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Abstract
Recent events such as the globalfinancial crisis have renewed the interest in the topic of economic
networks. One of themain channels of shock propagation among countries is the International Trade
Network (ITN). Two importantmodels for the ITN structure, the classical gravitymodel of trade
(more popular among economists) and thefitnessmodel (more popular among networks scientists),
are both limited to the characterization of only one representation of the ITN. The gravitymodel
satisfactorily predicts the volume of trade between connected countries, but cannot reproduce the
missing links (i.e. the topology). On the other hand, the fitnessmodel can successfully replicate the
topology of the ITN, but cannot predict the volumes. This paper tries tomake an important step
forward in the unification of those two frameworks, by proposing a new gross domestic product
(GDP) drivenmodel which can simultaneously reproduce the binary and theweighted properties of
the ITN. Specifically, we adopt amaximum-entropy approachwhere both the degree and the strength
of each node are preserved.We then identify strong nonlinear relationships between theGDP and the
parameters of themodel. This ultimately results in aweighted generalization of the fitnessmodel of
trade, where theGDPplays the role of a ‘macroeconomic fitness’ shaping the binary and theweighted
structure of the ITN simultaneously. Ourmodelmathematically explains an important asymmetry in
the role of binary andweighted network properties, namely the fact that binary properties can be
inferredwithout the knowledge of weighted ones, while the opposite is not true.

1. Introduction

After the 2008financial crisis, it has become clear that a better understanding of themechanisms and dynamics
underlying the networkedworldwide economy is vital [1]. Among the possible channels of interaction among
countries, international trade plays amajor role [2–4]. Combined together, theworldwide trade relations can be
interpreted as the connections of a complex network, the International TradeNetwork (ITN) [5–21], whose
understanding andmodeling is one of the traditional goals ofmacroeconomics. The standardmodel of non-
zero tradeflows, inferring the volume of bilateral trade between any two countries from the knowledge of their
gross domestic product (GDP) andmutual geographic distance (D), is the so-called ‘gravitymodel’ of trade [22–
26]. In its simplest form, the gravitymodel predicts that the volume of trade between countries i and j is

α=
β β

γF
D

GDP · GDP
. (1)ij

i j

ij

Note that the above expression, as well as the rest of this paper, focuses on the undirected version of the network
for simplicity. In this representation, the trade from country i to country j and the trade rom country j to country
i are combined together. Given the highly symmetric structure of the ITN, this simplification retains all the basic
network properties of the system [7, 15, 16, 27–29].
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In its simplest form, the gravitymodel isfitted on the non-zeroweights observed between all pairs of
connected countries. Thismeans that themodel can predict the pair-specific volume of trade only after the
presence of the trade relation itself has been established [25]. This intrinsic limitation is alarming, since almost
half of the links in the ITN aremissing [6, 15–17]. Although several improvements and generalizations of the
standard gravitymodel have been proposed to overcome this problem (see [25, 26] for excellent reviews), so far
none of them succeeded in reproducing the observed complex topology and the observed volumes
simultaneously.Moreover, the various attempts have not been conceived under a unique theoretical framework
and are therefore based on the combination of differentmechanisms (e.g. one for establishing the presence of a
trade relation, and one for establishing its intensity). In general, the challenge of successfully predicting, via only
onemechanism, both trade probabilities and trade volumes remains an open problem.

Over the past years, the problemof replicating the observed structure of the ITNhas been extensively
approached using networkmodels [6, 7, 9, 18, 30] and,more indirectly,maximum-entropy techniques to
reconstruct networks frompartial information [15–17, 31–34]. These studies have focused both on the purely
binary architecture (defined solely by the existence of trade exchanges betweenworld countries) [6, 7, 9, 15, 33]
and on theweighted structure (when also themagnitude of these interactions is taken into account) [16–18, 30].
What clearly emerges is that both topological andweighted properties of the network are deeply connectedwith
purelymacroeconomic properties (in particular theGDP) governing bilateral trade volumes [2, 3, 5–7, 9–
14, 18, 21]. However, it has also been clarified that, while the knowledge of the degree sequence (i.e. the number
of trade partners for each country) allows to infer the the entire binary structure of the networkwith great
accuracy [15, 17], the knowledge of the strength sequence (i.e. the total volume of trade for each country) gives a
very poor prediction of all network properties [16, 17]. Indeed, the network inferred only from the strength
sequence has a trivial topology, beingmuch denser (if integer linkweights are assumed [16]) or even fully
connected (if continuousweights are assumed [18]), and in any casemuchmore homogeneous than the
empirical one. This limitation leads back to themain drawback of the gravitymodel. Indeed, it has been shown
that a simplified version of the gravitymodel (with β = 1and γ = 0) can be recovered as a particular case of a
maximum-entropymodel with given strength sequence (and continuous linkweights) [18].

Combined together, the high informativeness of the degree sequence for the binary representation of the
ITN and the low informativeness of the strength sequence for its weighted representation contradict the naive
expectation that, once aggregated at the country level, weighted structural properties (the strengths) are per se
more informative than purely binary properties (the degrees). This empirical puzzle still calls for a theoretical
explanation and has generated further interest around the challenge offinding a uniquemechanismpredicting
link probabilities and linkweights simultaneously. In this paper, wewill propose amodel that successfully
implements suchmechanism. Themodel can reproduce the observed properties of the ITN and finally
highlights a clearmathematical explanation for the observed binary/weighted asymmetry.

Our approach builds on previous theoretical results. Recently, an improved reconstruction approach [35],
based on an analyticalmaximum-likelihood estimationmethod [36], has been proposed in order to definemore
sophisticatedmaximum-entropy ensembles of weighted networks. This approach exploits previous
mathematical results [37] characterizing a network ensemblewhere both the degree and the strength sequences
are constrained. The graph probability is the so-called generalized Bose–Fermi distribution [37], and the
resulting networkmodel goes under the name of enhanced configurationmodel (ECM) [35].When used to
reconstruct the properties of several empirical networks, the ECMshows a significant improvement with respect
to the case where either only the degree sequence (binary configurationmodel, BCM for short) or only the
strength sequence (weighted configurationmodel,WCM for short) is constrained. One therefore expects that
combining the knowledge of strengths and degrees is precisely the ingredient required in order to successfully
reproduce the ITN frompurely local information. Indeed, amore recent study has shown that, when applied to
international trade data (both aggregated and commodity-specific), themethod successfully reproduces the key
properties of the ITN, across different years and for different levels of aggregation (i.e. for different commodity-
specific layers) [38].

However, in itself the ECM is a network reconstructionmethod, rather than a genuinemodel of network
formation. To turn it into a proper networkmodel for the ITN structure, it would be necessary tofind a
macroeconomic interpretation for the underlying variables involved in themethod. This operationwould
correspond towhat has already been separately performed at a purely binary level (by identifying a strong
relationship between theGDP and the variable controlling the degree of a country in the BCM[6, 39, 40]) and at
a purely weighted level (by finding a relationship between theGDP and the variable controlling the strength of a
country in theWCM[18], in the same spirit of the gravitymodel). Generalizing the above results to the
combination of strengths and degrees is not obvious, given the differentmathematical expressions
characterizing the ECM, the BCMand theWCM.

In this paperwe show that, indeed, the variables of the ECMare all strongly correlated with theGDP. This
result gives amacroeconomic interpretation of the parameters’ values satisfying the ITN constraints. Reversing
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the perspective, this result enables us to introduce thefirst GDP-drivenmodel that successfully reproduces the
binary and theweighted properties of the ITN simultaneously. Finally, we show that the ECMmodel can be
replaced by a simpler, two-step (TS)model that reconciles the binary projection of the ECMmodel with the
topology predicted by the BCM.These results represent a promising step forward in the formulation of a unified
model for the structure of the ITN. It is themathematical structure of the TSmodel thatfinally explains the
puzzling asymmetry in the informativeness of weighted and binary properties. This result has a general
applicability to the analysis of weighted networks, and is therefore not restricted to our study of the ITN.

2.Maximum-entropy approaches to the ITN

Since our results are a generalization of previousmaximum-entropy approaches to the characterization of the
ITN, in this sectionwefirst briefly review themain results of those approaches, while our new findings are
presented in the next section. In so doing, we gradually introduce themathematical building blocks of our
analysis and illustrate ourmainmotivations.Moreover, since previous studies have used different data sets, we
also recalculate the quantities of interest on the same data set that wewill use later for our own investigation. This
allows us to align the results of previous approaches and properly compare themwith our new findings.

2.1.Data
Weuse yearly bilateral data on exports and imports from theUnitedNations Commodity TradeDatabase (UN
COMTRADE) [41] fromyear 1992 to 2004. The sample refers to 13 years, 1992–2004, represented in currentUS
dollars, and disaggregated over 97 commodity classes. In this paperwe analyze the aggregated level, which results
in 13 yearly temporal snapshots of undirected total tradeflows.Our network consists ofN=173 countries,
present in the data throughout the considered temporal interval.

This data set was the subject ofmany studies exploring both purely the binary representation, and its full
weighted representation [15, 16, 35, 38]. Another data set which is widely used to represent the ITNnetwork is
the trade data collected byGleditsch [42]. The data contain the detailed list of bilateral import and export
volumes, for each country in the period 1950–2000.

2.2. Binary structure
If one focuses solely on the binary undirected projection of the ITN, then the BCMrepresents a very successful
maximum-entropymodel. In the BCM, the local knowledge of the number of trade partners of each country, i.e.
the degree sequence, is specified. It has been shown that higher-order properties of the ITN can be simply traced
back to the knowledge of the degree sequence [15]. This result adds considerable information to the standard
results of traditionalmacroeconomic analyzes of international trade. In particular, it suggests that the degree
sequence, which is a purely topological property, needs to be considered as an important target quantity that
international trademodels, in contrast with themainstream approaches in economics, should aim at
reproducing [15, 17].

Let usfirst represent the observed structure of the ITNas aweighted undirected network specified by the

squarematrixW*, where the specific entrywij
* represents theweight of the link between country i and country j.

Then, let us represent the binary projection of the network in terms of the binary adjacencymatrixA*, with
entries defined as Θ= ∀a w i j[ ], ,ij ij

* * , whereΘ is aHeaviside step function. Amaximum-entropy ensemble of
networks is a collection of graphswhere each graph is assigned a probability of occurrence determined by the
choice of some constraints. The BCM is amaximum-entropy ensemble of binary graphs, each denoted by a
genericmatrixA, where the chosen constraint is the degree sequence. In the canonical formalism [36], the latter
can be constrained bywriting the followingHamiltonian:

∑θ=
=

H kA A( ) ( ), (2)
i

N

i i

1

where the degree sequence is defined as Θ= ∑ = ∑ ∀≠ ≠k a w iA( ) [ ],i j i
N

ij j i
N

ij , andθi are the free parameters

(Lagrangemultipliers) [36]. As a result of the constrainedmaximization of the entropy [36], the probability of a
given configurationA can bewritten as

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∏=

∑ ′
=

+ +

−

′
−

<

−

P
z z

z z z z
A( )

e

e 1

1

1
, (3)

H

H
i j

i j

i j

a

i j

a
A

A
A

( )

( )

1ij ij

where ≡ θ−z ei
i and ≡

+
pij

z z

z z1

i j

i j
. The latter represents the probability of forming a link between nodes i and j,

which is also the expected value
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=
+

=a
z z

z z
p

1
. (4)ij

i j

i j
ij

According to themaximum-likelihoodmethod proposed in [36], the vector of unknowns ⃗z can be numerically
found by solving the systemofN coupled equations

∑= = ∀
≠

( )k p k iA* , (5)i

j i

N

ij i

where the expected value of each degree ki ismatched to the observed valuek A( *)i in the real networkA*. The

(unique) solutionwill be indicated as ⃗z *.When inserted back into equation (4), this solution allows us to
analytically describe the binary ensemblematching the observed constraints. Being the result of the
maximization of the entropy, this ensemble represents the least biased estimate of the network structure, based
only on the knowledge of the empirical degree sequence.

Infigure 1we plot some higher-order topological properties of the ITN as a function of the degree of nodes,
for the 2002 snapshot. These properties are the so-called average nearest neighbor degree and the clustering
coefficient. For both quantities, we plot the observed values (red points) and the corresponding expected values
predicted by the BCM(blue points). The exact expressions for both empirical and expected quantities are
provided in the appendix.We see that the expected values are in very close agreementwith the observed
properties. These results replicate recent findings [15, 17] based on the sameUNCOMTRADEdata. They show
that at a binary level, the degree correlations (disassortativity) and clustering structure of the ITN are excellently
reproduced by the BCM.Aswe also confirmed in the present analysis, these results were found to be very robust,
as they hold true over time and for various resolutions (i.e., for different levels of aggregation of traded
commodities) [15, 17].

2.2.1. Relationwith the fitnessmodel
It should be noted that equation (4) can be thought of as a particular case of the so-called FitnessModel [43],
which is a popularmodel of binary networks where the connection probability pij is assumed to be a function of

the values of some ‘fitness’ characterizing each vertex. Indeed, the variables ⃗z * can be treated as fitness
parameters [6, 39]which control the probability of forming a link. A very interesting correlation between a
fitness parameter of a country (assigned by themodel) and theGDPof the same country has been found [39].

This relation is replicated here infigure 2, where the rescaledGDPof each country ( ≡
∑

gi
GDP

GDP
i

i i
) is compared to

the value of thefitness parameter zi
* obtained by solving equation (5). The red line is a linearfit of the type

=z a g· . (6)i i

This leads to amore economic interpretationwhere thefitness parameters can be replaced (up to a
proportionality constant) with theGDPof countries, and used to reproduce the properties of the network. This
procedure, first adopted in [6], can give predictions for the network based only onmacroeconomic properties of
countries, and reveals the importance of theGDP to the binary structure of the ITN. Importantly, this
observationwas thefirst empirical evidence in favor of thefitnessmodel as a powerful networkmodel [43].
Likewise, other studies have shown that the observed topological properties turn out to be important in
explainingmacroeconomics dynamics [2, 3].

Figure 1.Comparison between the observed undirected binary properties (red points) and the corresponding ensemble averages of
the BCM(blue points) for the aggregated ITN in the 2002 snapshot. Left panel: average nearest neighbor degree knn versus degree ki.
Right panel: binary clustering coefficientCi versus degree ki.
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2.3.Weighted structure
Despite the importance of the topology, the latter is only the backbone over which goods are traded, and the
knowledge of the volume of such trade is extremely important. To be able to give predictions about theweight of
connections, one needs to switch from an ensemble of binary graphs to one of weighted graphs.

The simplest weighted counterpart of the BCM is theWCM,which is amaximum-entropy ensemble of
weighted networkswhere the constraint is the strength sequence, i.e. the total trade of each country in the case of
the ITN. Recent studies have shown that the higher-order binary quantities predicted by theWCM, aswell as the
correspondingweighted quantities, are very different from the observed counterparts [16, 17].More specifically,
themain limitation of themodel is that of predicting a largely homogeneous and very dense (sometimes fully
connected) topology. Roughly speaking, themodel excessively ‘dilutes’ the total trade of each country by
distributing it to almost all other countries. This failure in correctly replicating the purely topological projection
of the real network is the root of the bad agreement between expected and observed higher-order properties.

2.3.1. Relationwith theGravityModel
Just like the BCMhas been related to the FitnessModel [6], a variant of theWCMhas been related to theGravity
Model [18]. The variant is actually a continuous version of theWCM,where the strength sequence is
constrained and theweights are real numbers instead of integers.When applied to the ITN, themodel gives the
following expectation for theweight of the links:

= ∀w T g g i j· , , (7)ij i j

whereT is the total strength in the network, and gi is the re-scaledGDP as before [18]. In essence, the above
expression identifies again a relationship between theGDP and the hidden variable (analogous to the fitness in
the binary case) specifying the strength of a node.

Equation (7) coincides with equation (1) where β = 1and γ = 0. Themodel therefore corresponds to a
particularly simple version of theGravityModel. Indeed, themodel reproduces reasonably well the observed
non-zeroweights of the ITN [18].However, just like theGravityModel, themodel predicts a complete
graphwhere = ∀a i j1 ,ij , and dramatically fails in reproducing the binary architecture of the network. This

can be easily shownby realizing that the continuous nature of edgeweights, which can take non-negative real
values in themodel, implies that there is a zero probability of generating zeroweights (i.e.missing links).Wewill
show the prediction of thismodel in comparisonwith our results later on in the paper.

3. AGDP-drivenmodel of the ITN

Motivated by the challenge to satisfactorilymodel both the topology and theweights of the ITN, the ECMhas
been recently proposed as an improvedmodel of this network [38]. The ECM focuses onweighted networks,
and can enforce the degree and strength sequence simultaneously [35]. It builds on the so-called generalized
Bose–Fermi distribution that wasfirst introduced as a nullmodel of networks with coupled binary andweighted
constraints [37].

Figure 2.The calculated zi, comparedwith the gi (re-scaledGDP) for each country for the undirected binary aggregated ITN in the
2002 snapshot, with the linearfit =z a g·i i (red line).
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In the ECM, the degree and strength sequence can be constrained bywriting the followingHamiltonian:

⎡⎣ ⎤⎦∑ α β= +
=

H k sW W W( ) ( ) ( ) , (8)
i

N

i i i i

1

where the strength sequence is defined as = ∑ ∀≠s w iW( ) ,i j i
N

ij and the degree sequence as

Θ= ∑ = ∑ ∀≠ ≠k a w iW( ) [ ],i j i
N

ij j i
N

ij . As a result, the probability of a given configurationW can bewritten as

∏=
∑ ′

=
−

− +

−

′
−

<

( ) ( )
P

x x y y y y

y y x x y y
W( )

e

e

( ) 1

1
(9)

H

H
i j

i j
a

i j

w

i j

i j i j i j

W

W
W

( )

( )

ij
ij

with ≡ α−x ei
i and ≡ β−y ei

i. The ECMgives the following predictions about the probability of a link (〈 〉aij ) and
the expectedweight of the link (〈 〉wij ):

=
− +

=a
x x y y

y y x x y y
p

1
(10)ij

i j i j

i j i j i j
ij

=
− + −

=
−( )( )

w
x x y y

y y x x y y y y

p

y y1 1 1
. (11)ij

i j i j

i j i j i j i j

ij

i j

According to themaximum-likelihoodmethod proposed in [35], the vectors of unknowns ⃗x and ⃗y can be
numerically found by solving the systemof N2 coupled equations

∑= = ∀
≠

( )k p k iW W( ) * (12)i

j i

N

ij i

∑= = ∀
≠

( )s w s iW W( ) * (13)i

j i

N

ij i

andwill be indicated as ⃗x* and ⃗y *. These unknown parameters can be treated as fitness parameters which
control the probability of forming a link and the expectedweight of that link simultaneously.

The application of the ECM to various real-world networks shows that themodel can accurately reproduce
the higher-order empirical properties of these networks [35].When applied to the ITN in particular, the ECM
replicates both binary andweighted empirical properties, for different levels of disaggregation, and for several
years (temporal snapshots) [38]. Indeed, infigure 3we show the higher-order binary quantities (average nearest
neighbor degree and clustering coefficient) aswell as their weighted ones (average nearest neighbor strength and
weighted clustering coefficient) for the 2002 snapshot of the ITN.We compare the observed values (red points)
and the corresponding quantities predicted by the ECM(blue points). Themathematical expressions for all
these quantities are provided in the appendix.Wefind a very good agreement between data andmodel,
confirming the recent results in [38] for the data set we are using here.We also confirmed that these results are
robust for several temporal snapshots [38].

3.1. Aweightedfitnessmodel of trade
Considering the promising results of the ECM,we nowmake a step forward and checkwhether the hidden
variables xi and yi, which effectively reproduce the observed ITN, can be thought of as ‘fitness’ parameters having
a clear economic interpretation. This amounts to checkingwhether the relation shown previously infigure 2 for
the purely binary case can be generalized in order tofind amacroeconomic interpretation to the abstract fitness
parameters in the general weighted case as well.

Infigure 4we show the relationship between the two parameters xi and yi and the rescaledGDP (gi) for each
country of the ITN in the 2002 snapshot.Wefind strong correlations between these quantities. Thefitness
parameter xi turns out to be in a roughly linear relationwith the rescaledGDP gi,fitted by the curve

=x a g· , (14)i i

where a is the fitted constant, and =
∑

gi
GDP

GDP
i

i i
(all theGDPs are relative to that specific year). It should be

noted that this relation is similar to that found between zi and gi in the BCMand shown previously infigure 2, but
less accurate. This observationwill be useful later. By contrast, since theGDP is an unbounded quantity, while
thefitness parameter yi is bounded between 0 and 1 (this is amathematical property of themodel [35, 37]), the
relation between yi and gi is necessarily highly nonlinear. A simple functional form for such a relationship is
given by
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=
+

y
b g

b g

·

1 ·
. (15)i

i
c

i
c

Indeed,figure 4 confirms that the above expression provides a very good fit to the data.
We checked that the above results hold systematically over time, for each snapshot of the ITN in our data set.

This implies that, in a given year, we can insert equations (14) and (15) into equations (10) and (11) to obtain a
GDP-drivenmodel of the ITN structure for that year. Such amodel highlights that theGDPhas a crucial role in
shaping both the binary and theweighted properties of the ITN.While this was already expected on the basis of
the aforementioned results obtained using the BCMand theWCM(or the corresponding simplified gravity
model) separately,finding the appropriate way to explicitly combine these results into a unified description of
the ITNhas remained impossible so far. Rather than exploring inmore detail the predictions of theGDP-driven
model in the formdescribed above, wefirstmake some considerations leading to a simplification of themodel
itself.

Figure 3.Comparison between the observed undirected binary andweighted properties (red points) and the corresponding ensemble
averages of the the ECM(blue points) for the aggregated ITN in the 2002 snapshot. Top left panel: average nearest neighbor degree knn

versus degree ki; top right panel: binary clustering coefficientCi versus degree ki ; bottom left panel: average nearest neighbor strength
snn versus strength si ; bottom right panel: weighted clustering coefficientCW versus strength si .

Figure 4.The calculated xi (left panel) and −
y

y1

i

i
(right panel) comparedwith the gi (rescaledGDP) for each country for the undirected

binary aggregated ITN in the 2002 snapshot, with the linear fits (in log–log scale) =x a g·i i , and =
−

b g·
y

y i
c

1

i

i
(red lines), where a,

b, and c are thefitted constant parameters per year.
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3.2. ReducedTSmodel
At this point, it should be noted thatwe arrived at two seemingly conflicting results.We showed that both the
BCMandECMgive a very good prediction for the binary topology of the network.However, equations (4) and
(10), which specify the connection probability pij in the twomodels, are significantly different. The comparable
performance of the BCMand the ECMat a binary level (see figures 1 and 3)makes us expect that, when the

specific values ⃗z * and ⃗x* are inserted into equations (4) and (10) respectively, the values of the connection
probability become comparable in the twomodels, despite the differentmathematical expressions.

Infigure 5we compare the the two probabilities for the ITN in the 2002 snapshot. Note that each point refers
to the probability of creating a link between a pair of countries, which results in −N N( 1)

2
points. Indeed, we can

see that the values are scattered along the identity line, confirming the expectation that the connection
probability has similar value in the twomodels.

The above result allows us tomake a remarkable simplification. In equations (10) and (11), we can replace
the expression for pij provided by the ECMwith that provided by the BCM in equation (4). To avoid confusion,
we denote the newprobability with pij

ts, where ts stands for ‘two-step’, for a reason that will be clear immediately.
This results in the following equations for the expected network properties:

=
+

≡a
z z

z z
p

1
, (16)ij

i j

i j
ij

ts ts

=
−

w
p

y y1
, (17)ij

ij

i j

ts
ts

where the ziʼs, and therefore the p
ts
ij ʼs, depend only on the degrees through equation (5), while the yiʼs and the

〈 〉wij
tsʼs depend on both strengths and degrees through equations (12) and (13).
In this simplifiedmodel the connection probability, which fully specifies the topology of the ensemble of

networks, no longer depends on the strengths as in the ECM,while theweights still do. This implies that we can
specify themodel via a TS procedure wherewe first solve theN equations determining pij

ts via the degrees, and
thenfind the remaining variables determining〈 〉wij

ts through the ECM. For this reason, we denote themodel as
the TSmodel.

The probability of a configurationW reads

∏=
<

P q wW( ) ( , ) (18)
i j

ij ij
ts ts

where

=
−

+

−
( ) ( )

q w
z z y y y y

z z
( )

( ) 1

1
(19)ij ij

i j
a

i j

w a

i j

a

i j

ts
ij

ij ij ij

is the probability that a link of weightwij connects the nodes (countries) i and j. The above probability has the
same general expression as in the original ECM[35], but here zi comes from the estimation of the simpler BCM.
It is instructive to rewrite (19) as

=
+

= −( )q
z z

p(0)
1

1
1 ; (20)ij

i j
ij

ts ts

Figure 5.The probability of forming a link in the ECM p ECMij compared to the probability in the BCM p BCMij for the undirected

binary aggregated ITN in the 2002 snapshot. The red line describes the identity line.
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= − ∀ >
−

( ) ( )q w p y y y y w( ) 1 , 0 (21)ij ij i j

w

i j
ts ts

1

to highlight the randomprocesses creating each link. As afirst step, one determines whether a link is created or
notwith a probability pij

ts. If a link (of unit weight) is indeed established, a second attempt determines whether
theweight of the same link is increased by another unit (with probability y yi j) orwhether the process stops (with

probability − y y1 i j). Iterating this procedure, the probability that an edgewithweightw is established between

nodes i and j is given precisely byq w( )ij
ts in equation (21). The expectedweight〈 〉wij

ts is then correctly retrieved

as∑ =
+∞ w q w· ( )w ij0

ts .

Using the relations found in equations (6) and (15), we can input the gi as thefitness parameters into
equations (16) and (17) to get the following expressions thatmathematically characterize ourGDP-driven
specification of the TSmodel:

=
+

≡a
ag g

ag g
p

1
(22)ij

i j

i j
ij

ts ts

=
+ +

+ +

( )
( )

( )
w p

bg bg

bg bg

1 1

1
. (23)ij ij

i
c

j
c

i
c

j
c

ts ts

The above equations can be used to reverse the approach used so far: rather than using the N2 free parameters of
the ECM( ⃗x and ⃗y ) or of the TSmodel ( ⃗z and ⃗y ) tofit themodels on the observed values of the degrees and
strengths, we can nowuse the knowledge of theGDPof all countries to obtain amodel that only depends on the
three parameters a, b, c. Assigning values to these parameters can be done using two techniques:maximization of
the likelihood function and nonlinear curvefitting. Since themodel is a TS one, we can first assign a value to the
parameter a, and only in the second step (once a is set) wefit the parameters b and c.

We chose tofix a bymaximizing the likelihood function [39], which results in constraining the expected
number of links to the observed number (〈 〉 =L L), as in [6]. Fixing the values of b and c is slightlymore
complicated. Since themodel uses the approximated expressions of the TSmodel, rather than those of the
original ECMmodel,maximizing the likelihood function in the second step no longer yields the desired
condition〈 〉 =T T , whereT is the total strength in the network. Similarly, extracting the parameters from the fit

Figure 6.Comparison between the observed properties (red points), the corresponding ensemble averages of theGDP-driven two-
stepsmodel (blue points) and theGDP-drivenWCMmodel (green points), of the aggregated ITN in 2002. Top left: average nearest
neighbor degree knni versus degree ki. Top right: binary clustering coefficient ci versus degree ki. Bottom left: average nearest neighbor
strength snni versus strength si. Bottom right: weighted clustering coefficient cwi versus strength si.
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as shown infigure 4 does notmaintain the total strength in the network. In absence of any a priori preference, we
chose the latter procedure, due to its relative numerical simplicity with respect to the former one.

Infigure 6we show a comparison between the higher-order observed properties of the ITN in 2002 and their
expected counterparts predicted by theGDP-driven TSmodel. Again, themathematical expressions of these
properties are provided in the appendix. As a baseline comparison, we also show the predictions of theGDP-
drivenWCMmodel with continuousweights described by equation (7) [18], which coincides with a simplified
version of the gravitymodel as wementioned.

We see that theGDP-driven TSmodel reproduces the empirical trends verywell. Of course, as expected, the
predictions infigure 6 (which use only three free parameters) aremore noisy than those infigure 3 (which use

N2 free parameters). This is due to the fact that equations (6) and (15) describe fitting curves rather than exact
relationships. Importantly, ourmodel performs significantly better than theWCM/gravitymodel in replicating
both binary andweighted properties. Again, the drawback of thesemodels lies in the fact that they predict a fully
connected topology and a relatively homogeneous network.

It should also be noted that the plot of average nearest neighbor strength (snn) predicted by ourmodel is
slightly shiftedwith respect to the observed points. This effect is due to the fact that, as wementioned, the total
strengthT (hence the average trend of the snn) is only approximately reproduced by ourmodel, as a result of the
simplification from the ECM to the TSmodel.

As for all the other results in this paper, we checked that ourfindings are robust over the entire time span of
our data set.We therefore conclude that the ECMmodel, as well as its simplified TS variant, can be successfully
turned into a fully GDP-drivenmodel that simultaneously reproduces both the topology and theweights of
the ITN.

The success of the TSmodel has an important interpretation. Looking back at equations (16) and (22), we
recall that the effect of the TS approximation is the fact that the connection probability pij

ts can be estimated
separately from theweights〈 〉wij

ts, using only the knowledge of the degree sequence if equation (16) is used, or

theGDP and total number of links if equation (22) is used, while discarding that of the strengths. By contrast, the
estimation of the expectedweights〈 〉wij

ts cannot be carried out separately, as it requires that the connection

probability pij
ts appearing in equations (17) and (23) is estimated first. This asymmetry of themodelmeans that

the topology of the ITN can be successfully inferredwithout any information about theweighted properties,
while theweighted structure cannot be inferredwithout topological information. The expressions defining the
TSmodel provide amathematical explanation for this otherwise puzzling effect that has already been
documented in previous analyzes of the ITN [15–17, 38].

4. Conclusions

In this paper we have introduced a novel GDP-drivenmodel which successfully reproduces both the binary and
weighted properties of the ITN. Themodel uses theGDPof countries as a sort ofmacroeconomic fitness, and
reveals the existence of strong relations between theGDP and themodel parameters controlling the formation
and the volume of trade relations. In light of the limitations of the existingmodels (most notably the binary-only
nature of thefitnessmodel and theweighted-only nature of the gravitymodel), we believe that our results
represent a promising step forward in the development of a unifiedmodel of the ITN structure.We have also
shown that the full ECMmodel can be effectively reduced to the simpler TSmodel. The success of the latter
provides amathematical explanation of an otherwise puzzling asymmetry, namely the fact that purely
topological properties can be successfully predicted without knowing theweights, while weighted network
properties can only be predicted if the topological ones are preliminary estimated. Futurework should explore
how to further improve these results and possibly expand themby introducing additionalmacroeconomic
parameters like geographic distance, thus fully bridging the gap between network-based and gravity-based
approaches to the structure of international trade.
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AppendixA.Higher-order properties

In this appendixwe give a summarized description of the binary andweighted network quantities which are
studied in this paper. Specifically, we first showhow the properties aremeasured over a real network, and then
how the expected values under the ECMand the TSmodel are constructed.

A.1.Observed properties
Let us note aweighted undirected network as a squarematrixW , where the specific entrywij represents the edge
weight between country i and country j. The binary representation of the network is noted by a binarymatrixA,
where the entries are Θ= ∀a w i j[ ], ,ij ij .

We compute the average nearest neighbor degree as:

∑= =
∑ ∑

∑≠

≠ ≠

≠
k

a k

k

a a

a
W( ) . (A.1)i

j i

ij j

i

j i k j ij jk

j i ij

nn

Its calculated as the arithmeticmean of the degrees of the neighbors of a specific node, which is ameasure of
correlation between the degrees of adjacent nodes.

The binary clustering coefficient has the following expression:

=
∑ ∑

∑ ∑
≠ ≠

≠ ≠
c

a a a

a a
W( ) . (A.2)i

j i k i j ij jk ki

j i k i j ij ki

,

,

It is ameasure of the tendency towhich nodes in a graph form cluster together.More specifically, it counts how
many closed triangles are attached to each nodewith respect to all the possible triangles.

The correspondingweighted properties are the average nearest neighbor strength and theweighted
clustering coefficient. The average nearest neighbor strength, defined as:

∑= =
∑ ∑

∑≠

≠ ≠

≠
s

a s

k

a w

a
W( ) , (A.3)i

j i

ij j

i

j i k j ij jk

j i ij

nn

where = ∑s wi j ij is the strength (totalflow) of a country. The si
nnmeasure the average strength of the neighbors

for a specific node i. Like its binary counterpart, it gives themagnitude of activity of a specific node neighbors
(weighted activity).

Theweighted clustering coefficient [44] is defined as:

=
∑ ∑

∑ ∑
≠ ≠

≠ ≠
c

w w w

a a
W( )

( )
. (A.4)i

W j i k i j ij jk ki

j i k i j ij ki

,

,

1
3

The c W( )i
W is ameasure of theweight density in the neighborhood of a node. It classify the tendency of a specific

node to cluster in a triangle taking into account also the edge-values.
Now, themeasured properties of the real network need to be comparedwith the reproduced properties of

the differentmodels. These reproduced properties are the expected values of themaximum entropy ensemble
that eachmodel id generating, and can be calculated analytically. The expected values can be obtained by simply
replacing aijwith the probability pij for the differentmodels (pij is different to eachmodel). This next step is what
wewill discuss in the next sections.

A.2. Expected values in the BCMandECM
Since the BCMmodel is only dealingwith the binary representation, wewill have expected values just for the two
binary higher-order properties.While the ECMgives expectations for theweighted counterparts of the binary
properties.

For the binary higher-order properties, we replace aijwith pijwhich is the probability of creating a link, and
also the expected value of the edge = 〈 〉p aij ij . This simple procedure yields the analytic formula of the expected

value for the properties.We compute the expected average nearest neighbor degree as:

=
∑ ∑

∑
≠ ≠

≠
k

p p

p
(A.5)i

j i k j ij jk

j i ij

nn
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and the expected binary clustering coefficient as:

=
∑ ∑

∑ ∑
≠ ≠

≠ ≠
c

p p p

p p
, (A.6)i

j i k i j ij jk ki

j i k i j ij ki

,

,

where for the BCMmodel we input =
+

pij

z z

z z1

i j

i j
, and for the ECM themore complex term =

− +
p .ij

x x y y

y y x x y y1

i j i j

i j i j i j

In theweighted case (weighted higher-order properties), we are left only with the ECM.The expected
average nearest neighbor strength is calculated as:

=
∑ ∑

∑
≠ ≠

≠
s

p w

p
, (A.7)i

j i k j ij jk

j i ij

nn

where〈 〉 =
− + −

wjk

x x y y

y y x x y y yy(1 )(1 )

i j i j

i j i j i j i j

andwe input the pij of the ECMmodel as before.

In the expected value of the cWwe should bemore careful, since it is necessary to calculate the expected
product of (powers of) distinctmatrix entries

=
∑ ∑

∑ ∑
≠ ≠

≠ ≠
c

w w w

p p

( )
. (A.8)i

W j i k i j ij jk ki

j i k i j ij ki

,

,

1
3

Weknow that

∑ ∑… = …α β α β

≠ ≠ ≠ ≠

w w w w· · · · (A.9)
i j k

ij jk
i j k

ij jk

with the generic term for the ECMcase

∑= ⃗ ⃗ =
−

− +
γ γ

γ∞ ( ) ( )
( )w w q w x y

x x y y Li y y

y y x x y y
,

1

1
(A.10)ij ij

i j i j i j

i j i j i j0

where = ∑=
∞Li R( )n l

R

l1

l

n is the nth polylogarithmofR. For amore comprehensive description please refer to [35].

A.3. Expected values in the TSmodel
Here againwe use the known expressions for the properties and replacing the terms ptsij andw

ts
ij with the expected

values〈 〉aij and〈 〉wij correspondingly. However, here the expected values are a function of theGDP of the
countries, ormore specifically the re-scaledGDP gi. The expresions for the higher-order binary properties are as
before :

=
∑ ∑

∑
≠ ≠

≠

k
p p

p
(A.11)i

j i k j ij jk

j i ij

nn

ts ts

ts

and

=
∑ ∑

∑ ∑
≠ ≠

≠ ≠

c
p p p

p p
, (A.12)i

j i k i j ij jk ki

j i k i j ij ki

,
ts ts ts

,
ts ts

where =
+

pij

ag g

ag g
ts

1

i j

i j

.

In theweighted case,the expected average nearest neighbor strength is calculated as:

=
∑ ∑

∑
≠ ≠

≠

s
p w

p
, (A.13)i

j i k j ij jk

j i ij

nn

ts ts

ts

where〈 〉 =
+

+ +

+ +
w ·ij

ag g

ag g

bg bg

bg bg
ts

1

(1 )(1 )

(1 )

i j

i j

i
c

j
c

i
c

j
c andwe input the ptsij of the TSmodel as before.

For convenience reasonswewill write the expression for theweighted clustering coefficient cWfirst as a
function of thefitness parameters zi and yi, and later replaced themwith the correspondingGDP terms. The
expected value of the cW in the TS case is:
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=
∑ ∑

∑ ∑
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≠ ≠

c
w w w

p p
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W j i k i j ij jk ki
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,

ts

,
ts ts

1
3

As beforewe observe that

∑ ∑… = …α β α β
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w w w w· · · · (A.15)
i j k

ij jk
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with the generic term for the TSmodel
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n is the nth polylogarithmofR.

Oncewe input the expressions of zi and yi
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