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In order to estimate the memory parameter of Internet traffic data, it has been recently proposed
a log-regression estimator based on the so-called modified Allan variance (MAVAR). Simulations
have shown that this estimator achieves higher accuracy and better confidence when compared
with other methods. In this paper we present a rigorous study of the MAVAR log-regression
estimator. In particular, under the assumption that the signal process is a fractional Brownian
motion, we prove that it is consistent and asymptotically normally distributed. Finally, we discuss
its connection with the wavelets estimators.

1. Introduction

It is well known that different kinds of real data (hydrology, telecommunication networks,
economics, and biology) display self-similarity and long-range dependence (LRD) on
various time scales. By self-similarity we refer to the property that a dilated portion of a
realization has the same statistical characterization as the original realization. This can be
well represented by a self-similar random process with a given scaling exponent H (Hurst
parameter). The long-range dependence, also called long memory, emphasizes the long-range
time correlation between past and future observations and it is thus commonly equated to an
asymptotic power law behaviour of the spectral density at low frequencies or, equivalently,
to an asymptotic power-law decrease of the autocovariance function, of a given stationary
random process. In this situation, the memory parameter of the process is given by the
exponent d characterizing the power law of the spectral density. (For a review of historical
and statistical aspects of the self-similarity and the long memory see [1].)
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Though a self-similar process cannot be stationary (and thus nor LRD), these two
properties are often related in the following sense. Under the hypothesis that a self-similar
process has stationary (or weakly stationary) increments, the scaling parameter H enters in
the description of the spectral density and covariance function of the increments, providing
an asymptotic power law with exponent d = 2H − 1. Under this assumption, we can say that
the self-similarity of the process reflects on the long-range dependence of its increments. The
most paradigmatic example of this connection is provided by the fractional Brownian motion
and by its increment process, the fractional Gaussian noise [2].

In this paper we will consider the problem of estimating the Hurst parameter H of
a self-similar process with weakly stationary increments. Among the different techniques
introduced in the literature, we will focus on a method based on the log-regression of the
so-called modified Allan variance (MAVAR). The MAVAR is a well-known time-domain
quantity generalizing the classic Allan variance [3, 4], which has been proposed for the first
time as a traffic analysis tool in [5]. In a series of paper [5–7], its performance has been
evaluated by simulation and comparison with the real IP traffic. These works have pointed
out the high accuracy of the method in estimating the parameter H and have shown that it
achieves better confidence if compared with the well-established wavelet log-diagram.

The aim of the present work is to substantiate and enrich these results from the
theoretical point of view, studying the rate of convergence of the estimator toward the
memory parameter. In particular, our goal is to provide the limit properties and the precise
asymptotic normality of the MAVAR log-regression estimator in order to compute the related
asymptotic confidence intervals. This will be reached under the assumption that the signal
process is a fractional Brownian motion. Although this hypothesis may look restrictive
(indeed this estimator is designed for a larger class of stochastic processes), the obtained
results are a first step toward the mathematical study of the MAVAR log-regression estimator.
To our knowledge, there are no similar results in the literature. The present paper also
provides the theoretical foundations (mathematical details and proofs) for [8]. Indeed the
formulas analytically obtained here have been implemented and numerically tested in [8] for
different choices of the regressionweights and it has been shown that the numerical evidences
are in good agreement with the theoretical results proven here.

For a survey on Hurst parameter estimators of a fractional Brownian motion, we refer
to [9, 10]. However we stress once again that the MAVAR-estimator is not specifically a target
for the fractional Brownian motion, but it has been thought and successfully used for more
general processes.

Our theorems can be viewed as a counterpart of the already established results
concerning the asymptotic normality of the wavelet log-regression estimators [11–13].
Indeed, although the MAVAR can be related in some sense to a suitable Haar-type wavelets
family (see [14] for the classical Allan variance), the MAVAR and wavelets log-regression
estimators do not match as the regression runs on different parameters (see Section 5). Hence,
we adopt a different argument which in turns allows us to avoid some technical troubles due
to the poor regularity of the Haar-type functions.

The paper is organized as follows. In Section 2we recall the properties of self-similarity
and long-range dependence for stochastic processes and the definition of fractional Brownian
motion; in Section 3 we introduce the MAVAR and its estimator, with their main properties;
in Section 4 we state and prove the main results concerning the asymptotic normality of the
estimator; in Section 5 we make some comments on the link between the MAVAR and the
wavelet estimators and on the modified Hadamard variance, which is a generalization of the
MAVAR; in the Appendix we recall some results used along the proof.
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2. Self-Similarity and Long-Range Dependence

In the sequel we consider a centered real-valued stochastic processX = {X(t), t ∈ R}, that can
be interpreted as the signal process. Sometimes it is also useful to consider the τ-increment of
the process X, which is defined, for every τ > 0 and t ∈ R, as

Yτ(t) =
X(t + τ) −X(t)

τ
. (2.1)

In order to reproduce the behavior of the real data, it is commonly assumed that X
satisfies one of the two following properties: (i) self-similarity; (ii) long range dependence.

(i) The self-similarity of a centered real-valued stochastic process X, starting from zero,
refers to the existence of a parameterH ∈ (0, 1), calledHurst index or Hurst parameter
of the process, such that, for all a > 0, it holds

{X(t), t ∈ R} d=
{
a−HX(at), t ∈ R

}
. (2.2)

In this case we say that X is anH-self-similar process.

(ii) We first recall that a centered real-valued stochastic process X is weakly stationary if
it is square integrable and its autocovariance function, CX(t, s) := Cov(X(t), X(s)),
is a translation invariant, namely, if

CX(t, s) = CX(t + r, s + r), ∀t, s, r ∈ R. (2.3)

In this case we also set RX(t) := CX(t, 0). If X is a weakly stationary process, we say
that it displays a long-range dependence, or long memory, if there exists d ∈ (0, 1) such
that the spectral density of the process, fX(λ), satisfies the condition

fX(λ) ∼ cf |λ|−d as λ −→ 0, (2.4)

for some finite constant cf /= 0, where we write f(x) ∼ g(x) as x → x0, if
limx→x0(f(x)/g(x)) = 1. Due to the correspondence between the spectral density
and the autocovariance function, given by

RX(t) =
1
2π

∫

R

eitλfX(λ) dλ, (2.5)

the long-range condition (2.4) can be often stated in terms of the autocovariance of
the process as

RX(t) ∼ cR|t|−β as |t| −→ +∞, (2.6)

for β = (1 − d) ∈ (0, 1) and some finite constant cR /= 0.
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Notice that if X is a self-similar process, then it obviously cannot be weakly stationary.
On the other hand, assuming that X starts from zero and it is as H-self-similar process with
weakly stationary increments, that is, the quantity

E[(X(τ2 + s + t) −X(s + t))(X(τ1 + s) −X(s))] (2.7)

does not depend on s, it turns out that the autocovariance function is given by

CX(s, t) =
σ2
H

2

(
|t|2H − |t − s|2H + |s|2H

)
, (2.8)

with σ2
H := E[X2(1)], which is clearly not a translation invariant. Consequently, denoting by

Yτ its τ-increment process (see (2.1)), the autocovariance function of Yτ is such that ([15])

RYτ (t) ∼ σ2
HH(2H − 1)|t|2H−2 as |t| −→ +∞. (2.9)

In particular, if H ∈ (1/2, 1), the process Yτ displays a long-range dependence in the sense
of (2.6) with β = 2 − 2H. Under this assumption, we thus embrace the two main empirical
properties of a wide collection of real data.

A basic example of the connection between self-similarity and long-range dependence
is provided by the fractional Brownian motion BH = {BH(t), t ∈ R} [2]. This is a centered
Gaussian process, starting from zero, with autocovariance function given by (2.8), where [16]

σ2
H =

1
Γ(2H + 1) sin(πH)

. (2.10)

It can be proven that BH is a self-similar process with Hurst index H ∈ (0, 1), which
corresponds, forH = 1/2, to the standard Brownian motion. Moreover, its increment process

Gτ,H(t) =
BH(t + τ) − BH(t)

τ
, (2.11)

called fractional Gaussian noise, turns out to be a weakly stationary Gaussian process [2, 17].
In the next sections we will perform the analysis of the modified Allan variance and

of the related estimator of the memory parameter.

3. The Modified Allan Variance

In this section we introduce and recall the main properties of the modified Allan variance
(MAVAR) and of the log-regression estimator of the memory parameter based on it.

Suppose that X is a centered real-valued stochastic process, starting from zero, with
weakly stationary increments. Let τ0 > 0 be the “sampling period” and define the sequence
of times {tk}k≥1 taking t1 ∈ R and setting ti − ti−1 = τ0, that is, ti = t1 + τ0(i − 1).
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Definition 3.1. For any fixed integer p ≥ 1, the modified Allan variance (MAVAR) is defined
[3] as

σ2
p = σ2(τ0, p

)
:=

1
2τ20p

2
E

⎡
⎢⎣
⎛
⎝1
p

p∑
j=1

X
(
tj+2p
) − 2X

(
tj+p
)
+X
(
tj
)
⎞
⎠

2
⎤
⎥⎦

=
1
2τ2

E

⎡
⎢⎣
⎛
⎝1
p

p∑
j=1

X
(
tj + 2τ

) − 2X
(
tj + τ

)
+X
(
tj
)
⎞
⎠

2
⎤
⎥⎦,

(3.1)

where we set τ := τ0p. For p = 1 we recover the well-known Allan variance.

Let us assume that a finite sample X1, . . . , Xn of the process X is given, and that the
observations are taken at times t1, . . . , tn. In other words we set Xi = X(ti) for i = 1, . . . , n.

A standard estimator for the modified Allan variance (MAVAR estimator) is given by

σ̂2
p(n) = σ̂

2(τ0, p, n
)
:=

1
2τ20p

4np

np∑
r=1

⎛
⎝

p+r−1∑
j ′=r

(
Xj ′+2p − 2Xj ′+p +Xj ′

)
⎞
⎠

2

=
1
np

np−1∑
k=0

⎛
⎝ 1√

2τ0p2

p∑
j=1

(
Xk+j+2p − 2Xk+j+p +Xk+j

)
⎞
⎠

2

,

(3.2)

for p ∈ {1, . . . , 
n/3�} and np := n − 3p + 1.
For k ∈ Z, let us set

dp,k = d
(
τ0, p, k

)
:=

1√
2 τ0p2

p∑
j=1

(
Xk+j+2p − 2Xk+j+p +Xk+j

)
, (3.3)

so that the process {dp,k}k turns out to be weakly stationary for each fixed p, with E[dp,k] = 0,
and we can write

σ2
p = E

[
d2
p,0

]
= E

[
d2
p,k

]
,

σ̂2
p(n) =

1
np

np−1∑
k=0

d2
p,k.

(3.4)

3.1. Some Properties

Let us further assume that X is an H-self-similar process (see (2.2)), with H ∈ (1/2, 1).
Applying the covariance formula (2.8), it holds

σ2
p = E

[
d2
p,0

]
= σ2

Hτ
2H−2K

(
H,p
)
= σ2

H

K
(
H,p
)

τ2−2H
, (3.5)
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with σ2
H = E[X(1)2] and

K
(
H,p
)
:=

2
p

(
1 − 22H−2

)
+

1
2p2

p−1∑
�=1

�∑
h=1

P2H

(
h

p

)
, (3.6)

where P2H is the polynomial of degree 2H given by

P2H(x) :=
[
−6|x|2H + 4|1 + x|2H + 4|1 − x|2H − |2 + x|2H − |2 − x|2H

]
. (3.7)

Since we are interested in the limit for p → ∞, we consider the approximation of the
two finite sums in (3.6) by the corresponding double integral, namely,

1
p2

p−1∑
�=1

�∑
h=1

P2H

(
h

p

)
=
∫1

0

∫y
0
P2H(x)dx dy +OH

(
p−1
)
. (3.8)

Computing the integral and inserting the result in (3.6), we get

K
(
H,p
)
= K(H) +OH

(
p−1
)
, (3.9)

where

K(H) :=
22H+4 + 22H+3 − 32H+2 − 15

2(2H + 1)(2H + 2)
. (3.10)

From (3.5) and (3.9), we get

∣∣∣σ2
p − σ2

Hτ
2H−2K(H)

∣∣∣ ≤ σ2
Hτ

2H−2OH

(
p−1
)
. (3.11)

Under the above hypotheses onX, one can also prove that the process {dp,k}p,k satisfies
the stationary condition

Cov
(
dp,k, dp−u,k′

)
= Cov

(
dp,k−k′ , dp−u,0

)
for 0 ≤ u < p. (3.12)

To verify this condition, we write explicitly the covariance as

E
[
dp,kdp−u,k′

]
=

1

2τ2
(
p − u)2

p∑
j=1

p−u∑
j ′=1

E
[(
Xk+j+2p −Xk+j+p

)(
Xk′+j ′+2(p−u) −Xk′+j ′+(p−u)

)]

− E
[(
Xk+j+2p −Xk+j+p

)(
Xk′+j ′+(p−u) −Xk′+j ′

)]

− E
[(
Xk+j+p −Xk+j

)(
Xk′+j ′+2(p−u) −Xk′+j ′+(p−u)

)]

+ E
[(
Xk+j+p −Xk+j

)(
Xk′+j ′+(p−u) −Xk′+j ′

)]
.

(3.13)



International Journal of Stochastic Analysis 7

Setting

R(t; τ1, τ2) := E[(X(τ2 + s + t) −X(s + t))(X(τ1 + s) −X(s))],

r
(
q, h, p, u

)
:= R

(
τ0
(
q + h + u

)
; τ0
(
p − u), τ0p

)

− R(τ0
(
q + h + p

)
; τ0
(
p − u), τ0p

)

− R(τ0
(
q + h − (p − u)); τ0

(
p − u), τ0p

)

+ R
(
τ0
(
q + h

)
; τ0
(
p − u), τ0p

)
,

(3.14)

we get

E
[
dp,kdp−u,k′

]
=

1
2 τ2

1
(
p − u)2

p∑
j=1

p−u∑
j ′=1

r
(
k − k′, j − j ′, p, u). (3.15)

This immediately provides the stationary condition (3.12).
To better understand the behavior of the covariance E[dp,kdp−u,k′] as k − k′ varies, we

apply the covariance formula (2.8) and get

R(t; τ1, τ2) =
σ2
H

2

(
|t + τ2|2H + |t − τ1|2H − |t + τ2 − τ1|2H − |t|2H

)
. (3.16)

Thus, from (3.14),

r
(
q, h, p, u

)
= σ2

Hτ
2H

3∑
i=1

g
(i)
H

(
q

p
,
h

p
,
u

p

)
, (3.17)

where

g
(1)
H

(
q

p
,
h

p
,
u

p

)
:=
∣∣∣∣
q + h
p

+
u

p
+ 1
∣∣∣∣
2H

+
∣∣∣∣
q + h
p

+
u

p
− 1
∣∣∣∣
2H

− 2
∣∣∣∣
q + h
p

+
u

p

∣∣∣∣
2H

,

g
(2)
H

(
q

p
,
h

p
,
u

p

)
:= −1

2

(∣∣∣∣
q + h
p

+ 2
∣∣∣∣
2H

+
∣∣∣∣
q + h
p

∣∣∣∣
2H

− 2
∣∣∣∣
q + h
p

+ 1
∣∣∣∣
2H
)
,

g
(3)
H

(
q

p
,
h

p
,
u

p

)
:= −1

2

(∣∣∣∣
q + h
p

+
2u
p

∣∣∣∣
2H

+
∣∣∣∣
q + h
p

+
2u
p

− 2
∣∣∣∣
2H

− 2
∣∣∣∣
q + h
p

+
2u
p

− 1
∣∣∣∣
2H
)
.

(3.18)

Inserting (3.17) in (3.15), we obtain

E
[
dp,kdp−u,k′

]
= σ2

Hτ
2H−2GH

(
(k − k′)

p
,
u

p
, p

)
, (3.19)
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where τ = τ0p as before, and

GH

(
q

p
,
u

p
, p

)
:=

1
2

1
(
p − u)2

p∑
j=1

p−u∑
j ′=1

3∑
i=1

g
(i)
H

(
q

p
,

(
j − j ′)

p
,
u

p

)
. (3.20)

Now we set q = mp + r with m ∈ Z and r an integer number in {0, . . . , p − 1} and we study
the asymptotic behavior of GH(m + (r/p), u/p, p) for |m| → +∞.

The limit relation

|m + 1|2H + |m − 1|2H − 2|m|2H ∼ 2H(2H − 1)|m|2H−2 as |m| −→ +∞, (3.21)

that is,

lim
|m|→+∞

|m + 1|2H + |m − 1|2H − 2|m|2H
|m|2H−2 = 2H(2H − 1), (3.22)

implies that

g
(1)
H

(
m +

(
r

p

)
,
h

p
,
u

p

)
∼ 2H(2H − 1)

∣∣∣∣m +
r

p
+
h

p
+
u

p

∣∣∣∣
2H−2

as |m| −→ +∞,

g
(2)
H

(
m +

(
r

p

)
,
h

p
,
u

p

)
∼ −H(2H − 1)

∣∣∣∣m +
r

p
+
h

p
+ 1
∣∣∣∣
2H−2

as |m| −→ +∞,

g
(3)
H

(
m +

(
r

p

)
, x,

u

p

)
∼ −H(2H − 1)

∣∣∣∣m +
r

p
+
h

p
+
2u
p

− 1
∣∣∣∣
2H−2

as |m| −→ +∞,

(3.23)

and so, for |m| → +∞,

3∑
i=1

g
(i)
H

(
m +

(
r

p

)
,
h

p
,
u

p

)

∼ −H(2H − 1)

(∣∣∣∣m +
r + h
p

+ 1
∣∣∣∣
2H−2

+
∣∣∣∣m +

r + h + 2u
p

− 1
∣∣∣∣
2H−2

− 2
∣∣∣∣m +

r + h + u
p

∣∣∣∣
2H−2)

= −H(2H − 1)

×
(∣∣∣∣m +

r + u + h
p

+
p − u
p

∣∣∣∣
2H−2

+
∣∣∣∣m +

r + u + h
p

− p − u
p

∣∣∣∣
2H−2

− 2
∣∣∣∣m +

r + u + h
p

∣∣∣∣
2H−2)

= −H(2H − 1)
(
p − u
p

)2H−2

×
(∣∣∣∣

mp

p − u +
r + u + h
p − u + 1

∣∣∣∣
2H−2

+
∣∣∣∣
mp

p − u +
r + u + h
p − u − 1

∣∣∣∣
2H−2

− 2
∣∣∣∣
mp

p − u
q + u + h
p − u

∣∣∣∣
2H−2)
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∼ cH
(
p − u
p

)2H−2∣∣∣∣
mp

p − u +
r + u + h
p − u

∣∣∣∣
2H−4

= cH
(
p − u
p

)2∣∣∣∣m +
r + u + h

p

∣∣∣∣
2H−4

∼ cH
(
p − u
p

)2

|m|2H−4,

(3.24)

where cH := (−4!/2)( 2H4
)
. We can conclude that

GH

(
q

p
,
u

p
, p

)
= GH

(
m +

(
r

p

)
,
u

p
, p

)
∼ cH

2

(
1 − u

p

)
|m|2H−4 as |m| −→ +∞. (3.25)

3.2. The MAVAR Log-Regression Estimator

Let n be the sample size, that is, the number of the observations.

Definition 3.2. Let p, � ∈ N such that 1 ≤ (1 + �)p ≤ pmax(n) = 
n/3�, and let w = (w0, . . . , w�)
be a vector of weights satisfying the conditions

�∑
�=0

w� = 0,
�∑
�=0

w� log(1 + �) = 1. (3.26)

TheMAVAR log-regression estimator associated to the weights w is defined as

α̂n
(
p,w
)
= α̂n

(
τ0, p,w

)
:=

�∑
�=0

w� log
(
σ̂2
(1+�)p(n)

)
. (3.27)

Roughly speaking, the idea behind this definition is to use the approximation

(
σ̂2
p(n), . . . , σ̂

2
(1+�)p

(n)
)
=̃
(
σ2
p(n), . . . , σ

2
(1+�)p

(n)
)
, (3.28)

in order to get, by (3.11) and (3.26),

α̂n
(
p,w
)
=̃

�∑
�=0

w� log
(
σ2
(1+�)p

)
=̃

�∑
�=0

w�

[
α log(1 + �) + α log

(
τ0p
)
+ log

(
σ2
HK(H)

)]
= α, (3.29)
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where α := 2H−2. Thus, given the dataX1, . . . , Xn, the following procedure is used to estimate
H:

(i) compute the modified Allan variance by (3.2), for integer values (1 + �)p, with
1 ≤ (1 + �)p ≤ pmax(n) = 
n/3�;

(ii) compute the weighted MAVAR log-regression estimator by (3.27) in order to get an
estimate α̂ of α;

(iii) estimateH by Ĥ = (α̂ + 2)/2.

In the sequel we will give, under suitable assumptions, two convergence results in order to
justify these approximations and to get the rate of convergence of α̂n(p,w) toward α = 2H−2.
Obviously, we need to take p = p(n) → +∞ as n → +∞ in order to reach jointly the above
two approximations.

4. The Asymptotic Normality of the Estimator

Since now on we will always assume that X is a fractional Brownian motion (with H ∈
(1/2, 1)) so that the process {dp,k}p,k is also Gaussian. Under this assumption, and with the
notation introduced before, we can state the following results.

Theorem 4.1. Let p = p(n) be a sequence of integers such that

p(n) −→ +∞, n p(n)−1 −→ +∞. (4.1)

Let � be a given integer, σ̂2
n(p, �) the vector (σ̂2

p
(n), σ̂2

2p(n), . . . , σ̂
2
(1+�)p

(n)) and, analogously, set

σ2(p, �) = (σ2
p
, σ2

2p, . . . , σ
2
(1+�)p

). Then, it holds

√
n

p

(
τ0p
)2−2H(

σ̂2
n

(
p, �
)
− σ2
(
p, �
))

d−−−−→
n→∞

N(0,W(H)), (4.2)

whereW(H) is a suitable symmetric matrix.

From this theorem, as an application of the δ-method, we can state the following result.

Theorem 4.2. Let α̂n(p,w) be defined as in (3.27), for some finite integer � and a weight-vector w
satisfying (3.26). If p = p(n) is a sequence of integers such that

p(n) −→ +∞, np(n)−1 −→ +∞, n p(n)−3 −→ 0, (4.3)

then

√
n

p

(
α̂n
(
p,w
) − α) d−−−−→

n→∞
N
(
0, wT

∗V (H)w∗
)
, (4.4)
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where α = 2H − 2, the column-vector w∗ is such that [w∗]� := w�(1 + �)2−2H , and V (H) =
(σ2

HK(H))−2W(H).

Let us stress that from the above result, and due to the condition np(n)−1 → +∞, it
follows that the estimator α̂n(p,w) is consistent.

Before starting the proof of the above theorems, we need the following lemma.

Lemma 4.3. Let p = p(n) be a sequence of integers such that

p(n) −→ +∞, np(n)−1 −→ +∞. (4.5)

For two given integers �′, �, with 0 ≤ �′ ≤ �, set p�′ = (�′ + 1)p and p� = (� + 1)p. Then

n

p

(
τ0p
)4−4H Cov

(
σ̂2
p� (n), σ̂

2
p�′ (n)

)
−−−−−→
n→+∞

W�′,�(H), (4.6)

whereW�′,�(H) is a finite quantity.

Proof . Since n/p → +∞, without loss of generality we can assume that (1 + �)p ≤ pmax(n) =

n/3� for each n. Recall the notation np = n − 3p + 1, and set n� = np� ∼ n and n�′ = np�′ ∼ n.
From the definition of theMAVAR estimator and applying theWick’s rule for jointly Gaussian
random variables (see the Appendix), we get

Cov
(
σ̂2
p� (n), σ̂

2
p�′ (n)

)
=

1
n�n�′

n�−1∑
k=0

n�′ −1∑
k′=0

Cov
(
d2
p� ,k

, d2
p�′ ,k′

)

=
2

n�n�′

n�−1∑
k=0

n�′ −1∑
k′=0

Cov
(
dp�,k, dp�′ ,k′

)2

= 2σ4
H(1 + �)4H−4

(
τ0p
)4H−4

n�n�′

n�−1∑
k=0

n�′ −1∑
k′=0

G2
H

(
k − k′

p�
,
u�′�
p�

, p�

)
,

(4.7)

where u�′� = p�−p�′ . Since, by (3.20), the functionGH(q/p�, u�′�/p�, p�) only depends on q/p�
and u�′�/p� = (� − �′)/(1 + �) as n → +∞, we rewrite the last line as

2σ4
H(1 + �)4H−4

(
τ0p
)4H−4

n�n�′

n�−1∑
k=0

n�′ −1∑
k′=0

G2
H

(
k − k′

p�
,
(� − �′)
1 + �

)
. (4.8)

This term, multiplied by (n/p)(τ0p)
4−4H , is equal to

2σ4
H(1 + �)4H−4 1

p

n

n�n�′

n�−1∑
k=0

n�′ −1∑
k′=0

G2
H

(
k − k′

p�
,
(� − �′)
(1 + �)

)
. (4.9)
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It is easy to see that this quantity converges (to a finite strictly positive limit) if and only if

1
p�

[n/p�]∑
m=0

p�−1∑
r=0

G2
H

(
m +

(
r

p�

)
,
(� − �′)
(1 + �)

)
(4.10)

converges. From (3.25) it holds

G2
H

(
m +

(
r

p�

)
,
(� − �′)
(1 + �)

)
∼ c2H

4

(
1 − � − �′

1 + �

)2

m4H−8 as m −→ +∞. (4.11)

Thus, the quantity (4.10) is controlled in the limit n → ∞ by the sum
∑∞

m=1m
4H−8 that is

convergent.

Proof of Theorem 4.1. As before, without loss of generality, we can assume that (1 + �)p ≤
pmax(n) for each n. Moreover, set again n� = np� and n�′ = np�′ . For a given real vector
vT = (v0, . . . , v�), let us consider the random variable Tn = T(p(n), �, v) defined as a linear
combination of the empirical variances σ̂2

p
(n), . . . , σ̂2

(1+�)p
(n) as follows:

Tn :=
�∑
�=0

v� σ̂
2
(1+�)p(n) =

�∑
�=0

v�
n�

n�−1∑
k=0

d2
(1+�)p,k. (4.12)

In order to prove the convergence stated in Theorem 4.1, we have to show that the random

variable
√
n/p (τ0p)

2−2H (Tn −
∑�

�=0 v�σ
2
(1+�)p) converges to the normal distribution with zero

mean and variance vTW(H)v. To this purpose, we note that

√
n

p

(
τ0p
)2−2H

⎛
⎝Tn −

�∑
�=0

v�σ
2
(1+�)p

⎞
⎠ = V T

n AnVn − E

[
V T
n AnVn

]
, (4.13)

where Vn is the random vector with entries d(1+�)p,k, for 0 ≤ � ≤ � and 0 ≤ k ≤ n� − 1, and An

is the diagonal matrix with entries

[An]((1+�)p,k),((1+�)p,k) =
v�
n�

√
n

p

(
τ0p
)2−2H = O

((
p
)3/2−2H

n−1/2
)
. (4.14)

By Lemma 4.3, ifW(H) is the symmetric matrix with [W(H)]�′,� =W�′,� when 0 ≤ �′ ≤ � ≤ �,
it holds

Var
[
V T
n AnVn

]
=
n

p

(
τ0p
)4−4H �∑

�=0

�∑
�′=0

v�v�′Cov
(
σ̂2
(1+�)p(n), σ̂

2
p(1+�′)(n)

)

−−−−−→
n→+∞

�∑
�=0

�∑
�′=0

v�v�′W�′,�(H) = vTW(H)v,

(4.15)

therefore, condition (1) of Lemma A.2 is satisfied.
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In order to verify condition (2) of Lemma A.2, let Cn denote the covariance matrix of
the random vector Vn, and let ρ[Cn] denote its spectral radius. By Lemma A.3, we have

ρ[Cn] ≤
�∑
�=0

ρ
[
Cn

(
(1 + �)p

)]
, (4.16)

where Cn((1 + �)p) is the covariance matrix of the subvector (d(1+�)p,k)k=0,...,n�−1. Applying the
spectral radius estimate (A.3), and from equality (3.19), we then have

ρ
[
Cn

(
(1 + �)p

)] ≤ σ2
H

[
τ0(1 + �)p

]2H−2
⎡
⎣GH

(
0, 0, p�

)
+ 2

n�−1∑
q=1

GH

(
q

p�
, 0, p�

)⎤
⎦

= O
((
p
)2H−1)

.

(4.17)

In order to conclude, it is enough to note that

ρ[An]ρ[Cn] = O
((
p
)3/2−2H

n−1/2
)
O
((
p
)2H−1) = O

((
p
)1/2

n−1/2
)
−−−−−→
n→∞

0. (4.18)

Proof of Theorem 4.2. By assumptions (4.3) on the sequence p = p(n), and in particular from
the condition n/(p)3 → 0, and inequality (3.11), it holds

√
n

p

(
τ0p
)2−2H∣∣∣σ2

(1+�)p − σ2
H

[
τ0(1 + �)p

]2H−2
K(H)

∣∣∣

≤ σ2
H(1 + �)2H−2O

(
n1/2
(
p
)−3/2) −−−−−→

n→+∞
0.

(4.19)

Thus, from Theorem 4.1, we get

√
n

p

[(
τ0p
)2−2H

σ̂2
n

(
p, �
)
− σ2

∗
]

d−−−−→
n→∞

N(0,W(H)), (4.20)

where σ2
∗ is the vector with elements

[
σ2
∗
]
�
:= σ2

H(1 + �)2H−2K(H) for 0 ≤ � ≤ �. (4.21)

Now we observe that if f(x) :=
∑�

�=0w� log(x�), then, by (3.26) and (3.27), we have

α̂n
(
p,w
)
= f
(
σ̂2
(
p, �
))

= f
((
τ0p
)2−2H

σ̂2
(
p, �
))
. (4.22)
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Moreover, α = f(σ2
∗) and ∇f(σ2

∗) = (σ2
HK(H))−1w∗. Therefore, by the application of the δ-

method, the convergence (4.20) entails

√
n

p

(
α̂n
(
p,w
) − α) d−−−−→

n→∞
N
(
0,∇f

(
σ2
∗
)T
W(H)∇f

(
σ2
∗
))

, (4.23)

where

∇f
(
σ2
∗
)T
W(H)∇f

(
σ2
∗
)
= wT

∗V (H)w∗, (4.24)

and thus concludes the proof.

Remark 4.4. By Lemma 4.3, and since by definition V�′,�(H) = (σ2
HK(H))−2W�′,�(H), an

estimate of V�′,�(H), with 0 ≤ �′ ≤ � ≤ �, is given by

n

p

(
τ0p
)4−4H

σ4
HK(H)2

Cov
(
σ̂2
p� (n), σ̂

2
p�′ (n)

)
. (4.25)

Therefore, setting ρ2n(w,H) equal to the corresponding estimate of wT
∗V (H)w∗ divided by

n/p, that is

ρ2n
(
w,H

)
=

2

K(H)2

�∑
�=0

�∑
�′=0

(
1 + � ∧ �′
1 + � ∨ �′

)2−2Hw�w�′

n�n�′

×
n�∨�′ −1∑
k=0

n�∧�′ −1∑
k′=0

G2
H

(
k − k′

p(1 + � ∨ �′) ,
|� − �′|

1 + � ∨ �′ , p
(
1 + � ∨ �′)

)
,

(4.26)

and from (4.6), we obtain the convergence

ρ−1n
(
w,H

)(
α̂n
(
p,w
) − α) d−−−−→

n→∞
N(0, 1), (4.27)

which can be used to obtain an asymptotic confidence interval for the parameterH.

4.1. An Alternative Representation of the Covariance

It is well known that an FBM (with X(0) = 0 and E[X2(1)] = σ2
H) has the following stochastic

integral representation (see [2, 16]):

X(t) =
1

Γ(H + 1/2)

∫

R

{[
(t − s)+]H−1/2 − (s−)H−1/2}

dWs. (4.28)
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Using this representation and Ito’s formula, we can obtain another representation of
the covariance Cov(σ̂2

p(n), σ̂
2
p−u(n)) and, consequently, another formula for the coefficient

ρn(w,H).
Indeed, assuming without loss of generality t1 = τ0 so thatXi = X(ti) = X(iτ0), by (3.3)

and (4.28), we can write for 0 ≤ u < p and k ∈ Z

dp−u,k =
σH√
2

(
τ0p
)H−3/2 p2

(
p − u)2

∫

R

γH

(
k

p
, p, u,

s(
τ0p
)
)
dWs, (4.29)

where

γH

(
k

p
, p, u,

s(
τ0p
)
)

:=
[
Γ
(
H +

1
2

)
σH

]−1

× 1
p

p−u∑
j=1

⎧
⎨
⎩

[(
k + j
p

+
2
(
p − u)

p
− s

τ0p

)+]H−1/2

−2
[(

k + j
p

+
p − u
p

− s

τ0p

)+
]H−1/2

+

[(
k + j
p

− s

τ0p

)+
]H−1/2⎫⎬

⎭.

(4.30)

By Ito’s formula we get

d2
p−u,k = E

[
d2
p−u,k
]
+ σ2

H

(
τ0p
)2H−3 p4

(
p − u)4

∫

R

Z

(
k

p
, p, u, ν

)
γH

(
k

p
, p, u,

ν(
τ0p
)
)
dWν,

(4.31)

where

Z

(
k

p
, p, u, ν

)
:=
∫ν
−∞

γH

(
k

p
, p, u,

s(
τ0p
)
)
dWs. (4.32)

Inserting this expression in (3.4), we obtain

σ̂2
p−u(n) − σ2

p−u = σ2
H

(
τ0p
)2H−3 p4

(
p − u)4

∫

R

⎡
⎣ 1
np−u

np−u−1∑
k=0

Z

(
k

p
, p, u, ν

)
γH

(
k

p
, p, u,

ν

τ0p

)⎤
⎦dWν.

(4.33)
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It follows, using Ito’s formula again and after the change of variables s = τ0(pv + k′) and
ν = τ0(pr + k′),

Cov
(
σ̂2
p(n), σ̂

2
p−u(n)

)
= σ4

H

(
τ0p
)4H−4 p4

(
p − u)4

1
npnp−u

×
np−1∑
k=0

np−u−1∑
k′=0

∫

R

[
γH

(
(k − k′)

p
, p, 0, r

)
γH
(
0, p, u, r

)

×
∫ r
−∞

γH

(
(k − k′)

p
, p, 0, v

)
γH
(
0, p, u, v

)
dv

]
dr.

(4.34)

5. Some Comments

5.1. The Modified Allan Variance and the Wavelet Estimators

Suppose that X is a self-similar process with weakly stationary increments and consider the
generalized process Y = {Y (t), t ∈ R} defined through the set of identities

〈
Y ; I[t1,t2]

〉
=
∫ t2
t1

Y (t)dt = X(t2) −X(t1), ∀t1, t2 ∈ R. (5.1)

In short, we write Y = Ẋ. From this definition and with the notation introduced in Section 3,
we can rewrite the MAVAR as

σ2(τ0, p
)
=

1
2τ20p

2
E

⎡
⎣
(

1
p

p∑
i=1

(∫ ti+2p
ti+p

Y (t)dt −
∫ ti+p
ti

Y (t)dt

))2
⎤
⎦ (5.2)

and its related estimator as

σ̂2(τ0, p, n
)
=

1
2τ20p

2np

np−1∑
k=0

[
1
p

p∑
i=1

(∫ ti+k+2p
ti+k+p

Y (t)dt −
∫ ti+k+p
ti+k

Y (t)dt

)]2
. (5.3)

Now we claim that, for p fixed, the quantity

d
(
τ0, p, k

)
:=

1√
2p2τ0

p∑
i=1

(∫ ti+k+2p
ti+k+p

Y (t)dt −
∫ ti+k+p
ti+k

Y (t)dt

)
(5.4)

recalls a family of discrete wavelet transforms of the process Y , indexed by τ0 and k. To see
that, let us fix j ∈ N and k ∈ Z and set τ0 = 2j and t1 = 2j , so that ti+k = 2j(i + k), for all i ∈ N.
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With this choice on the sequence of times, it is not difficult to construct a function ψ(s) such
that

dk,j := d
(
2j , p, k

)
=
〈
Y ;ψk,j

〉
with ψk,j(s) := 2−jψ

(
2−js − k

)
. (5.5)

An easy check shows that the function

ψ(s) :=
1

p
√
p

p∑
i=1

ψi(s), ψi(s) :=
1√
2p

(
I[i+p,i+2p](s) − I[i,i+p](s)

)
, (5.6)

satisfies (5.5). Notice also that the components ψi, i = 1, . . . p, are suitably translated and
renormalized Haar functions.

In the case p = 1, corresponding to the classical Allan variance, the function ψ is exactly
given by the Haar mother wavelet, as was already pointed out in [14].

Though the wavelet representation could be convenient in many respects, the Haar
mother wavelet does not satisfy one of the conditions which are usually required in order
to study the convergence of the estimator (see condition (W2) in [18]). Moreover, there is a
fundamental difference between the two methods: in the wavelet setting the log-regression is
done over the scale parameter τ0 for p fixed, while the MAVAR log-regression given in (3.27)
is performed over p and for τ0 fixed.

5.2. The Modified Hadamard Variance

Further generalizing the notion of the MAVAR, one can define the modified Hadamard
variance (MHVAR). For fixed integers p,Q, and τ0 ∈ R, set

σ2(τ0, p,Q
)
:=

1
Q!τ20p

2
E

⎡
⎢⎣
⎛
⎝1
p

p∑
i=1

Q∑
q=0

c
(
Q, q
)
X
(
ti+qp
)
⎞
⎠

2
⎤
⎥⎦, (5.7)

where c(Q, q) := (−1)q(Q!/q!(Q − q)!). Notice that for Q = 2 we recover the modified Allan
variance. The MHVAR is again a time-domain quantity which has been introduced in [7] for
the analysis of the network traffic. A standard estimator for this variance is given by

σ̂2
n

(
τ0, p,Q

)
:=

1
Q!τ20p

4nQ,p

nQ,p∑
h=1

⎛
⎝

p+h−1∑
i′=h

Q∑
q=0

c
(
Q, q
)
Xi′+qp

⎞
⎠

2

=
1

nQ,p

nQ,p−1∑
k=0

⎛
⎝ 1√

Q!τ0p2

p∑
i=1

Q∑
q=0

c
(
Q, q
)
Xk+i+qp

⎞
⎠

2

,

(5.8)

for p = 1, . . . , [n/(Q + 1)] and nQ,p := n − (Q + 1)p + 1.
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Similarly to the analysis performed for the MAVAR, let us set

dp,k = d
(
τ0, p,Q, k

)
:=

1√
Q!τ0p2

p∑
i=1

Q∑
q=0

c
(
Q, q
)
Xk+i+qp, (5.9)

so that we can write

σ2(τ0, p,Q
)
= E

[
d2
p,0

]
, σ̂2

n

(
τ0, p,Q

)
=

1
nQ,p

nQ,p−1∑
k=0

d2
p,k. (5.10)

This suggests that convergence results, similar to Theorems 4.1 and 4.2, can be achieved also
for the MHVAR and its related log-regression estimator.

5.3. The Case of Stationary Processes

In applications, MAVAR and MHVAR are also used in order to estimate the memory
parameter of long-range dependent processes. This general case is not included in our
analysis (which is restricted to the fractional Brownian motion) and it requires a more
involved investigation. To our knowledge, there are no theoretical results along this direction.

Appendix

In this appendix we recall the Wick’s rule for jointly Gaussian random variables and some
facts used along the proofs.

Wick’s Rule

Let us consider a family {Zi} of jointly Gaussian random variables with zero mean. The
Wick’s rule is a formula that provides an easy way to compute the quantity E[ZΛ] :=
E[
∏

i∈ΛZi], for any index-set Λ (see, e.g., [19]).
Since the Zi’s are zero-mean random variables, if Λ has odd cardinality, we trivially

get E[ZΛ] = 0. We then assume that |Λ| = 2k, for some k ≥ 1. To recall the Wick’s rule, it
is convenient to introduce the following graph representation. To the given index-set Λ we
associated a vertex-set V indexed by the distinct elements of Λ, and to every vertex j ∈ V
we attached as many half-edges as many times the index j appears in Λ. In particular there
is a biunivocal correspondence between the set of half-edges and Λ, while |V | ≤ |Λ|. Gluing
together two half-edges attached to vertices i and j, we obtain the edge (i, j). Performing this
operation recursively over all remaining half-edges, we end up with a graph G, with vertex
set V (G) and edge-set E(G). Let GΛ denote the set of graphs (possibly not distinguishable)
obtained by performing this “gluing procedure” in all possible ways.
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With this notation, and for all index-sets Λ with even cardinality, the Wick’s rule for a
family {Zi} of jointly centered Gaussian random variables provides the identity

E[ZΛ] =
∑
G∈GΛ

∏
(i,j)∈E(G)

E
[
ZiZj

]
. (A.1)

Example A.1. Consider the quantity E[Z2
kZ

2
j ], for j /= k. By the graphical representation, we

take a vertex set V = {j, k} with two half-edges attached to each vertex and perform the
gluing operation on the half-edges. We then obtain the following three graphs (identified by
their edges):G1 = (j, k)(j, k),G2 = (j, k)(j, k), and G3 = (j, j)(k, k). Thus, from theWick’s rule,
we get the identity

E

[
Z2
kZ

2
j

]
= 2E

[
ZjZk

]2 + E

[
Z2
j

]
E

[
Z2
k

]
, (A.2)

that has been used throughout the paper.

Now we recall some facts used in the proof of Theorem 4.1.
Denote by ρ[A] the spectral radius of a matrix A = {ai,j}1≤i,j≤n, then

ρ[A] ≤ max
1≤j≤n

n∑
i=1

∣∣ai,j
∣∣. (A.3)

Moreover the following lemmas hold.

Lemma A.2 (see [13]). Let (Vn) be a sequence of centered Gaussian random vectors and denote by
Cn the covariance matrix of Vn. Let (An) be a sequence of deterministic symmetric matrices such that

(1) limn→+∞ Var[V T
n AnVn] = λ2 ∈ [0,+∞),

(2) limn→+∞ρ[An]ρ[Cn] = 0.

Then V T
n AnVn − E[V T

n AnVn] converges in distribution to the normal law N(0, λ2).

Lemma A.3 (see [11]). Letm ≥ 2 be an integer and C am×m covariance matrix. Let r be an integer
such that 1 ≤ r ≤ m − 1. Denote by C1 the top left submatrix with size r × r and by C2 the bottom
right submatrix with size (m − r) × (m − r), that is,

C1 =
[
Ci,j

]
1≤i,j≤r , C2 =

[
Ci,j

]
r+1≤i,j≤m. (A.4)

Then ρ[C] ≤ ρ[C1] + ρ[C2].
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