼ k⋆i k⋆j

2L⋆ ¼ oð1Þ; ð15Þ

where ∼ means that the quotient tends to 1. This implies
θ⋆i ∼ − lnðk⋆i =

ffiffiffiffiffiffiffiffi
2L⋆p Þ and lnð1 − p⋆

ijÞ ∼ −k⋆i k⋆j =2L⋆. Thus,

lnPcanðG⋆Þ ∼
XN
i¼1

k⋆i ln k⋆i − L⋆ lnð2L⋆Þ − L⋆: ð16Þ

Combining Eqs. (5), (12), and (16), we obtain

SðPmic∥PcanÞ ∼
XN
i¼1

ln qðk⋆i Þ

þ ðk⋆2=2k⋆Þ2 − 1

4
þ oðN−1k⋆3Þ; ð17Þ

where qðkÞ≡ k!=ðk=eÞk ≥ ffiffiffiffiffiffiffiffi
2πk

p
for k ≥ 1. Equation (11)

guarantees that the terms in the last line are oðNÞ. Denoting
a limiting average over nodes with a bar, we arrive at

s ¼ ln qðk⋆Þ ≥ ln
ffiffiffiffiffiffiffiffiffiffi
2πk⋆

p
> 0; ð18Þ

proving nonequivalence. In other words, when N → ∞,
most graphs in the canonical ensemble do not have a degree
sequence that is close to the average degree sequence.
This important result explains various recent findings, e.g.,
the fact that the canonical and microcanonical entropies of
random regular graphs are different even in the thermo-
dynamic limit [19] and that canonical fluctuations do not
vanish in networks with local constraints [13].
As a first example we consider sparse regular networks,

where every node has the same degree k⋆ ¼ oð ffiffiffiffi
N

p Þ. Then,
ln k⋆ ¼ ln k⋆, so that Eq. (18) becomes

s ≥ ln
ffiffiffiffiffiffiffiffiffiffi
2πk⋆

p
; k⋆ ¼ oð

ffiffiffiffi
N

p
Þ: ð19Þ

Note that when k⋆ grows with N, s diverges like ln k⋆,
signaling an extreme violation of equivalence.
As a second example we consider sparse scale-free

networks [25], defined by a truncated power-law degree
distribution of the form FNðkÞ≡ N−1PN

i¼1 1fki¼
kg ¼ Aγk−γ with γ ∈ ð1;∞Þ for 1 ≤ k < kcðNÞ and
FNðkÞ ¼ 0 for k ≥ kcðNÞ, where limN→∞kcðNÞ ¼ ∞ and
kcðNÞ ¼ oð ffiffiffiffi

N
p Þ. This “structural cutoff”’ [25] ensures

Eq. (11), so that Eq. (15) is valid. Approximating FNðkÞ
by a continuous distribution, we see that the normalization
of FN implies Aγ ≈ γ − 1, and so Eq. (18) leads to

s ≥ ln
ffiffiffiffiffiffiffiffiffiffi
2πk⋆

p
≈

1

2ðγ − 1Þ þ ln
ffiffiffiffiffiffi
2π

p
; ð20Þ

confirming nonequivalence. As the tail exponent γ
decreases, the degree distribution broadens and the degree
of violation of equivalence increases.
Taken together, the above examples indicate that ensem-

ble equivalence holds when there is a single global
constraint, while it is broken when there is an extensive
number of local constraints. They also indicate that graphs
with local constraints are always nonequivalent, irrespec-
tive of the breadth of the degree distribution.
Bipartite networks.—We now consider bipartite networks,

where there are two distinct sets of nodes, and links are
allowed only between the two sets. A bipartite graph G is
specified by an N ×M matrix, where N and M denote the
numbers of nodes in the two sets. For simplicity, we constrain
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the topological properties on only one set (say, the onewithN
nodes) and regard the other set as an “external environment.”
Thus, N is the size of the system and the criterion in Eq. (4)
still applies. For instance, we can think of our bipartite graph
as a collaboration network of N articles and M authors.
We may want to focus only on the properties of the set of
articles, while regarding the “external” set of authors fixed.
In particular, in the limit N → ∞, we may think of M as a
fixed number (either finite or infinite).
If we fix only the total number L of links, then the

number of microcanonical configurations is still given by
Eq. (7) and the canonical probability, defined via
HðG; θÞ ¼ θLðGÞ, is the same as in Eq. (8), where now
V ¼ NM and p⋆ ≡ e−θ

⋆
is such that hLi ¼ p⋆V ¼ L⋆. A

calculation similar to that leading to Eq. (10) shows that
s ¼ 0, proving again ensemble equivalence.

We next fix the degree sequence ~k⋆ ¼ ðk⋆1 ;…; k⋆NÞ of the
constrained set. The microcanonical configurations are

enumerated exactly as Ω ~k⋆ ¼
Q

N
i¼1

�
M
k⋆i

�
. The canonical

ensemble is defined by the Hamiltonian HðG; ~θÞ ¼ ~θ ·
~kðGÞ and is still described by Eq. (14), where

Q
i;j ¼Q

N
i¼1

Q
M
j¼1 and p⋆

ij ¼ k⋆i =M [26]. We assume that 0 <
k⋆i < M for all i to avoid either disconnected nodes or fully
connected nodes. A direct calculation yields

s ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πk⋆ð1 − k⋆=MÞ

p
ð21Þ

(where the bar again denotes a limiting average, now over
the N nodes of the constrained set), proving ensemble
nonequivalence. Note that here we have put no restriction
on kmax, apart from requiring 0 < kmax < M. Indeed, while
Eq. (18) is valid only in the sparse regime, Eq. (21) holds in
the full range of connectivity.
Irrelevance of (non)additivity.—In the physics literature

a connection has been conjectured between ensemble
nonequivalence and nonadditivity of the energy, as
induced, for instance, by long-range interactions [14].
By contrast, in our examples the only mechanism leading
to nonequivalence is the presence of an extensive number
of local constraints, irrespective of (non)additivity. To
illustrate this result, we partition the set of N nodes into
two sets V1 and V2 with N1 ¼ α1N and N2 ¼ α2N nodes,
respectively, where α1, α2 > 0 and α1 þ α2 ¼ 1. For a
given graphG, we calculate the interaction energy between

the two subsystems as HintðG; ~θÞ ¼ HðG; ~θÞ −H1ðG; ~θÞ−
H2ðG; ~θÞ, where HiðG; ~θÞ denotes the restriction of

HðG; ~θÞ to the set Vi.
In our example of unipartite graphs with the single

constraint ~C ¼ L, the interaction energy is HintðG; θÞ ¼
θ½LðGÞ − L1ðGÞ − L2ðGÞ�, where LiðGÞ is the number of
“internal” links among the nodes of Vi. Thus, HintðG; θÞ is
proportional to the number of links between V1 and V2, and
its expected value is

hHintðθÞi ¼ θ
p
2
½NðN − 1Þ − N1ðN1 − 1Þ − N2ðN2 − 1Þ�

¼ θ
p
2
N2ð1 − α21 − α22Þ ¼ θpN2α1α2; ð22Þ

where p ¼ e−θ=ð1þ e−θÞ, as in Eq. (8). In the thermody-
namic limit, the ratio of hHintðθÞi to the expected total
energy hHðθÞi ¼ θpNðN − 1Þ=2 is

lim
N→∞

hHintðθÞi
hHðθÞi ¼ 2α1α2 > 0; ð23Þ

which proves nonadditivity due to long-range interactions
[14]. A similar result holds for the configuration model.
So, unipartite networks are always nonadditive, irrespective
of whether they exhibit nonequivalence.
By contrast, our examples of bipartite networks are

always additive, irrespective of whether they exhibit (non)
equivalence. This occurs because, when partitioning the set
of N nodes (e.g., articles in our previous example), both V1

and V2 remain connected only to the M external nodes
(e.g., authors), and not among themselves. Indeed, the
Hamiltonian only couples the N nodes to the external
environment and we always get HintðG; θÞ ¼ 0.
Conclusion.—We found that (non)equivalence is deter-

mined by an entirely local criterion involving the large-
deviation behavior of microcanonical and canonical
probabilities of a single microstate rather than of almost
all microstates (as generally expected [16]). This result is
entirely general and is not restricted to networks. Moreover,
we found that the presence of an extensive number of
local constraints provides a mechanism for ensemble
nonequivalence in ensembles of graphs. While in all
examples known so far, nonequivalence was expected to
be associated with long-range interactions or nonadditivity,
in our examples (non)equivalence is only determined by the
number of constraints, irrespective of (non)additivity.
From a practical point of view, graphs with local constraints
are routinely used as null models to detect empirical
patterns or to reconstruct networks from partial information
[13,18–20,26]. So far, choosing between microcanonical
and canonical implementations [13] of these null models
has been perceived as a mere matter of convenience.
However, our findings imply that one should make a
careful and principled choice, as results obtained using
different ensembles may differ substantially. The same
considerations might extend to other ensembles of systems
with many constraints, applications of which range from
biology (e.g., conformational ensembles) to finance and
neuroscience (e.g., time series ensembles).
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