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Several systems can be represented as multiplex networks, i.e. in terms of a superposition of various graphs,
each related to a different mode of connection between nodes. Hence, the definition of proper mathematical
quantities aiming at capturing the added level of complexity of those systems is required. Various steps in
this direction have been made. In the simplest case, dependencies between layers are measured via
correlation-based metrics, a procedure that we show to be equivalent to the use of completely homogeneous
benchmarks specifying only global constraints. However, this approach does not take into account the
heterogeneity in the degree and strength distributions, which is instead a fundamental feature of real-world
multiplexes. In this work, we compare the observed dependencies between layers with the expected values
obtained from maximum-entropy reference models that appropriately control for the observed
heterogeneity in the degree and strength distributions. This information-theoretic approach results in the
introduction of novel and improved multiplexity measures that we test on different datasets, i.e. the
International Trade Network and the European Airport Network. Our findings confirm that the use of
homogeneous benchmarks can lead to misleading results, and highlight the important role played by the
distribution of hubs across layers.

systems as a set of units (nodes) connected by edges (links) symbolizing interactions' ™.

owever, this approach may actually lead to an oversimplification: indeed, several systems are composed by
units connected by multiple kinds of interaction. In such systems, the same set of nodes is joined by various types
of links, each of those representing a different mode of connection®. The simplest way to analyse such systems is
the aggregation of the various levels in a single network, but it turns out that such a simplification may discard
fundamental information about the real topology of the network and therefore about possible dynamical pro-
cesses acting on the system®. For instance, such an aggregation may result in a loss of information about the
distribution of the hubs across layers, which is instead crucial for the control of several processes arising on an
interdependent network’. Then, in order to solve such an issue, in the last few years the study of multi-layer
networks has been pursued. In this context, new quantities aiming at mathematically analyzing multi-level
networks have been provided®''; furthermore, models of growth'>'* and dynamical processes occurring on
multiplexes, such as epidemic spreading'’, diffusion'®, cooperation'” and information spreading'® have been
designed.

In this work, we follow the path towards the definition of measures that can be applied to multi-level networks,
in order to characterize significant structural properties of these systems, in particular focusing on the analysis of
the dependencies between layers. We argue that, in order to properly characterize such dependencies, a com-
parison between the observed correlation and some notion of expected correlation is required. We therefore
exploit the concept of multiplex ensemble'*', aiming at the definition of suitable null models for multi-layer
complex networks, in order to compare the observed overlap between layers with the expected overlap one would
find in a random superposition of layers with the same node-specific properties. In particular, since our purpose is
precisely that of measuring such dependencies, we will consider uncorrelated multiplex ensembles, in order to
define a null model for the real system so that it is possible to compare the observed correlations with reference
models where the overlap between layers is actually randomized and, at the same time, important node-specific
properties of the real network are preserved.

Various efforts have already been made about the study of correlations in multi-level networks**~**, but the
comparison of the observed results with the expected ones has generally been based on a - sometimes implicit -
assumption: the benchmark was a completely homogeneous graph. In particular, here we show that correlation-
based measures of inter-layer dependency (of the type used e.g. in Ref. 22) build on an implicit assumption of
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homogeneity, which in the unweighted case is equivalent to the
choice of the Random Graph as null model. Similarly, for weighted
networks, the chosen benchmark was equivalent to the Weighted
Random Graph, where the weight distribution is independent from
the considered pair of nodes™.

However, this assumption of uniformity in the probability distri-
butions strongly contrasts with the observed findings in real-world
complex systems. Indeed, one of the most well-known features of
complex networks is their heterogeneity®, both in the degree distri-
bution and in the strength distribution; it is therefore crucial to take
this aspect into account when proper null models for graphs are
designed. Moreover, it has been recently shown that, in multiplex
networks, the correlation between degrees (and strengths) of nodes
across different layers is also an important structural feature that can
have strong effects on the dynamics™. Ultimately, such inter-layer
degree correlations determine the distribution of hubs across layers,
i.e. whether the same nodes tend to be hubs across many layers, or
whether different layers are characterized by different hubs. We
therefore aim at measuring multiplexity in terms of the “residual”
inter-layer dependencies that persist after we filter out, for each layer
separately, the effects induced by the heterogeneity of the empirical
degree (for unweighted networks) or strength (for weighted graphs)
distribution. We show that such a refinement can completely change
the final findings and lead to a deeper understanding of the actual
dependencies observed between layers of a real-world multiplex.

First, we introduce a new “absolute” measure of multiplexity
designed to quantify the overlap between layers of a multi-level com-
plex network. Second, we derive the expression of the expected value
of such a quantity, both in the binary and in the weighted case, for
randomized networks, by enforcing different constraints. Third, we
combine the “absolute” multiplexity and its expected value into a
filtered, “relative” measure of multiplexity that has the desired prop-
erties. We finally apply our measures to two different real-world
multiplexes, namely the International Trade Network and the
European Airport Network, showing that the analysis of the depend-
encies between layers can actually make some important structural
features of these systems explicit.

Indeed, while the former shows significant correlations between
layers (i.e., traded commodities), in the latter almost no overlap can
generally be detected, thus clearly defining two opposite classes of
multiplexes based on the observed correlations. Furthermore, we will
link such a behaviour with the distribution of the hubs across layers,
hence providing a straightforward explanation to the observed
findings.

Results

Null models. It is possible to design null models for multi-level
networks as maximum-entropy ensembles on which we enforce a
given set of constraints®. In particular, we exploit the concept of
uncorrelated multiplex ensemble, so that the definition of proper
null models for the considered multiplex reduces to the definition
of an indipendent null model for any layer of the system. In order to
do this, we take advantage of the concept of canonical network
ensemble, or exponential random graph®, ie. the maximum-
entropy family of graphs satisfying a set of constraints on average.
In this context the resulting randomized graph preserves only part of
the topology of the considered real-world network and is entirely
random otherwise, thus it can be employed as a proper reference
model. However, fitting such previously defined models to real
datasets is hard, since it is usually computationally demanding as it
requires the generation of many randomized networks whose
properties of interest have to be measured.

In this perspective, we exploit a fast and completely analytical
Maximum Entropy method, based on the maximization of the like-
lihood function®*', which provides the exact probabilities of occur-
rence of random graphs with the same average constraints as the real

network. From such probabilities it is then possible to compute the
expectation values of the properties we are interested in, such as the
average link probability or the average weight associated to the link
established between any two nodes. While the adoption of such a
method is not strictly required when dealing with global constraints
like the total number of links observed in a network (the so-called
Random Graph), it becomes crucial when facing the problem of
enforcing local constraints such as the degree sequence or the
strength sequence (Binary or Weighted Configuration Model).
More information about such null models can be found in the
Methods Section and in the Supplementary Information.

Before introducing our measures of multiplexity, we make an
important preliminary observation. Simple measures of inter-layer
dependency are based on correlation metrics, which in turn rely on
an assumption of uniformity, such assumption being ultimately
equivalent to the choice of a uniform Random Graph as a null model.
We illustrate this result in more detail in the Supplementary
Information.

Multiplexity. When unweighted networks are considered, we define
the “absolute” binary multiplexity between any two layers « and f3 as:
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where L*is the total number of links observed in layer & and a; =0,1
depending on the presence of the link between nodes i and jin layer a.
Such a quantity represents a normalized overlap between any pair of
layers and can therefore be thought of as a normalized version of the
global overlap introduced in Ref. 21.

The previous definition can be easily extended to weighted multi-
plex networks. We define the “absolute” weighted multiplexity as:
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where wj; represents the weight of the link between nodes i and j in

layer o and W” is the total weight related to the links in that layer.
Both (1) and (2) range in [0, 1], are maximal when layers « and f are
identical - that is, if there is complete similarity between those two
layers - and minimal when they are fully uncorrelated; in this per-
spective, they evaluate the tendency of nodes to share links in differ-
ent layers.

However, the above absolute quantities are uninformative without
a comparison with the value of multiplexity obtained when consid-
ering a null model. We may indeed measure high values of multi-
plexity between two layers due to the possibly large observed values
of density, without any significant distinction between real depend-
ence and overlap imposed by the presence of many links in each layer
(thus forcing an increase in the overlap itself).

Furthermore, we cannot draw a clear conclusion about the amount
of correlation between layers by just looking at the observed value,
since such a measure is not universal and, for instance, no compar-
ison between different multiplexes can be done based on the raw
“absolute” multiplexity.

We therefore introduce the following “relative” or rescaled quant-
ity along the lines of Refs. 34, 35:

ot = ) ()
1— (m*F)

where m*” is the value measured for the observed real-world multi-
plex and (m*’) is the value expected under a suitably chosen null
model. The main null models that we will consider are respectively
the Random Graph (RG) and the Binary Configuration Model
(BCM) in the unweighted case, the Weighted Random Graph
(WRG) and the Weighted Configuration Model (WCM) in the
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weighted case. We will characterize them in more detail in the
Methods Section and in the Supplementary Information.

This rescaled quantity is now directly informative about the real
correlation between layers: in this context, since u** € [—1, 1],
positive values represent positive correlations, while negative values
are associated to anticorrelated pairs of layers; furthermore, pairs of
uncorrelated layers show multiplexity values comparable with 0.

One of the motivations of the present work is the consideration
that, in the binary case, when the Random Graph is considered as a
null model, the previous quantity (3) can actually be reduced to the
standard correlation coefficient between the entries of the adjacency
matrix referred to any two layers o and f§ of a multi-level graph,
defined as:

Corr{a?‘ aﬂ} = <a?]‘»a5> _ <a?§><a§> (4)
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In the Supplementary Information, we show that the previous
expression is nothing but a different normalization of the rescaled
binary multiplexity defined in (3):

Corr{ajaf} =F (! — (m™") )

where F is a factor depending on L% Lf and N.

Binary analysis. We validate our definitions applying them to two
different real-world multiplexes: the International Trade Network (N
= 207 countries, M = 96 layers representing traded commaodities),
available as a weighted multi-level network, and the European
Airport Network (N = 669 airports, M = 130 airlines), provided
as an unweighted system. A detailed description of the datasets can
be found in the Supplementary Information.

The implementation of the concept of multiplexity to different
networks can lead to completely divergent results, according to the
structural features of the considered systems. Indeed, the application
of (1) to the International Trade Network leads to the color-coded
multiplexity matrix shown in Figure 1(a). Such an array generally
shows very high overlaps between layers, i.e. between different classes
of commodities, pointing out that usually each country tends to
import from or export to the same set of countries almost indepen-
dently from the traded items; this is true in particular for most of the
edible products (layers characterized by commodity codes ranging
from 1 to 22, as listed in the Supplementary Information).

In order to have a complete picture of the dependencies between
layers of the considered systems, we have to compare our findings
with the overlaps expected for multiplexes having only some of the
properties in common with the observed ones. The simplest bench-
mark, as well as the most widely used, is the Random Graph, which

discards, as we said, any kind of heterogeneity in the degree distribu-
tions of the layers. When we compute iz for the International Trade
Network, we obtain the multiplexity matrix shown in Figure 1(b).
The plot clearly shows that most of the correlations are still present:
this layer-homogeneous null model, together with the presence of
comparable densities across the various layers, does not significantly
affect the expected overlaps. So far, we have discarded heterogeneity
in our null models. However, this can considerably affect the signifi-
cance of our findings. Therefore, we introduce heterogeneity in the
degree distribution within the reference model by means of the prev-
iously defined Configuration Model. This way, it is actually possible
to detect only the non-trivial dependencies, therefore discarding all
the overlaps simply due to the possibly high density of the layers, that
would otherwise increase the observed interrelations even if no real
correlation is actually present.

This is exactly what happens when the World Trade Network is
analyzed. Indeed, as shown in Figure 1(c), we find out that a signifi-
cant amount of the binary overlap observed in this network is actu-
ally due to the information included in the degree sequence of the
various layers, rather than to a real dependence between layers. This
method is therefore able to detect the really meaningful similarity
between layers, discarding the trivial overlap caused by the presence,
for instance, of nodes having a high number of connections in most
of the layers. This non-significant overlap is thus filtered out by our
procedure. Such observations clearly show that the Random Graph is
not the most proper reference model in order to obtain an appropri-
ate representation of crucial properties of such multi-level systems.

We now note that linear correlations have been used in the literat-
ure to produce dendrograms®>*°. As we mentioned, the use of linear
correlations corresponds to the choice of the Random Graph as null
model. Here, we can instead make use of ppcy to implement an
improved hierarchical clustering procedure, as reported in the
Supplementary Information.

A completely different behaviour can be observed for the European
Airport System. Indeed, low values of multiplexity observed for such
a network (Figure 2(a)) illustrate nearly no overlap between most of
the layers: this highlights the well-known tendency of airline com-
panies to avoid superpositions between routes with other airlines.

In Figure 2(b) we show the residual correlations obtained after the
application of the Random Graph: almost no difference can be per-
ceived with respect to Figure 2(a), since the expected overlap in this
case is very small, due to the very low densities of the various layers.
We should point out that the Random Graph is not a proper ref-
erence model for this real-world network, since the assumption of
uniformity in the degree of the different nodes (i.e., airports) is actu-
ally far from the observed structure of such a system, as we will
highlight later. Nevertheless, in Figure 2(c) we show that, at first
glance, the adoption of the Configuration Model does not look

0

Figure 1 | Analysis of the binary multiplexity between layers of the International Trade Network in 2011. Colorcoded matrices with entries given by

Mpin (@), g (b) and ppcas (¢) for any pair of layers (commodities).
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Figure 2 | Analysis of the binary multiplexity between layers of the European Airport Network. Color-coded matrices with entries given by m,,;, (a), ftr

(b) and ppcn (¢) for any pair of layers (airlines).

strictly required when the European Airport Network is considered,
except for a more suitable mathematical approach, since the overall
matrix looks apparently similar to the previous Figure 2(b).
However, the presence of a larger number of negative values of multi-
plexity and the simultaneous disappearance of most of the signifi-
cantly high values highlight once more the anti-correlated character
of such a system, and this crucial structural property of the airport
multiplex network was not fully revealed by the application of the
Random Graph.

In this case, a dendrogram designed form matrices reported in
Figure 2 would not be meaningful, since most of the layers meet at
a single root level, due to the very low correlation observed between
them.

Weighted analysis. Since the International Trade Network is
represented by a weighted multiplex, the analysis of weighted
overlaps between layers of that system can be performed, in order
to obtain more refined information about the dependencies between
different classes of commodities. We should indeed point out that,
for the World Trade Web, while the binary overlaps provided by (1)
only supply information about the dependencies between the
topologies of the various layers representing trade in different
commodities, the weighted multiplexity defined in (2) is able to
detect patterns of correlation between quantities of imported and
exported classes of items. In this perspective, observing high
correlations is therefore more unlikely. This is due, mathema-
tically, to the functional form of the definition of the multiplexity
given in (2), which is significantly dependent on the balance between
weights of the corresponding links in different layers; such a
property, therefore, tends to assign higher correlations to pairs of
commodities characterized by similar global amount of trade, as we
want.

In Figure 3(a) we show the color-coded matrix associated to the
raw values of weighted multiplexity as observed in the International
Trade Network: clear dependencies between different layers are still
present, but a comparison with its corresponding binary matrix
(shown in Figure 1(a)) explicitly reveals that, while some pairs of
layers are significantly overlapping, several pairs of commodities are
now actually uncorrelated, as expected when the weights of the links
are taken into account.

In order to provide information about the relation between the
observed dependencies between layers and the expected ones under a
given benchmark, as a first estimate, we calculate uyrg, therefore
considering the corresponding Weighted Random Graph as a ref-
erence for our real-world network. Our findings show, in Figure 3(b),
a strongly uncorrelated behavior associated to most of the pairs of
commodities, in contrast with our intuitive expectations based on the
results obtained in the binary case.

We then compare the observed multiplexity with its expected values
under the Weighted Configuration Model. Results, shown in
Figure 3(c), exhibit a completely different behavior with respect to
Figure 3(b), thus highlighting once more the importance of taking
into account the heterogeneity in the weight and degree distributions
within the considered null model. Indeed, we observe that, exploiting
this more suitable reference, several pairs are still correlated, even in
the weighted case, some of them are actually uncorrelated, as expected
by looking at the corresponding binary matrix (Figure 1(c)), and only
a few, with respect to the Weighted Random Graph case, remain anti-
correlated. In general, however, the dependencies between layers in the
weighted case are less noticeable, as we can see from a comparison
between the matrices shown in Figures 1(c) and 3(c).

Hubs distribution. The different behaviours observed for the two
considered multiplexes can be, at least partly, explained in terms of

uy g ‘ |

Figure 3 | Analysis of the weighted multiplexity between layers of the International Trade Network in 2011. Color-coded matrices with entries given by

m,, (a), twre (b) and pywep () for any pair of layers (commodities).
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Figure 4 | Hubs distribution in the International Trade multiplex. Top panels: graphs representing two layers of the system, respectively those
associated to trade in plastic (a) and articles of iron and steel (b); nodes represent trading countries; size of a node is proportional to its degree in that layer.
Only links associated to a trade larger than 100 millions dollars are reported. Bottom panel: scatter plot of the hidden variables x; relative to each of the

nodes for the same two layers; the black line represents the identity line.

distribution of the hubs across layers. As we show in Figure 4(a) and
4(b), generally any two layers of the World Trade Network exhibit the
same set of hubs (which in this particular case are represented by the
richest and most industrialized countries). Indeed, the two network
layers plotted in the Figure are, already from visual inspection, very
similar to each other. This property produces a high dependence
between layers, since the overlap is increased by the multiple
presence of links in the various layers connecting nodes to the hubs.

It is possible to show that this hubs distribution, leading to the
higher overlap between layers, is strongly correlated to the relation
existing between the hidden variables x; associated to each node in
the different layers. Indeed, as shown in Figure 4(c), for the consid-
ered pair of layers (but several pairs actually exhibit the same beha-
viour) such a trend can be clearly represented by a straight line, thus
pointing out that nodes with higher x; in one layer (hence, with
higher probability of establishing a link with any other node in that
layer) generally also have higher x; in a different layer.

However, when the European Airport Network is considered, an
opposite trend can be observed, thus a clear explanation of the small
measured overlap applies; indeed, Figures 5(a) and 5(b) show that in
this case the layers can be approximated to star-like graphs, with a

single, largely connected hub and several other poorly connected nodes.
Though, the hub is in general different for almost any considered layer,
since each airline company is based on a different airport: in the con-
sidered pair of layers, hubs are represented by Rome - Fiumicino
airport (FCO) for Alitalia and Amsterdam - Schiphol airport (AMS)
for KLM. Such a property decreases significantly the overlap between
layers, thus leading to the matrices previously shown in Figure 2.

Similar considerations can be done when looking at Figure 2(c),
where the scatter plot of the hidden variables associated to the nodes
in two different layers is shown. We observe that no linear trend can
be inferred, since only the two hubs stand out from the bunch of the
other airports (which are actually characterized by different values of
x;, even though this cannot be fully appreciated). It is anyway clear
that the hub of one layer, characterized by the highest value x; (hence,
with the highest probability of establishing a link with any other node
in that layer) is a poorly connected node in a different layer, being
characterized by a small value of x;.

Discussion
In the last few years the multiplex approach has revealed itself as a
useful framework to study several real-world systems characterized
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by elementary units linked by different kinds of connection. In
this context, we have introduced new measures aiming at analyz-
ing dependencies between layers of the network, both for binary
and weighted multi-graphs. We showed that our measures of
multiplexity are able to extract crucial information from both
sparse and dense networks by testing it on different real-world
multi-layer systems. We clearly found that a distinction can be
done based on the degree of overlap between links in different
layers. For instance, we showed that some multiplexes exhibit
small overlap between links in different layers, since just a limited
number of nodes are active in many layers, while most of them
participate to one or few layers. However, for other systems, such
as the International Trade Network, most of the pairs of nodes are
connected in several layers, so that such multiplexes exhibit large
overlap between layers. Furthermore, we found that the mul-
tiplexity can also provide interesting information about the dis-
tribution of hubs across the various layers; indeed, systems
characterized by nodes having many connections in most of the
layers, such as the International Trade Network, tend to show
higher values of raw binary multiplexity. On the other hand, in
different networks, exhibiting values of multiplexity for most of
the pairs of layers close to 0, a node with a low degree in a given

layer may represent a hub in a different layer: the European Airport
Network is a clear prototype of such systems.

Our findings suggest that adopting proper null models for multi-
level networks, enforcing constraints taking into account depend-
encies between layers, is required in order to suitably model such
real-world systems.

Further research in this direction will hopefully provide a better
understanding of the role of local constraints in real-world multi-
level systems.

Methods

Homogeneous null models. The simplest null model for a binary multiplex is an
independent superposition of layers in which each layer is a Random Graph (RG)*,
which enforces as constraint the expected number of links in that layer. Such model,
therefore, provides a unique expected probability p, that a link between any two nodes
is established in layer a: however, such a reference model completely discards any
kind of heterogeneity in the degree distributions of the layers, resulting in graphs
where each node has on average the same number of connections, inconsistently with
the observed real networks. Thus, the probability of connection between any two
nodes in layer o is uniformly given by:

L*

N(N—1)/2 ©

pa=

where L* is the total number of links actually observed in layer o.
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Similar considerations apply to weighted networks and the related Weighted
Random Graph (WRG)?, i.e. the straightforward extension of the previous Random
Graph to weighted systems; in such a null model, the probability of having a link of
weight w between two nodes i and j is independent from the choice of the nodes and
only depends on the total weight observed in a layer and on the number of nodes.

Analogously to the corresponding Binary Random Graph, also this kind of null
model discards the simultaneous presence of nodes with high and low values of the
strengths (that is, by a high or low sum of the weights associated to links incident on
that node).

Heterogeneous null models. To take into account the heterogeneity of the real-world
networks, in the unweighted case we consider a null model where the multiplex is an
independent superposition of layers, each of which is a (Binary) Configuration Model
(BCM)*, i.e. an ensemble of networks satisfying on average the empirical degree
sequence observed in that specific layer. Since we make use of the canonical
ensembles, it is possible to obtain from the Maximum Likelihood method each
probability p; that nodes i and j are connected in layer « (notice that such value p7; is
basically the expectation value of a; under the chosen Configuration Model).
Similarly, as a null model for a weighted multiplex we consider an independent
superposition of layers, each described by the Weighted Configuration Model
(WCM)™: here, for each layer separately, the enforced constraint is the strength
sequence as observed in the real-world multiplex. In this view, the likelihood
maximization provides the expectation value of each weight w; for any pair of nodes i
and j as supplied by the Weighted Configuration Model. It is worth noticing that
enforcing the degree sequence (respectively, the strength sequence in the weighted
case) automatically leads to the design of a null model where also the total number of
links (respectively, the total weight) of the network is preserved. In the Supplementary
Information, we will provide equations generalizing, for instance, equation (6), whose
solution allows then to derive the analytical expression of the expected link
probability pj; and, in the weighted case, the expected link weight w.. In order to do
this, we make use of a set of N auxiliary variables x} for any layer o, which are
proportional to the probability of establishing a link between a given node i and any
other node (or, respectively for the weighted case, establishing a link characterized by
a given weight), being therefore directly informative on the expected probabilities p;
(or, respectively, the expected weights wj).
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