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Abstract

The representation of actions within the action-observation network is thought to rely on a distributed functional
organization. Furthermore, recent findings indicate that the action-observation network encodes not merely the observed
motor act, but rather a representation that is independent from a specific sensory modality or sensory experience. In the
present study, we wished to determine to what extent this distributed and ‘more abstract’ representation of action is truly
supramodal, i.e. shares a common coding across sensory modalities. To this aim, a pattern recognition approach was
employed to analyze neural responses in sighted and congenitally blind subjects during visual and/or auditory presentation
of hand-made actions. Multivoxel pattern analyses-based classifiers discriminated action from non-action stimuli across
sensory conditions (visual and auditory) and experimental groups (blind and sighted). Moreover, these classifiers labeled as
‘action’ the pattern of neural responses evoked during actual motor execution. Interestingly, discriminative information for
the action/non action classification was located in a bilateral, but left-prevalent, network that strongly overlaps with brain
regions known to form the action-observation network and the human mirror system. The ability to identify action features
with a multivoxel pattern analyses-based classifier in both sighted and blind individuals and independently from the
sensory modality conveying the stimuli clearly supports the hypothesis of a supramodal, distributed functional
representation of actions, mainly within the action-observation network.
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Introduction

The ability to understand others’ actions and intentions from

distinct sensory clues is central for daily social interactions. The

human mirror system (hMS), as part of a broader action-

observation network (AON [1,2]), plays a major role in this

function [3,4,5]. The hMS is activated both when individuals

perform a goal-directed action and when they observe another

individual performing the same action. For this reason, the hMS is

considered able to transform sensory information into (motor)

knowledge and, through this mechanism, to mediate understand-

ing of motor acts from others [6,7].

Recent studies have proposed that the representation of actions

within the premotor, inferior frontal, parietal and temporal regions

of the AON may be based on a distributed and overlapping

functional organization [8,9], similarly to what has already been

described for the representation of objects and sounds in other

cortical areas (e.g. [10,11,12]). Distributed brain responses in

specific subregions of the action-responsive fronto-parietal network

can be used to discriminate the content, the effectors, or even the

behavioral significance of different motor acts, when actions are

either observed or performed, or even covertly imagined

[8,9,13,14,15,16]. Therefore, various subregions within the

AON are differentially recruited to control or define specific

aspects of motor acts, and the overall response of the AON

network seems to contribute to the cross-modal visuo-motor

coding of distinct actions [13,17].

However, it is still unknown whether this distributed represen-

tation of actions is shared across sensory modalities. How do we

mentally represent ‘hammering’ when just listening to the strikes

on a nail, or ‘knocking’ when recognizing the hitting on a door?

Though originally both in monkeys and humans the mirror system

was thought to rely on visuomotor features, a neural response

within the mirror areas has been demonstrated also when simply

hearing the sound of an action [18,19,20,21,22,23,24]. Further-

more, individuals that had no previous visual experience still retain

the ability to learn actions and behaviors from others. To this

purpose, we previously showed that congenitally blind individuals

activate a premotor-temporo-parietal cortical network in response

to aurally presented actions that overlaps both with hMS areas

found in sighted subjects in response to visually and aurally

presented stimuli, and with the brain response elicited by motor
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pantomime of the same actions [25]. Altogether, these findings

indicate that the hMS, as part of the AON, codes not merely the

observed motor act, but rather a more abstract representation that

is independent from a specific sensory modality or experience

[17,26,27,28].

Nonetheless, whether the more abstract representation of action

is truly supramodal, i.e. shares a common coding across sensory

modalities, is still unknown. To this aim, we used a pattern

recognition approach to analyze neural responses in sighted and

congenitally blind individuals during visual and/or auditory

perception of a set of hand-made actions, and during the actual

motor pantomime of manipulation tasks [25].

Specifically, we used a pattern-classification approach (multi-

voxel pattern analysis - MVPA) to decode the information that is

represented in a spatially distributed pattern of activity, and to

identify as well those brain regions that significantly contribute to

the discrimination [29,30]. We first expected that an MVPA

would be able to distinguish between the neural patterns

associated with auditory and visual stimuli of actions and non-

actions using distributed patterns of response in both sighted and

blind individuals. Then, we posited that, because of the

hypothesized supramodal nature of action representation, an MVPA

would be able to classify action and non-action stimuli across the

visual and auditory modalities and across the sighted and blind

groups, and to recognize as an ‘action’ the neural patterns

associated with actual motor performances.

Materials and Methods

As described in greater details in the original report of the

present dataset [25], we used a functional magnetic resonance

imaging (fMRI) sparse sampling six-run block design to examine

neural activity in congenitally blind and sighted healthy volunteers

while they alternated between auditory presentation of hand-

executed actions or non-action environmental sounds, and

execution of a ‘virtual’ tool or object manipulation task (motor

pantomime). In the sighted group, three additional runs were

acquired during a visual version of an identical task of motor

pantomime and presentation of action or environmental movies.

Subjects
Eight blind (six female, mean age6 S.D.: 446 16 years) - seven

with congenital blindness (causes of blindness: congenital glauco-

ma, retinopathy of prematurity, and congenital optic nerve

atrophy) and one who became completely blind at age 2 years

due to congenital glaucoma and had no recollection of any visual

experience - and 14 sighted (five female, 32 6 13 years) right-

handed healthy individuals were recruited for the study. All

subjects received a medical examination, including routine blood

tests and a brain structural MRI scan to exclude any disorder that

could affect brain function and metabolism, other than blindness

in the blind group.

Ethics Statement
All participants gave their written informed consent after the

study procedures and potential risks had been explained. The

study was conducted under a protocol approved by the University

of Pisa Ethical Committee (protocol n. 1616/2003), and was

developed in accordance with the Protocol of Helsinki (2008).

Auditory Stimuli
Twenty action and ten environmental sound samples [44.1 Hz,

16 bit quantization, stereo, Free Sound Project, average mean

square power and duration normalized] were presented by a MR-

compatible pneumatic headphone system (PureSound Audio

System Wardray Premise). Speech commands for the motor

pantomime task were digitally recorded names of objects/tools to

be virtually handled, and a beep sound after 10 s signaled the

subject to stop executing the action. Both sounds and speech

commands lasted for 10 s.

Visual Stimuli
Ten second long movies of action and environmental scenes

were presented on a rear projection screen viewed through

a mirror (visual field: 25u wide and 20u high). Motor commands

were triggered by words. Each action showed images of the action

being performed by the right hand of an actor viewed from a third

person perspective.

Image Acquisition and Experimental Task
Gradient echo echoplanar (GRE-EPI) images were acquired

with a 1.5 Tesla scanner (Signa General Electric). A scan cycle was

composed of 5-mm-thick 21 axial slices (FOV=24 cm,

TE=40 ms, FA= 90, 1286128 pixels) collected in 2,500 ms

followed by a silent gap of 2,500 ms (sparse sampling). We

obtained six time series of 65 brain volumes while each subject

listened to sounds, and three time series while the sighted

volunteers only looked at movies. Stimuli were randomly

presented with an interstimulus interval of 5 s. Each time series

began and ended with 15 s of no stimuli.

During the auditory scanning sessions, volunteers were asked to

listen to and recognize sounds while keeping their eyes closed, and

also to execute the motor pantomimes when randomly prompted

by a human voice command naming a specific tool. During the

visual sessions, volunteers were asked to look at movies, and to

execute the motor pantomimes when prompted by words. Sensory

modality (auditory or visual) was constant for each time series, but

auditory and visual runs were alternated in randomized order

across sighted subjects. Fifteen stimuli were presented in each time

series (equally distributed across stimulus classes) and randomly

intermixed with five target pantomime commands. Stimulus

presentation was handled by using the software package Pre-

sentationH (http://www.neurobs.com). High-resolution T1-

weighted spoiled gradient recall images were obtained for each

subject to provide detailed brain anatomy.

MultiVoxel Pattern Analysis
We used the AFNI package (http://afni.nimh.nih.gov/afni -

[31] and related software plug-ins for data preprocessing and the

BrainVISA/Anatomist package (http://brainvisa.info) for visual

rendering of functional imaging data. After standard preprocessing

(the different runs were concatenated, co-registered, temporally

aligned, and spatially smoothed with an isotropic Gaussian filter,

s=2.5 mm) [25], the BOLD response magnitude to each stimulus

was modeled with a separate regressor in a deconvolution analysis,

and calculated by averaging the b-weights of the second, third and

fourth volumes of each gamma impulsive response. The decision

to use b estimates instead of the less noisy response-amplitude

estimate t-values [32] was based on our intention to test

classification performances across different stimulus categories

whose b and standard error estimates may diverge, and thus result

to be more sensitive to differences. The response patterns of each

stimulus were transformed into the Talairach and Tournoux Atlas

[33], and resampled into isometric 2 mm voxels for group analysis.

A template included in the AFNI distribution (the ‘Colin’ brain

[34] was used to select cortical voxels.

Furthermore, all the response magnitudes to each stimulus were

scaled from 21 to +1, using a hyperbolic tangent, to generate
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input vectors for the Support Vector Machine (SVM) classifiers

[35,36]. The software ‘SVMlight’ [37] was used to implement the

SVM classifiers. Linear SVM classifiers were trained with a small,

fixed, data-driven regularization parameter (see [37] for further

details), to avoid overfitting the data during the training phase (i.e.

soft margin SVM).

Three distinct linear binary classifiers were built in order to

separate the patterns of neural response to action and non-action

stimuli across the different experimental conditions, that is in blind

(sounds only) and sighted (sounds and videos) individuals. Due to

the imbalanced numbers of stimuli across the experimental

conditions in the sighted group, non-action sounds (n = 10) and

videos (n = 11) were randomly upsampled (doubled) to match the

size of the action sound set (n = 20), while action videos (n = 23)

were randomly downsampled to match the number of action

sounds. This choice of combining up-/down-sampling technique

with linear SVM has been already considered robust and effective

on the predictive performance of learned classifier [38]. Accord-

ingly, the resulting matrix to be classified was made of 560

examples across all sighted individuals (280 non-action stimuli and

280 action stimuli, as resulting from 20 action and non-action

stimuli for 14 subjects) for each classifier, and 320 examples

(160 non action stimuli and 160 action stimuli, as resulting from

20 stimuli for 8 subjects) across congenitally blind individuals. In

addition, we included 280 examples of motor pantomimes from

sighted subjects (140 during the auditory sessions, 140 during the

visual sessions for 14 subjects) and 80 examples of motor

pantomimes from blind subjects (80 during the auditory sessions,

for 8 subjects) for testing the capability of our SVM classifiers to

identify the motor gestures as ‘actions’, in accordance with the

‘mirror’ rationale of a brain network responding both to action

recognition and action real performance. On a general basis,

decoding techniques require a high number of examples/stimuli

(action and environmental sounds) as compared to the usually high

dimensionality of the feature/voxel space [39]. The relative

limited number of stimuli in our experiment does not allow here to

combine a whole brain approach (taking into account all the

distributed information across the cortex) and a single subject

decoding. Thus, the whole dataset of examples was used for an

across-subjects classification. This procedure strongly relies on

commonalities across the individual patterns of responses in

accordance with the aims of the analysis to evaluate action/non

action representations across the visual and auditory modalities

and across the sighted and blind individuals.

In order to select only those voxels strongly related to the

discrimination, we built a procedure combining 4-fold nested

cross-validation - NCV [29] and a Recursive Feature Elimination

algorithm – RFE [40] to recursively prune irrelevant voxels based

on their discrimination ability, and to avoid overfitting in model

selection [41]. According to the NCV procedure, the stimuli were

first divided in four subsets and each fold was tested using one

subset after being trained on the other ones. Each RFE iteration of

each fold consisted of several steps and generated a specific feature

set. Initially, the classifiers were trained with the examples assigned

to the fold. The mean of all feature weights of the support vectors

was estimated during training. Further, the absolute values of the

weight vectors were calculated, and the 2% of the features with the

lowest weights were then discarded. A cluster correction with an

arbitrary minimum cluster size of 150 voxels (1,200 mL), nearest-
neighbor, was performed to remove small, isolated clusters and to

reduce the total numbers of iterations. Finally, a discriminative

map was obtained by mapping the weights vector onto the

Talairach and Tournoux Atlas. This procedure was iterated until

all the features/voxels were discarded. For each iteration, an

accuracy performance was computed on the testing set of the fold.

Then, comparing the accuracies from all folds and RFE iterations,

the best feature sets for the three classifiers of the same fold were

selected based on their highest mean accuracy [29,40,41].

Potential drawbacks of the application of SVM and RFE subsist

both in the choice of the number of voxels to be discarded at each

iteration, and in the presence of outliers in the data sample that

could lead to suboptimal selection of voxels [42,43]. To mitigate

such possibilities, we used a computational expensive RFE

algorithm with a relative low number of discarded voxels, and

a normalization of data to diminish the role of outliers,

respectively. Moreover, this procedure that combine RFE and 4-

fold NCV, generated 4 above chance classifiers that rely on

different sets of features/voxels across the three experimental

conditions (blind - sounds only - and sighted - sounds and videos-).

The accuracy of the best fold and the mean accuracy (6S.D.) of all

folds were reported. All subsequent analyses, as described below,

were indeed limited to the three classifiers (and their features/

voxels) of the best fold.

When the three best classifiers were extracted with the RFE

algorithm (action vs. non-action stimuli in blind - sounds only -

and sighted - sounds and videos - subjects), our classifiers were

tested with the motor pantomime examples to confirm the

capability to identify the motor execution of virtual gestures as

‘actions’. In addition, to prove the hypothesis of a more abstract

representation of action features, an evaluation across stimulus

categories and experimental groups was performed.

To examine the degree of overlap in information across the

different sensory modalities/groups and to identify those brain

areas contributing to the supramodal representation of actions,

using the RFE procedure, we built a common ‘supramodal’ SVM

classifier using the training data from all stimulus classes of the best

fold. Moreover, the discriminative map of this supramodal

classifier was employed in a ‘knock-out’ procedure [44]. First,

we created a mask defining the discriminative voxels of the

supramodal classifier - ‘knock-out’ mask. This ‘knock-out’ voxels

were then removed from the three best discriminative maps and

the potential changes (reductions) in the accuracy of our three

classifiers were determined. Subsequently, restricting our volume

of interest to this ‘knock-out’ map only, we built again three

distinct linear SVM classifiers to separate action vs. non-action

stimuli and to estimate the potential changes (increases) in

classification performances related to this set of voxels within

and across experimental conditions.

The classifier accuracy values were tested as significantly

different from chance with a permutation test (n = 500), randomly

changing the labels of examples during the training phase, to avoid

biased performance evaluation related to the oversampled non-

action stimuli and the different nature of the experimental stimuli

(i.e. sounds, videos, and motor pantomime) [29]. Furthermore,

differences in within group accuracy estimates of the original SVM

classifier when considering the whole discrimination map (Table 1)

vs. when excluding the knock-out voxels (Table 2-B) were assessed

separately with a non-parametric Wilcoxon signed-rank test [29].

These differences were then aggregated across comparisons with

the Fisher’s method [45].

Results

MVPA Discrimination of Action and Non-action Stimuli by
using Sensory Modality- and Group-specific Classifiers
within Condition
In the MVPA, the SVM classifiers that had been trained

separately for each group (sighted and blind individuals) and for
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each sensory modality (auditory and visual) were able to

discriminate action from non action stimuli with a accuracy

ranging from 75.7% to 80.7% (mean accuracy6S.D. across

folders: sighted group, SVM classifier trained on visual stimu-

li = 76.660.04%; SVM classifier trained on auditory stimu-

li = 72.160.03%; blind group, SVM classifier trained on auditory

stimuli = 74.460.05%) (Table 1-A).

The discrimination maps for each SVM classifier are shown in

Figure 1. Middle and inferior frontal, premotor, inferior and

superior parietal and middle/superior temporal regions, pre-

dominantly in the left hemisphere, provided the most relevant

information for stimuli classification. Furthermore, specific differ-

ences in the discrimination maps were visible among different

experimental conditions, and additional discriminative voxels were

found in bilateral striate and extrastriate regions, dorsolateral and

medial prefrontal cortex, anterior cingulate, and precuneus.

MVPA Discrimination of Action and Non-action Stimuli by
using Sensory Modality- and Group-specific Classifiers
Across Conditions and Groups
The across-condition and across-group evaluation showed that

the SVM-classifier trained within condition did not reach

a significant discrimination accuracy between action vs. environ-

mental stimuli (Table 1-A).

MVPA Discrimination of Action and Non-action Stimuli by
using a Combined ‘Supramodal’ Classifier and the ‘‘Knock
out’’ Approach
To test the more abstract representation of action feature, we

defined a combined supramodal classifier and used a ‘‘knock out’’

procedure to examine the degree of overlap in information

between the representations of actions across the different

experimental conditions and groups.

The combined supramodal classifier was able to recognize the

action feature with an overall accuracy of 66.7% (p-value , 0.005

at permutation test). Within its discriminative map, we identified

voxels that were mainly located in AON areas [2], such as the left

superior parietal, right inferior parietal, bilateral ventral and right

dorsal premotor area, bilateral middle/superior temporal cortex

(Figure 2, Table 2). Additional common voxels were found in

bilateral striate and extrastriate, dorsolateral and medial prefrontal

cortex, anterior cingulate, bilateral precuneus and posterior

cingulate cortex.

The ‘‘knock out’’ procedure, that is, the exclusion of the

discriminative areas defined by the supramodal classifier from the

three best discriminative maps, resulted in a significantly decreased

accuracy as compared to the original within-category discrimina-

tions for the SVM classifiers in both sighted and blind individuals

(p,0.05, Wilcoxon signed-rank test and Fisher’s method), though

they were still able to perform a significant within-category

discrimination (Table 1-B). Still, no across condition/group

discrimination resulted significant (Table 1-B).

In contrast, when relying just on these supramodal voxels, all

three SVM classifiers were able to reach a significant within-

category discrimination, and the across experimental condition/

group discriminations showed significant accuracies (Table 1-C).

In details, the visual SVM classifier showed significant accuracy in

classifying auditory stimuli sessions in sighted and blind subjects.

Also the auditory SVM classifiers trained in sighted and blind

individuals correctly performed an action vs. non action discrim-

ination across stimuli categories (i.e. sensory modality) and

experimental groups, with the only exception of visual stimuli

for the auditory SVM classifier trained in blind individuals

(Table 1-C).

Discrimination of Motor Pantomimes
As detailed in Table 3-A, in a whole brain approach, the SVM

classifier trained on visual stimuli for the sighted group was

significantly able to recognize as ‘actions’ the motor pantomimes

in sighted individuals with a high accuracy of discrimination

(85.3%). At a more conservative level, none of the auditory SVM

classifiers as trained in either sighted or blind individuals were able

to recognize as ‘actions’ the motor pantomimes in sighted

individuals; in addition, none of the classifiers were able to

significantly recognize as ‘actions’ the neural patterns of motor

Table 1. Accuracy of each SVM classifiers in a within- and across-experimental condition evaluation.

Sighted Blind

SVM classifier trained
on visual stimuli

SVM classifier trained on auditory
stimuli

SVM classifier trained on auditory
stimuli

A. Whole brain

Sighted Visual 80.7%*** n.s. n.s.

Auditory n.s. 75.7%*** n.s.

Blind Auditory n.s. n.s. 76.2%***

B. After excluding the knock-out map

Sighted Visual 77.1%*** n.s. n.s.

Auditory n.s. 74.3%*** n.s.

Blind Auditory n.s. n.s. 73.7%***

C. By restricting to the knock-out supramodal map

Sighted Visual 73.6%*** 61.1%** n.s.

Auditory 59.6%* 67.1%*** 57.7%*

Blind Auditory 60.3%** 61.5%** 70.0%***

***p-value , 0.005,
**p-value , 0.01,
*p-value , 0.05 at permutation test.
doi:10.1371/journal.pone.0058632.t001
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pantomime in the blind individuals. In addition, the neural

responses during motor pantomime performance were still

recognized as ‘actions’ by both the visual and the auditory SVM

classifiers of sighted individuals when limiting to the discrimination

Figure 1. Discriminative maps of the three distinct linear binary SVM classifiers to separate action (red scale) from non-action (blue
scale) stimuli in sighted (sounds and videos) and blind (sounds only) subjects, as obtained by using a RFE algorithm. Color intensity
reflects the weights of the support vectors, after transformation into Z scores. Spatially normalized volumes are projected a single-subject inflated pial
surface template in the Talairach-Tournoux standard space. Ventral and dorsal areas of the premotor cortex (vPM e dPM), inferior frontal (IF) cortex,
superior and middle temporal gyri (ST/MT), superior (SPL) and inferior parietal lobule (IPL).
doi:10.1371/journal.pone.0058632.g001

Figure 2. Map of the combined ‘supramodal’ SVM classifier that was defined by using the training data from all action (red scale)
and non-action (blue scale) stimuli classes, and was employed in a ‘knock-out’ procedure. Spatially normalized volumes are projected
onto a single-subject inflated pial surface template in the Talairach-Tournoux standard space. Ventral and dorsal areas of the premotor cortex (vPM e
dPM), inferior frontal (IF) cortex, superior and middle temporal gyri (ST/MT), superior (SPL) and inferior parietal lobule (IPL).
doi:10.1371/journal.pone.0058632.g002
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map of the supramodal classifier (Table 3-B), further indicating

that these functional overlapping voxels mainly contribute to the

representation of motor acts. When volume of interest was

restricted to the discrimination map of the supramodal classifier

(Table 3-C), only the SVM classifier trained on the visual stimuli in

sighted individual was significantly able to classify the neural

responses during motor pantomime performances in sighted

individuals.

On the other hand, when using a less conservative approach

with a binomial test, both SVM classifiers trained on auditory

stimuli of sighted and blind individuals were able to recognize as

‘actions’ the motor pantomimes in a whole brain discrimination

(Table 3-A), worsened their accuracy performance after excluding

the knock-out map (Table 3-B), and improved when limiting to the

discrimination map of the supramodal classifier (Table 3-C).

Finally, the combined supramodal classifier was able to

recognize as ‘actions’ the motor pantomimes both on visual

stimuli (accuracy 85.3%, p-value , 0.005 at permutation test) and

on auditory stimuli (accuracy 76.8%, p-value , 0.05 at

permutation test) in sighted individuals.

Discussion

Here we used a multivariate pattern recognition method to

distinguish neural responses in congenitally blind and sighted

participants during the visual and auditory perception of a set of

hand-made action and environmental stimuli, to test the

hypothesis that motor acts are represented in a distributed and

truly supramodal fashion. In a ‘classical’ univariate analysis of the

same functional dataset, we had previously shown that blind

individuals activate a premotor-temporo-parietal network that

subserves a ‘mirror’ response to aurally presented actions, and that

such a network overlaps with the hMS, as part of the AON, found

in sighted individuals in response to both visually and aurally

presented stimuli [25]. However, we did not assessed whether this

‘more abstract’ representation of action is truly supramodal, i.e.

shares a common coding across visual and auditory sensory

modalities. Recently, MVPA has been employed to study the

representation of different categories of stimuli within the same

perceptual modality [29,30]. In this study, for the first time, an

MVPA specifically evaluated the representation of the same

stimulus category (action) within and across different sensory

modalities (visual, auditory or motor) and experimental groups

(sighted and congenitally blind).

Action Discrimination by using Sensory Modality- and
Group-specific Classifiers within Condition
Single MVPA-based classifiers, trained separately for each

experimental condition and group, were able to significantly

Table 2. Brain regions obtained with a ‘‘knock out’’
procedure to examine the degree of overlap in information
between the representations of different experimental
conditions/groups.

Brain areas Coordinates

Hem BA x y z

Superior Frontal R 10 5 63 22

L 6 27 21 64

Middle Frontal R 6 25 23 58

Inferior Frontal R 44 45 9 28

Anterior Cingulate R 24 5 17 20

Postcentral L 3 227 233 42

L 3 235 231 52

Superior Parietal L 7 225 265 62

Inferior Parietal R 40 55 243 28

L 40 243 233 46

Superior Temporal R 38 41 7 218

L 22 245 29 26

Middle Temporal R 21 55 235 4

Fusiform R 19 38 269 216

L 37 245 261 218

Parahippocampal L 28 228 26 220

Cuneus R 17 9 287 6

Middle Occipital L 19 239 273 8

doi:10.1371/journal.pone.0058632.t002

Table 3. Accuracy of each SVM classifiers in recognizing motor pantomime as ‘action’.

Sighted Blind

SVM classifier trained on visual stimuli SVM classifier trained on auditory stimuli SVM classifier trained on auditory stimuli

A. Whole brain discrimination

Sighted 85.3%*** 73.9%* 53.2%*

Blind 60%* 65%* 61.2%*

B. After excluding the knock-out map

84.3%*** 71.7%* 46.4%

57.5%* 63.7%* 65%*

C. By restricting to the knock-out map

Sighted 85.3%*** 76.8%** 67.5%*

Blind 70%* 52.5% 61.5%*

avisual and auditory runs have been considered together.
***p-value , 0.005,
**p-value , 0.05 at permutation test;
*p-value , 0.05 at the binomial test.
doi:10.1371/journal.pone.0058632.t003
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discriminate action from non action stimuli within condition.

These observations in sighted and congenitally blind individuals

using visual and auditory stimuli showed for the first time that

sounds can be successfully used to distinguish neural responses to

action as compared to environmental stimuli, and expand previous

functional studies that explored the distributed and overlapping

representation of visually-presented motor acts using MVPA-based

approaches [8,9,13,14,15,16].

As a matter of facts, distributed activity in left and right anterior

intraparietal cortex has been previously used to discriminate the

content of three different motor acts (‘rock-paper-scissors’ game),

when these actions were either observed or performed [9]. Action-

dedicated regions were also described in lateral occipito-temporal

and left postcentral/anterior parietal cortex: the postcentral area

carries distributed information about the effectors used to perform

the action, while parietal regions about the action goal [8].

Similarly, while viewing videos of different motor acts, distributed

action representations can be clustered according to the specific

relationship between agent and object (i.e. their behavioral

significance) in the inferior parietal cortex, or according to the

effector (foot, hand, mouth) used to perform the action in the

premotor cortex [13], although both effector-dependent and

effector independent representations have been shown coexist in

this inferior frontal and precentral region [46].

In our study, the discrimination maps of the three classifiers

(Figure 1) identified the most relevant information about ‘action

feature’ as primarily located in a distributed and bilateral, though

left prevalent, prefrontal, premotor, parietal and temporal circuit.

This network of discrimination of action from non action stimuli

mainly included brain regions within the hMS-related action

recognition network [2], as the inferior and superior parietal,

intraparietal, dorsal and ventral premotor, and inferior frontal

areas.

Nonetheless, specific differences across sensory conditions and

groups also were present. For instance, in sighted subjects the

classifier trained on auditory stimuli relied more on right inferior

frontal regions while homologous left areas contributed more to

visual action recognition. This may suggest that the features that

can be extracted by MVPA may not be directly linked to action per

se, but rather be related to other physical/semantic attributes of

the stimuli (e.g. dynamicity, imageability, conveying modality,

onset time, etc. – for a detailed list of stimuli, refer to [25] or to

their specific contents (presence/absence of manipulable objects,

presence/absence of living/non living entities, etc.), and thus be

processed across different brain areas [29,30,47]. Furthermore, we

cannot exclude that the discriminative maps for each experimental

condition might have been influenced by stimulus-specific

differences in the switch from resting activity to task-associated

response, due to a different Default-Mode Network (DMN)

recruitment by the two stimulus classes. Nonetheless, when

observing brain regions involved in the discrimination of stimuli,

no specific DMN regions appear to consistently contribute to

action vs. environmental stimulus classification. In addition, the

current experimental setup could hardly induce DMN-related self-

oriented or introspective activities.

Each action was carefully chosen to be as different from the

others as possible, and distinct sets of actions were selected for the

visual, auditory and motor pantomime conditions. In addition, our

subsequent analyses aimed at determining action coding across

different sensory modalities (visual, auditory or motor) and

experimental groups, thus enhancing the common features of

action representation and limiting any possible confounds related

to stimuli selection. Even so, a protocol for a MVPA approach

would have benefit from better-selected control or baseline

conditions, and balanced/matched stimuli across classes to

modulate for a wider gamut of features.

Action Discrimination by using Both Sensory Modality-
and Group-specific Classifiers Across Conditions/groups
and a Combined ‘Supramodal’ Classifier
To what extent are the distributed representations of actions

related to the specific sensory modality used for action perception?

First, to validate the degree of overlap in information across the

experimentalconditions (i.e.,visualorauditorymodality)andgroups,

the classifiers that had been trained on each single experimental

condition were employed in an across sensorymodalities and groups

evaluation. The three classifiers (i.e., visual stimuli in sighted

individuals, auditory stimuli in sighted and in blind subjects) were

unable todiscriminate theactionfeaturesacrossconditionsorgroups.

This confirms our previous consideration that specific differences in

the features that are ‘employed’ by the single classifiers across sensory

conditions and groups were present.

Second, the same pattern recognition approach was applied

across experimental conditions to define a combined classifier.

Indeed, accordingly to our hypothesis of a more abstract

representation of actions, this classifier was able to discriminate

significantly action stimuli, independently from both the sensory

modality conveying the information and the experimental group.

The brain areas belonging to the AON - specifically superior and

inferior parietal, ventral and right dorsal premotor, middle/

superior temporal areas - primarily contributed to this discrimi-

nation ability.

Third, this hMS-based supramodal network was then utilized in

a ‘knock-out’ procedure [44]. We reasoned that if these common

voxels of the combined classifier retain a more abstract functional

representation of actions, then their subtraction from the distinct

linear binary classifiers should results in a significantly diminished

accuracy in separating action vs. non-action stimuli. Conversely, if

thisnetworkretainsa reliable representationofactions,when limiting

only to the supramodal common areas, the distinct classifiers should

both maintain significant discrimination accuracies within experi-

mental conditions (comparable with the accuracy levels of the whole

brain classification), and have a greater accuracy to recognize action

stimuli across experimental conditions.

As expected, the removal of functional overlapping voxels

significantly decreased the within-condition discrimination accu-

racy of the classifiers that had been trained on each single

condition, as compared to the original classification performance.

On the other hand, when extracting the common representation

of actions, the classifiers both maintained a significant within-

condition discrimination accuracy and improved accuracies

across-conditions. Both the classifiers trained on visual and

auditory stimuli in sighted individuals and the classifier trained

in blind individuals showed a significant across conditions/groups

discrimination of action vs. non action stimuli. Once more, the

value of the combined classifier and the ‘‘knock-out’’ procedure in

enhancing the characterization of the supramodal representation

of actions relies on the possibility to identify those common brain

regions that contribute to discriminate action from non-action

perception across the different experimental conditions, indepen-

dently from the specific features that could drive stimuli separation

within a single sensory modality.

Motor Pantomimes Distinguished as Actions
In line with the ‘mirror rationale’ that the distributed and

supramodal representation of actions should retain substantial

information during both action recognition and performance, we
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also tested whether patterns of neural response for actual motor

performance were recognized as ‘actions’ from a specific MVPA-

based classifiers. Since our test set was unbalanced, as the SVM

classifiers were used to recognize ‘actions’ in motor pantomimes

but with no alternative control conditions, we applied a more

conservative correction, in order to limit false positive results.

In a whole brain approach, only the visual classifiers of sighted

participants was significantly able to recognize as an ‘action’ the

patterns of neural response to motor pantomimes in sighted

individuals but not in the blind ones. Interestingly, this greater

discrimination ability of the classifier trained on visual stimuli in

sighted individuals across the different analyses may be related to

the somehow prevalent visuomotor nature of the hMS itself, as

shown by the stronger and more extended unimodal visual

response of this action-specific network (Gazzola et al., 2006;

Ricciardi et al., 2009). This discrimination ability became slightly

smaller when excluding the ‘knock-out’ supramodal map, and,

conversely, remained equally accurate when the classification was

restricted to the ‘knock-out’ supramodal map. In addition, when

restricting to the supramodal map also the auditory classifiers from

sighted participants were significantly able to recognize motor acts.

In addition, when using a less conservative approach, both

SVM classifiers trained on auditory stimuli of sighted and blind

individuals were also able to recognize as ‘actions’ the motor

pantomimes. In line with the observations with the visual classifiers

of sighted participants, this discrimination ability became smaller

or greater when excluding or restricting to, respectively, the

‘knock-out’ supramodal map.

Interestingly, the classification accuracies of the three SVM

classifiers trained on either visual or auditory stimuli in sighted and

blind individuals resulted the highest when restricted to the ‘knock-

out’ supramodal map, thus further supporting a more abstract

functional representation of motor acts in these regions belonging

to the AON. Consistently, motor pantomimes were correctly

classified by the combined supramodal classifier for visual and

auditory stimuli in sighted individuals.

Conclusions
The present study demonstrates for the first time that a MVPA

can be used successfully to discriminate functional representations

(of actions) in both sighted and blind individuals. The ability to

identify (action) features across sensory modalities and experimen-

tal groups supports the hypothesis of a distributed and truly

supramodal functional representation of actions within the brain

areas of the hMS, and leads to two main considerations.

First, these results are consistent with previous functional studies

in both sighted and congenitally blind individuals that have shown

the existence of supramodal networks able to process external

information regardless of the sensory modality through which the

information is acquired [12,27,28]. Homologies do not only limit

to the spatial localization of the patterns of neural activations, but

mainly involve the content (i.e. action or non action) of the neural

responses: for instance, overlapping category-related patterns of

response across sensory modalities have been found in both sighted

and congenitally blind individuals (Mahon et al., 2009; Pietrini et

al., 2004b). Applied to the assessment of supramodal functional

organization, pattern recognition approaches have been employed

here to classify neural responses across experimental samples (i.e.,

congenitally blind and sighted individuals) and sensory modalities,

and consequently to localize those cortical regions that functionally

contribute to a supramodal representation.

Second, this more abstract functional organization enables

congenitally blind individuals to acquire knowledge about different

perceptual, cognitive and affective aspects of an external world

that they have never seen [12,27,28]. The demonstration of a more

abstract, sensory independent representation of actions within the

hMS supports the rationale of a cognitive system that might play

a major role not only in action recognition and intention

understanding, but also in learning by imitation, empathy, and

language development [7,17].
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