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A SPARSITY PRESERVING CONVEXIFICATION PROCEDURE
FOR INDEFINITE QUADRATIC PROGRAMS ARISING IN DIRECT

OPTIMAL CONTROL˚
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Abstract. Quadratic programs (QP) with an indefinite Hessian matrix arise naturally in some
direct optimal control methods, e.g., as subproblems in a sequential quadratic programming scheme.
Typically, the Hessian is approximated with a positive definite matrix to ensure having a unique
solution; such a procedure is called regularization. We present a novel regularization method tailored
for QPs with optimal control structure. Our approach exhibits three main advantages. First, when
the QP satisfies a second order sufficient condition for optimality, the primal solution of the original
and the regularized problem are equal. In addition, the algorithm recovers the dual solution in a
convenient way. Second, and more importantly, the regularized Hessian bears the same sparsity
structure as the original one. This allows for the use of efficient structure-exploiting QP solvers.
As a third advantage, the regularization can be performed with a computational complexity that
scales linearly in the length of the control horizon. We showcase the properties of our regularization
algorithm on a numerical example for nonlinear optimal control. The results are compared to other
sparsity preserving regularization methods.

Key words. regularization, nonlinear predictive control, SQP, optimal control

AMS subject classifications. 49M20, 90C30, 49J15

DOI. 10.1137/16M1081543

1. Introduction. In recent decades, model predictive control (MPC) has be-
come a popular optimization based control algorithm due to its ability to control
multiple-input multiple-output constrained systems. Linear MPC consists in consec-
utively solving optimal control problems (OCPs) with quadratic objective function,
linear dynamics, and linear inequality constraints. Nonlinear model predictive con-
trol (NMPC) [24] generalizes this to a nonlinear objective and nonlinear dynamics
and path constraints. Originally, NMPC found interest in process control due to the
slowly moving dynamics of the corresponding reactions. An overview of the indus-
trial use of MPC can be found in [22]. Recently, both algorithmic and computational
advances made NMPC applicable in real time for systems with fast dynamics, e.g., in
[2, 23, 27, 29]. For an overview of computationally efficient methods for NMPC, we
point the reader to [6, 19].
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2086 R. VERSCHUEREN, M. ZANON, R. QUIRYNEN, AND M. DIEHL

One online algorithm for NMPC is the real-time iteration (RTI) [5] scheme, which
is based on sequential quadratic programming (SQP). The RTI scheme is an example
of a direct optimal control method, as it first discretizes the continuous-time OCP into
a finite-dimensional optimization problem (in contrast to indirect methods), after
which the problem is solved. RTI relies on multiple shooting [3] to discretize the
continuous-time OCP, forming a nonlinear program (NLP) which is approximated by
a quadratic programming (QP) subproblem with optimal control structure at each
time step. In addition, the RTI algorithm is based on a generalized continuation
approach to efficiently solve the parametric optimization problem depending on the
current state of the system [6].

There exist several approaches to solving the structured QP subproblem. One
technique, which is typically referred to as condensing [3], is to make use of the
dynamic equations to eliminate the state variables, resulting in a smaller condensed
problem with only controls as decision variables. The dense subproblem can be passed
to a generic QP solver, e.g., QPKWIK [26], QPOPT [14], or qpOASES [8], to obtain
the solution and afterward recover all of the state variables and Lagrange multipliers
by a so-called expansion step [3]. A drawback of the condensing approach is that the
computational complexity scales at best quadratically in the horizon length [1, 12].

Alternatively, one can solve the QP directly using a structure-exploiting QP
solver, of which the computational complexity typically scales linearly with the horizon
length. This becomes advantageous in OCPs with long horizon lenghts, in which case
the condensing approach is less competitive [29]. Examples of structure-exploiting QP
solvers tailored to optimal control are qpDUNES [11], FORCES [7], and HPMPC [13].
The software package HQP [10] is a general-purpose sparse QP solver that can read-
ily be used to solve large-scale OCPs. Although the structure-exploiting QP solvers
FORCES, HPMPC, and qpDUNES require a positive definite Hessian matrix, the
second order sufficient conditions (SOSC) for optimality require positive definiteness
only of the reduced Hessian, which is defined to be the Hessian matrix projected
onto the null space of the active constraints [21]. We point out that HPMPC and
FORCES would in principle be compatible with problems with an indefinite Hessian
with positive definite reduced Hessian; however, this would not allow part of the code
optimization for the Cholesky factorization and, therefore, indefinite Hessians are not
supported. Moreover, qpDUNES does not allow indefinite Hessians, not even ones
that are positive definite in the reduced space, as it is based on dual decomposition,
which requires strictly convex Hessian matrices.

In NMPC, it often happens that the Hessian of the QP subproblem with OCP
structure is indefinite and therefore should be approximated with a positive definite
Hessian in order to make sure that the calculated step is a descent direction; in this
paper, we refer to such a procedure as regularization. The Hessian regularization is
performed right before solving the QP. More specifically, for the condensing approach,
we could either regularize the full Hessian before performing the condensing step or we
could regularize the condensed Hessian afterward. A numerical case study comparing
these two alternatives is presented in [28]. On the other hand, for the case of structure-
exploiting QP solvers, the solvers mentioned in the previous paragraph all require the
full Hessian to be positive definite. The convexification method proposed in this paper
is therefore particularly suited for structured QP subproblems.

There are several ways of performing regularization. Levenberg–Marquardt reg-
ularization consists in adding a multiple of the identity matrix to the Hessian [21].
In [20], a way of ensuring a positive definite Hessian without checking its eigenval-
ues, based on differential dynamic programming, is presented. One other method
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A SPARSITY PRESERVING CONVEXIFICATION 2087

adapts the positive definiteness of the Hessian by directly modifying the factors of
the Cholesky factorization or the symmetric indefinite factorization of the Hessian
[21]. Quasi-Newton methods can generally be modified to directly provide a positive
definite Hessian approximation; see, e.g., [15, 17].

Regularization is also an important algorithmic component for interior point
methods. One could, for example, look at the KKT matrix and ensure that it has
the correct inertia, as, e.g., in [9], by using an inertia-controlling factorization. A
similar idea is used in IPOPT [30], which performs an inertia correction step on the
KKT matrix whenever necessary. The inertia information comes from the indefinite
symmetric linear system solvers used in that code. An improvement of the IPOPT
regularization in case of redundant constraints is presented in [31]. One interesting
alternative method of dealing with indefiniteness is presented in [16], which consists
of solving QP subproblems with indefinite Hessians that can be proven to be equiva-
lent to strictly convex QPs. Straightforward regularization methods typically modify
the reduced Hessian of an optimization problem and therefore also its corresponding
optimal solution. Replacing the Hessian with a positive definite one without altering
the reduced Hessian is called convexification in this paper.

As the main contribution of this paper, we propose a structure-preserving con-
vexification method for indefinite QPs with positive definite reduced Hessian. In case
the Hessian is indefinite but the reduced Hessian is positive definite, we prove in this
paper that the underlying convexity can be recovered by applying a modification to
the original Hessian without altering the reduced Hessian and at the same time pre-
serving the sparsity structure of the problem. The proposed algorithm can readily be
extended to the case of indefinite reduced Hessians, resulting in a heuristic regular-
ization approach which will be shown to perform well in practice. Our convexification
approach therefore (a) provides a fully positive definite Hessian; (b) can be applied as
a separate routine, independent of the QP solver used; and (c) preserves the optimal
control sparsity structure and has a computational complexity that is linear in the
horizon length.

Our convexification algorithm, which fulfills the above criteria, is a recursive
procedure which exploits the block-diagonal structure of the Hessian and the stage-by-
stage structure which is typical for direct optimal control. The resulting convexified
Hessian can then be fed directly to a structure-exploiting QP solver. Note that by
doing so, we avoid the potentially costly step of condensing. Instead, we directly solve
the structured QP with the additional computational cost resulting from the above
convexification procedure.

Our approach is motivated by the convergence of a Newton-type SQP method
to a local solution for a nonlinear OCP. When employing the exact Hessian in such
a method, convergence to a nearby local minimum is quadratic under mild assump-
tions [21]. When starting close enough to a local minimum, the convergence of the
Newton-type method with convexified Hessian remains quadratic under the same as-
sumptions. This will additionally be illustrated further in a numerical case study.
We would like to point out that, e.g., the method in [16] will ultimately also recover
quadratic convergence, but indefinite QP subproblems are solved instead of positive
definite ones.

The structure of the paper is as follows. The problem setting is introduced in
section 2. In section 3 we show how to recover convexity from general QPs and QPs
with optimal control structure with positive definite reduced Hessians. This section
also presents the structure-preserving convexification algorithm. Section 4 shows how
to handle inequality constraints, and section 5 deals with problems with indefinite
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2088 R. VERSCHUEREN, M. ZANON, R. QUIRYNEN, AND M. DIEHL

reduced Hessian. An illustration of our regularization method is given based on a
nonlinear OCP example in section 6. The paper is concluded in section 7.

2. Problem formulation. In this paper, we are interested in NLPs with an
OCP structure.

Definition 2.1 (NLP with OCP structure).

minimize
s0,...,sN ,

q0,...,qN´1

N´1
ÿ

k“0

fkpsk, qkq ` fN psN q(1a)

subject to sk`1 “ φkpsk, qkq, k “ 0, . . . , N´1,(1b)
s0 “ s0,(1c)
0 ě ckpsk, qkq, k “ 0, . . . , N´1,(1d)
0 ě cN psN q.(1e)

In the above definition, fk : Rnx ˆ Rnu Ñ R is the stage cost at each stage k
of the problem and fN : Rnx Ñ R is the terminal cost. We denote the state vectors
with sk P Rnx and the controls with qk P Rnu . Function φk : Rnx ˆ Rnu Ñ Rnx is a
discrete-time representation of the dynamic system which yields the state sk`1 at the
next stage, given the current state and control sk, qk. The remaining constraints are
the path constraints ck : Rnx ˆ Rnu Ñ Rnc,k and cN : Rnx Ñ Rnc,N , and the initial
constraint where s0 P Rnx is fixed.

Next, we define a QP with OCP structure, which is a more specific form of (1), where
the objective is quadratic and the dynamics and inequality constraints are linear.
It may also arise as a subproblem in an SQP-type method to solve the structured
NLP (1).

Definition 2.2 (QP with OCP structure).

QPpH q : minimize
x0,...,xN ,

u0,...,uN´1

1
2

N´1
ÿ

k“0

„

xk

uk

J

Hk
hkkkkkikkkkkj

„

Qk SJk
Sk Rk

 „

xk

uk



`
1
2
xJN

pQNxN(2a)

subject to xk`1 “ Akxk `Bkuk, k “ 0, . . . , N´1,(2b)
x0 “ x0,(2c)
0 ě Ck,xxk ` Ck,uuk, k “ 0, . . . , N´1,(2d)
0 ě CNxN ,(2e)

where we define the state vectors as xk P Rnx , the controls as uk P Rnu , and the
cost matrices as Qk, pQN P Rnxˆnx , Sk P Rnuˆnx , Rk P Rnuˆnu , and the Hessian ma-
trix H :“ diagpH0, . . . ,HN´1, pQN q. The constraints denote, respectively, dynamic
constraints with matrices Ak P Rnxˆnx , Bk P Rnxˆnu , inequality constraints with
Ck,x P Rnc,kˆnx , Ck,u P Rnc,kˆnu , CN P Rnc,Nˆnx , and an initial constraint with
x̄0 P Rnx . Note that this compact notation, as proposed in, e.g., [13], allows for a
more general OCP formulation including linear cost terms and constant terms in the
constraints.

In general, the Hessian H of QP (2) might be indefinite, for example, in case of an
exact-Hessian based SQP method to solve NLP (1). However, this does not necessarily
prevent the problem from being convex and therefore the solution of QP (2) to be
global and unique. In the next section, we present a general framework to recover
this underlying convexity.
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A SPARSITY PRESERVING CONVEXIFICATION 2089

3. Equality constrained problems in optimal control. For the sake of clar-
ity of exposition, we omit the inequality constraints from QP (2) and refer to section 4
for a discussion on how to deal with them within the proposed convexification ap-
proach. Without inequality constraints, we can write QP (2a)–(2c) in a more compact
form, as follows.

Definition 3.1 (equality constrained QP).

minimize
wPRn

1
2
wJHw(3a)

subject to Gw ` g “ 0(3b)

with constraint matrix G P Rpˆn of full rank p with p ď n. Note that the linear in-
dependence constraint qualification (LICQ) requires full rank of G [21]. Furthermore,
we have a symmetric but possibly indefinite Hessian matrix H P Sn, where we define
the space of symmetric matrices of size n as follows:

Sn :“
 

X P Rnˆn | X “ XJ
(

.(4)

In case of a structured equality constrained QP (2a)–(2c), we have that n “ pN ` 1q ¨
nx`N ¨nu, p “ pN ` 1q ¨nx and we choose the following ordering of the optimization
variables: wJ “ rxJ0 , u

J
0 , . . . , x

J
N s.

Definition 3.2 (range space and null space basis of G). Consider QP (3) and
assume LICQ holds. We let Z P Rnˆq with q “ n ´ p denote a null space basis with
corresponding range space basis Y P Rnˆp of G that satisfy the following:

GZ “ 0,(5a)

pY |ZqJpY |Zq “ I.(5b)

Note that for any such Z holds that spanpZq “ nullpGq.

3.1. A characterization of convexity. Using Definitions 3.1–3.2, we can state
some interesting properties of QP (3) with regard to convexity of the reduced Hessian.
The following theorem is a well-known result, of which a proof is presented in [21].

Theorem 3.3. Consider QP (3) and Definition 3.2, assuming that LICQ holds.
Then QP (3) has a unique global optimum if and only if the reduced Hessian is positive
definite, i.e.,

ZJHZ ą 0.(6)

We note that the reduced Hessian being positive definite corresponds to the SOSC
for optimality, as defined in [21]. A well-known fact related to this SOSC is stated in
the following theorem (for a proof, see, e.g., [21]).

Theorem 3.4. Consider QP (3) with arbitrary H P Sn, Definition 3.2, and as-
sume that LICQ holds. Then

ZJHZ ą 0 ðñ Dγ P R : H ` γGJG ą 0.(7)

Theorem 3.4 is at the basis of the augmented Lagrangian method for optimization,
where one typically calls γ ą 0 the quadratic penalty parameter. By choosing γ large
enough one can always create a positive definite Hessian at points satisfying SOSC.
Note that H ` γGJG destroys the sparsity pattern present in the original Hessian
H, but an actual implementation would solve an augmented primal-dual system with
the correct sparsity in the Hessian, e.g., as in [16]. Theorem 3.4 can be generalized as
follows.
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2090 R. VERSCHUEREN, M. ZANON, R. QUIRYNEN, AND M. DIEHL

Theorem 3.5 (revealing convexity). Consider QP (3) and Definition 3.2, and
assume LICQ holds. The reduced Hessian satisfies

ZJHZ ą 0(8a)

if and only if there exists a symmetric matrix U P Sn with

ZJUZ “ 0(8b)

such that

H ` U ą 0.(8c)

Proof. From (8b), (8c), and the fact that Z is of full rank, (8a) directly follows.
In order to prove the converse, let us introduce a change of basis, where the new basis
is formed by pY |Zq. Doing so, matrix inequality (8c) is equivalent to pY |ZqJpH `

UqpY |Zq ą 0. This again, due to (8b) and the Schur complement lemma [18], is
equivalent to

ZJHZ ą 0,(9)

Y JpH ` UqY ą Y JpH ` UqZ ¨ pZJHZq´1 ¨ ZJpH ` UqY.(10)

Thus, we need to show that there always exists a matrix U satisfying (8b) and (10).
Using the same change of basis as above for U and using (8b), it holds that

U “ Y KY J ` YMZJ ` ZMJY J(11)

with K P Sp and M P Rpˆq. It directly follows that ZJUZ “ 0. Statement (10) can
then be written as

K ą ´Y JHY ` pY JHZ `Mq ¨ pZJHZq´1 ¨ pY JHZ `MqJ.(12)

As K appears individually on the left-hand side, for given H,M , there always
exists a matrix K such that (12) holds. Thus, there always exists a matrix U
satisfying (10).

The proof of Theorem 3.4 is obtained by choosing M “ 0, i.e., U “ Y KY J,
and observing that Y is a basis of the range space of GJ. It is interesting to remark
that the introduction of matrix U in order to obtain a certificate for second order
optimality bears some similarity in spirit to the introduction of Lagrange multipliers
in order to obtain a certificate of first order optimality.

The next section regards a different special case of Theorem 3.5, where we impose
an OCP structure on U , which cannot be obtained by U “ γGJG or its generalization
U “ GJΓG. Convexification is our name for the process of finding such a matrix U ,
which we call structure-preserving convexification if U has the same sparsity structure
as the original Hessian matrix H.

3.2. Structure-preserving convexification. The convexification algorithm
presented in this section exploits the convexity of the reduced Hessian in order to
compute a modified quadratic cost matrix rH P SN,nx,nu

OCP which is positive definite and
has the same sparsity pattern as H; here, we use the following definition for the space
of symmetric block-diagonal matrices with OCP structure:
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A SPARSITY PRESERVING CONVEXIFICATION 2091

SN,nx,nu

OCP :“ tX P SNpnx`nuq`nx | X “ diagpX0, . . . , XN q,

Xk P Snx`nu , k “ 0, . . . , N ´ 1, XN P Snxu.

The convexification can be performed by using the structure of the equality con-
straints. The resulting modified QP( rH) has two important properties: (a) the primal
solutions of QP(H) and QP( rH) are equal; (b) rH is positive definite if and only if the
reduced Hessian of QP(H) is positive definite.

In the following, we establish property (a) in Theorem 3.6. Afterward, we present
the convexification procedure in detail and state (b) in Theorem 3.10, which is the
main result of this section. Furthermore, we propose a procedure to recover the dual
solution of QP(H) from the solution of QP( rH) in section 3.6. To conclude this section,
we present a tutorial example.

Throughout this section, we use the following definitions (see the equality con-
strained QP (2a)–(2c)):

G :“

»

—

—

—

–

´I
A0 B0 ´I

. . . . . . . . .
AN´1 BN´1 ´I

fi

ffi

ffi

ffi

fl

, g :“

»

—

—

—

–

x0
0
...
0

fi

ffi

ffi

ffi

fl

(13)

such that the dynamic equalities can be written as Gw ` g “ 0, where wJ “

rxJ0 , u
J
0 , . . . , x

J
N s. Furthermore, we will use matrix Z as in Definition 3.2.

3.3. Transfer of cost between stages. The N stages of QP (2a)–(2c) are
coupled by the dynamic constraints xk`1 “ Akxk`Bkuk. These constraints are used
to transfer cost between consecutive stages of the problem without changing its primal
solution. We introduce the transferred cost as follows:

qkpxq :“ xJQkx, k “ 0, . . . , N,(14)

for given matrices Qk, P Snx , k “ 0, . . . , N . Then, the stage cost lk and the modified
cost Lk are defined as follows (see (2a)–(2c)):

lkpxk, ukq :“
„

xk

uk

J

Hk

„

xk

uk



, k “ 0, . . . , N ´ 1,(15a)

Lkpxk, ukq :“ lkpxk, ukq ´ qkpxkq ` qk`1pAkxk `Bkukq(15b)

“

„

xk

uk

J

rHk

„

xk

uk



, k “ 0, . . . , N ´ 1,(15c)

in which the modified cost Lk is calculated by adding the transferred cost from the
next stage qk`1 to the stage cost lk and subtracting the cost qk, which is the cost to
transfer to the previous stage. This yields a Hessian rH “ diagp rH0, . . . , rHN´1, rQN q,
where rQN :“ pQN ´QN , which allows us to state the following theorem.

Theorem 3.6 (equality of primal QP solutions). Consider the equality constrai-
ned QP (2a)–(2c) and assume that ZJHZ ą 0. Then, the primal solutions of QPpHq
and QPp rHq are equal.
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Proof. By assumption ZJHZ ą 0; therefore QP(H) has a unique global mini-
mum, by Theorem 3.3. The cost function of QP( rH) satisfies

N´1
ÿ

k“0

Lkpxk, ukq ` x
J
N
rQNxN

“

N´1
ÿ

k“0

lkpxk, ukq ´ qkpxkq ` qk`1pAkxk `Bkukq ` x
J
N
rQNxN

“

N´1
ÿ

k“0

lkpxk, ukq ´ q0px0q ` qN pxN q ` x
J
N
rQNxN

“

N´1
ÿ

k“0

lkpxk, ukq ` x
J
N
pQNxN ´ q0px0q,

which is equal to the cost function of QP(H), up to the constant term ´q0px0q. It
follows, because the constraints of QP(H) and QP( rH) are identical, that the primal
solutions of both problems coincide.

Note that we can write rH “ H ` UpQq, where we let UpQq :“ diagpU0, . . . , UN q,
with Q :“ diagpQ0, . . . , QN q and the quantities Uk, k “ 0, . . . , N , are defined as
follows:

Uk :“

«

AJkQk`1Ak ´Qk AJkQk`1Bk

BJk Qk`1Ak BJk Qk`1Bk

ff

, UN :“ ´QN .(16)

Matrix U can be computed by Algorithm 1. Note that H,U P SN,nx,nu

OCP so that
rH P SN,nx,nu

OCP also.
Theorem 3.6 states that transferring cost as in (15) does not alter the primal

solution. In the following lemma we prove that also the reduced Hessian is invariant
under cost transfer (15).

Lemma 3.7. Consider the equality constrained QP (2a)–(2c), Z from
Definition 3.2, and U from (16) and assume LICQ is satisfied. Then, for any Q,
it holds that ZJUpQqZ “ 0.

Proof. Using (16) and (13), we can rewrite U as

UpQq “ pG` ΣqJQpG` Σq ´ ΣJQΣ,

“ GJQG`GJQΣ` ΣJQG,(17)

Algorithm 1. UpQq.

Input: Q

Output: U

1: UN :“ ´QN

2: for k “ N ´ 1, . . . , 0 do

3: Uk :“
„

AJkQk`1Ak ´Qk AJkQk`1Bk

BJk Qk`1Ak BJk Qk`1Bk



4: end for
5: U :“ diagpU0, . . . , UN q
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A SPARSITY PRESERVING CONVEXIFICATION 2093

where we introduced

Σ :“

»

—

—

—

–

I 0
I 0

. . .
I

fi

ffi

ffi

ffi

fl

,(18)

with I P Rnxˆnx so that Σ P Rpˆn, where n “ pN ` 1q ¨ nx `N ¨ nu, p “ pN ` 1q ¨ nx,
as before. By definition GZ “ 0; therefore it follows directly that ZJUZ “ 0.

To summarize, we give an explicit form for the blocks of the diagonal block matrix
rH. For the last stage it holds that

rQN “ pQN ` UN “ pQN ´QN .(19)

For the rest of the stages, we go in reverse order from k “ N ´ 1 to k “ 0 and first
compute the intermediate quantities

«

pQk
pSJk

pSk
pRk

ff

:“

«

Qk SJk

Sk Rk

ff

`

«

AJkQk`1Ak AJkQk`1Bk

BJk Qk`1Ak BJk Qk`1Bk

ff

,(20)

and then set

rQk “ pQk ´Qk,(21)

rHk “ Hk ` Uk “

«

rQk
pSJk

pSk
pRk

ff

, k “ 0, . . . , N ´ 1.(22)

Moreover, we remark on the resemblance of (17) and (11), so that we can write the
following expressions for K,M :

K “ Y JUY “ Y J
`

GJQG`GJQΣ` ΣJQG
˘

Y,

M “ ZJUY “ ZJΣJQGY.

Please note that for arbitrary Q, the cost transfer operation presented in this section
generally results in indefinite rH. In the next section, we will establish Theorem 3.10,
which states that we can find a U P SN,nx,nu

OCP with corresponding positive definite rH,
and we present an algorithm to compute it.

3.4. The structure-preserving convexification algorithm. We propose a
structure-preserving convexification procedure, which is built on (19)–(22). It com-
putes rH “ H ` UpQq, which can be shown to be positive definite, where UpQq is
defined as in (16) based on a careful choice of Q.

The procedure, shown in Algorithm 2, proceeds as follows: starting from the last
stage, we choose a positive definite matrix rQN “ δI, with δ ą 0 a small constant,
such that QN “ pQN ´ δI (lines 1 and 2), and we use this matrix to transfer the
cost xJNQNxN to the previous stage. The updated quantities pQN´1, pSN´1, pRN´1 are
calculated according to (20) in line 4. We use the Schur complement lemma [18]
in line 5 of the algorithm to ensure that rHN´1 ą 0. Next, we compute QN´1 “

pQN´1´ rQN´1 and we repeat steps 4–7 until we arrive at the first stage of the problem.
By inspection of Algorithm 2, we have that the computational complexity scales

linearly with the horizon length, i.e., it is OpNq. We include Qpδq and pRpδq :“
diagp pR0, . . . , pRN´1q in the output of the algorithm for convenience.
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Algorithm 2. Structure-preserving convexification: Equality constrained case.

Input: H, δ

Output: Qpδq, rHpδq, pRpδq

1: rQN “ δI
2: QN “ pQN ´ rQN

3: for k “ N ´ 1, . . . , 0 do

4:

«

pQk
pSJk

pSk
pRk

ff

“

„

Qk SJk
Sk Rk



`

„

AJkQk`1Ak AJkQk`1Bk

BJk Qk`1Ak BJk Qk`1Bk



5: rQk :“ pSJk
pR´1

k
pSk ` δI

6: rHk :“

«

rQk
pSJk

pSk
pRk

ff

7: Qk “
pQk ´ rQk

8: end for
9: rH :“ diagp rH0, . . . , rQN q

In Theorem 3.10, we show that Algorithm 2 indeed produces a positive definite
rH, given a sufficiently small value for δ if and only if the reduced Hessian is positive
definite. Lemmas 3.8 and 3.9, presented next, help us to prove this result.

Lemma 3.8. Consider the equality constrained QP (2a)–(2c) with OCP structure
and Definition 3.2, assuming LICQ, ZJHZ ą 0 hold. Then, Algorithm 2 with δ “ 0
delivers positive definite pRp0q ą 0 and positive semidefinite rHp0q ľ 0.

Proof. Since δ “ 0, Algorithm 2 starts with QN “ pQN . Following a dynamic
programming argument in order to solve QP (2a)–(2c), we have at each stage the
following problem, with xk fixed:

minimize
uk

1
2

„

xk

uk

J „

Qk SJk
Sk Rk

 „

xk

uk



`
1
2
xJk`1Qk`1xk`1(23a)

subject to xk`1 “ Akxk `Bkuk,(23b)

which is equivalent to

minimize
uk

1
2

„

xk

uk

J „

Qk `A
J
kQk`1Ak SJk `A

J
kQk`1Bk

Sk `B
J
k Qk`1Ak Rk `B

J
k Qk`1Bk

 „

xk

uk



.(24)

By assumption, the reduced Hessian of the full QP (2a)–(2c) is positive definite, which,
by Theorem 3.3, entails that the minimum of the QP is unique. Dynamic programming
yields the same unique solution for each uk, which in turn implies that the Hessian
of (24) must be positive definite as well. This amounts to pRk`B

J
k Qk`1Bkq “ pRk ą 0

for k “ 0, . . . , N ´ 1. From the Schur complement lemma, we have that if pRk ą 0,

rQk ´ pSJk
pR´1

k
pSk ľ 0 ðñ

«

rQk
pSJk

pSk
pRk

ff

ľ 0.(25)

With δ “ 0, from Algorithm 2 it follows that rQk “ pSJk
pR´1

k
pSk, such that the left-hand

side of (25) holds. This entails that the Hessian blocks rHk ľ 0, such that, together
with rQN “ 0, it holds that rH ľ 0.
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A SPARSITY PRESERVING CONVEXIFICATION 2095

In the following, we regard matrices R̂k from Algorithm 2 as the map R̂pδq and
we recall that pRpδq :“ diagp pR0, . . . , pRN´1q. We use this map in Lemma 3.9, which
will help us prove Theorem 3.10.

Lemma 3.9. Consider QP (2a)–(2c) and assume that ZJHZ ą 0 holds. Then
there exists a value δ ą 0 such that Algorithm 2 computes a positive definite matrix
pRpδq ą 0.

Proof. Consider the map pRpδq, implicitly defined by Algorithm 2. By Lemma 3.8
it holds that pRp0q ą 0. Furthermore, δ enters linearly in the equations of Algorithm 2
and each step of the algorithm is continuous. This includes line 5, where the inverse
of pRk appears, which is well-defined and continuous as long as pRkpδq remains positive
definite, which is true at δ “ 0. As a consequence, the map pRpδq is continuous at
the origin. It follows that there exists a value δ ą 0 such that pRk ą 0, k “ 0, . . . ,
N ´ 1.

We conclude this section by establishing our main result.

Theorem 3.10. Consider QP (2a)–(2c) and Definition 3.2 and assume LICQ
holds. Then ZJHZ ą 0 ðñ Dδ ą 0 such that rHpδq ą 0 as defined by Algorithm 2.

Proof. Assume there exists some δ ą 0 such that rH ą 0. Then ZJHZ ą 0
follows from rH “ H ` U and Lemma 3.7. The converse is proven as follows. From
Algorithm 2 we have that rQk´ pSJk

pR´1
k

pSk “ δI ą 0. By Lemma 3.9, Dδ ą 0 such that
pRk ą 0. Then, from the Schur complement lemma, it follows that

rHk :“

«

rQk
pSJk

pSk
pRk

ff

ą 0.(26)

As rQN “ δI ą 0, it follows that rH “ diagp rH0, . . . , rHN´1, rQN q ą 0.

3.5. Connection with the discrete Riccati equation. We establish next an
interesting relation between Algorithm 2 and the discrete-time Riccati equation. This
result is not needed in the remainder of this paper but is given for completeness.

Definition 3.11 (discrete-time Riccati equation). For a discrete linear time
varying system xk`1 “ Akxk `Bkuk, the discrete-time Riccati equation starting with
XN :“ QN iterates backward from k “ N ´ 1 to k “ 0 by computing

Xk “Qk `A
J
kXk`1Ak ´pS

J
k `A

J
kXk`1BkqpRk `B

J
k Xk`1Bkq

´1pSk `B
J
k Xk`1Akq.

(27)

We call matrices Xk the cost-to-go matrices for k “ 0, . . . , N .

Lemma 3.12. Consider QP (2a)–(2c) and Algorithm 2 and assume ZJHZ ą 0,
with Z as in Definition 3.2. If δ “ 0, then the matrices Q0, . . . , QN in the output
of Algorithm 2 are equal to the cost-to-go matrices X0, . . . , XN computed with the
discrete-time Riccati equation as defined above.

Proof. For stage N , XN “ QN by definition. For k “ 0, . . . , N ´ 1, from Defini-
tion 3.11, we have that

Xk “ Qk `A
J
kXk`1Ak ´ pS

J
k `A

J
kXk`1BkqpRk `B

J
k Xk`1Bkq

´1pSk `B
J
k Xk`1Akq,

(28)D
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and, if we replace Xk`1 by Qk`1,

Xk “ pQk ´ pSJk
pR´1

k
pSk,(29)

“ Qk,(30)

where we used pQk, pSk, pRk as in (20) for ease of notation, and (30) follows from Algo-
rithm 2, where Qk “

pQk ´ rQk, which is equivalent to the right-hand side of (29) for
δ “ 0.

3.6. Recovering the dual solution of the original QP. We propose a pro-
cedure to recover the dual solution of QP(H) from its primal solution. We define the
Lagrangian of the equality constrained QP (2a)–(2c) as follows:

Lpw, λq “ 1
2

N´1
ÿ

k“0

xJkQkxk ` 2xJk S
J
k uk ` u

J
kRkuk `

1
2
xJN

pQNxN(31)

`

N´1
ÿ

k“0

λJk`1

`

Akxk `Bkuk ´ xk`1
˘

` λJ0 px0 ´ x0q

with λJ “ rλJ0 , . . . , λ
J
N s, λk P Rnx . We can obtain the Lagrange multipliers by com-

puting the partial derivatives of the Lagrangian with respect to xk, which should
equal zero by the necessary conditions for optimality [21]. The derivation is shown
below, and a procedure to compute λ is stated in Algorithm 3.

0 “
BLpw, λq
Bxk

J

, k “ 0, . . . , N ´ 1,(32)

“ Qkxk ` S
J
k uk `A

J
k λk`1 ´ λk,(33)

where additionally

0 “
BLpw, λq
BxN

J

“ pQNxN ´ λN .(34)

3.7. A tutorial example. To illustrate our convexification method with a sim-
ple example, we regard the following one-stage OCP:

minimize
s0,q0,s1

s20 ´
1
2
q20 ` s

2
1 ` s

4
1(35a)

subject to s1 “ s0 ` q0,(35b)
s0 “ s0.(35c)

As the term s41 makes this problem an NLP, we solve it by using an SQP method with
exact Hessian. We set s0 “ 1.

Algorithm 3. Recovery of Lagrange multipliers: Equality constrained case.
Input: w

Output: λ

1: λN “ pQNxN

2: for k “ N ´ 1, . . . , 0 do
3: λk Ð Qkxk ` S

J
k uk `A

J
k λk`1

4: end for
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Fig. 1. Convergence for SQP algorithm with three different regularization methods. On the
vertical axis we plot the distance to the global solution y‹. The Hessian obtained by Algorithm
2 with δ “ 10´4 enables quadratic convergence of the exact Newton method, in contrast to the
alternative regularization methods with ε “ 10´4.

We define y :“ rs0, q0, s1sJ. Optimization problem (35) has a global minimizer
at y‹ “ r1,´3{2,´1{2sJ. The Hessian of the Lagrangian at the solution is equal to

∇2
yyLpy‹, λ‹q “ ∇2fpy‹q “ diagp2,´1, 5q č 0.(36)

We define

G :“
„

´1 0 0
1 1 ´1



, Z :“

»

–

0
?

2{2
?

2{2

fi

fl ,(37)

such that GZ “ 0 and ZJZ “ I. The reduced Hessian at the solution y‹ then reads
as ZJ∇2

yyLpy‹, λ‹qZ “ 2 ą 0.
Applying our convexification with sufficiently small δ therefore results in strictly

convex QP subproblems, when the SQP method is sufficiently close to the minimizer.
We compare the convergence of Newton’s method which employs either the pro-

posed convexification method or the regularization methods defined in (38), called
project and mirror, which do, instead, modify the reduced Hessian. Note that these
regularizations fulfill all three properties of the regularizations that we desire, as
mentioned in the introduction: they yield a fully positive definite Hessian, they are
independent of the QP solver, and they preserve the OCP structure.

With VkDkV
´1
k the eigenvalue decomposition of the Hessian block Hk, k “

0, . . . , N , these two regularizations are defined as follows:

projectpHk, εq :“ Vk

“

maxpε,Dkq
‰

V ´1
k ,(38a)

mirrorpHk, εq :“ Vk

“

maxpε, abspDkqq
‰

V ´1
k ,(38b)

where absp¨q is the operator which takes the elementwise absolute value and ε ą 0.
In Figure 1, we compare convergence of the SQP method for the convexification

scheme and the two alternative regularizations in (38). We can observe from the figure
that Newton’s method which employs the proposed convexification procedure exhibits
locally quadratic convergence to the solution, as it finds the correct primal and dual
solution of the QP in each iteration. The other regularization methods result in linear
convergence.
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4. Inequality constrained optimization. In the previous section, we ana-
lyzed the case without inequality constraints. In this section, we analyze the general
case and present a generalized version of Algorithm 2.

4.1. Revealing convexity under active inequalities. We regard the follow-
ing compact formulation of NLP (1):

minimize
yPRn

fpyq subject to gpyq “ 0, cpyq ď 0,(39)

with equality constraints g : Rn Ñ Rng and inequality constraints c : Rn Ñ Rnc

with index set I “ t1, 2, . . . , ncu. We choose the following order for the optimization
variables (see (1)): yJ :“ rsJ0 , q

J
0 , . . . , s

J
N s. We define the Lagrangian of NLP (39) as

Lpy, λ, µq “ fpyq ` λJgpyq ` µJcpyq,(40)

with Lagrange multipliers λ P Rng , µ P Rnc . A KKT-point z‹ :“ py‹, λ‹, µ‹q at
which LICQ, SOSC, and strict complementarity hold, is called a regular solution of
NLP (39). We define the active set at a feasible point y as follows:

Apyq :“ ti P I | cipyq “ 0u.(41)

Solving NLP (39) with an exact-Hessian SQP method results, at iterate py, λ, µq,
in QP subproblems of the form

QPSQPpy,Hq :“ minimize
wPRn

1
2
wJH w `∇fpyqJw(42a)

subject to 0 “ gpyq `
Bg

By
pyqw,(42b)

0 ě cpyq `
Bc

By
pyqw,(42c)

with optimal active set A‹QPpy, w
‹, Hq.

Remark 4.1. Since ∇2
yyLpzq might be indefinite, there could be multiple solutions

to QPSQPpy,∇2
yyLpzqq. In the following, we will assume, as, e.g., in [17, 25], that w‹,

the solution of QPSQPpy,∇2
yyLpzqq, is the minimum-norm solution.

For a minimum-norm solution of QPSQPpy,∇2
yyLpzqq, the following lemma from

[21] holds.

Lemma 4.2. Suppose that z‹ is a regular solution of (39). Then if z :“ py, λ, µq
is sufficiently close to z‹, the minimum-norm solution of QPSQPpy,∇2

yyLpzqq has an
active set A‹QPpy, w

‹,∇2
yyLpzqq that is the same as the active set Apy‹q of NLP (39)

at z‹.

Suppose we are at a point py, λ, µq sufficiently close to a solution of the NLP.
Then Lemma 4.2 serves as a motivation to define a QP, which is the same as QP (42),
but with the active inequalities replaced by equalities. We will use the following
shorthand: G :“ Bg

By pyq, Gact :“ Bci

By pyq, i P Apy‹q, and na denotes the number of
active constraints. For ease of notation, we omit the dependence of G,Gact on y, as
it is constant within one QP subproblem.

Definition 4.3 (QP with fixed active set).

minimize
wPRn

1
2
wJHw(43a)

subject to rGw ` rg “ 0(43b)
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A SPARSITY PRESERVING CONVEXIFICATION 2099

with rG :“ r G
Gact

s, G P Rpˆn, Gact P Rnaˆn, and rg :“ r g
gact s, g P Rp, gact P Rna . Note

that we omitted the gradient term in the objective from (42), for ease of notation, by
performing the same transformation of variables as in [13]. Additionally, we introduce
the following matrices.

Definition 4.4 (null space of equalities and active inequalities). Consider rG as
in QP (43). We define rZ P Rnˆpn´p´naq such that the following hold:

rG rZ “ 0, rZJ rZ “ I.(44)

Matrix rZ is a basis for the null space of rG. The null space of G comprises rZ but is
possibly larger. We complement rZ with Zc P Rnˆna and introduce Z P Rnˆpn´pq as a
basis for the null space of G, as follows:

Z “ pZc| rZq, GZ “ 0, ZJZ “ I.(45)

From now on we call rZJH rZ the reduced Hessian. Furthermore, note that the
above definition of Z is compatible with Definition 3.2.

Using Definition 4.4, we establish an extension of Theorem 3.5 for the case of
active inequality constraints in Theorem 4.6, after proving the following lemma.

Lemma 4.5. Consider QP (43) and Definition 4.4 and assume LICQ holds. We
then have the following equivalence:

rZJH rZ ą 0 ðñ DΓ P Sna : ZJpH `GJactΓGactqZ ą 0.(46)

Proof. The proof follows a similar argument as in the proof of Theorem 3.5. We
consider H ` GJactΓGact in the basis Z “ pZc| rZq; see (45). Applying the Schur
complement lemma yields the following conditions:

rZJH rZ ą 0,(47)

ZJc pH `G
J
actΓGactqZc ą ZJc H

rZ ¨ p rZJH rZq´1 ¨ rZJHZc,(48)

where we used the fact that Gact rZ “ 0. The first inequality is the same as the left-
hand side of (46). Using (45), and due to LICQ and the fact that Zc is orthogonal
to the null space of rG and part of the null space of G, it holds that GactZc is of full
rank and therefore invertible. Thus, (48) becomes

Γ ą pZJc G
J
actq

´1pZJc H
rZ ¨ p rZJH rZq´1 ¨ rZJHZc ´ Z

J
c HZcqpGactZcq

´1.(49)

As Γ appears solely on the left side of the inequality, there always exists a Γ such that
condition (48) is met.

Theorem 4.6. Consider QP (43) and Definition 4.4 and assume LICQ holds. It
then holds that

rZJH rZ ą 0 ðñ DΓ P Sna , DU P Sn : ZJUZ “ 0, H `GJactΓGact ` U ą 0.(50)

Proof. The proof of the theorem follows from Theorem 3.5 and Lemma 4.5.

4.2. Preserving the OCP structure. Theorem 4.6 can be specialized for the
case of an OCP structure. To this end, let us introduce the following notation. We
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2100 R. VERSCHUEREN, M. ZANON, R. QUIRYNEN, AND M. DIEHL

consider again problems with OCP structure as in (1). For such a problem we have a
stagewise active set as follows:

Akpyq :“ ti P Ik | rowipckpyqq “ 0u(51)

with Ik the index set corresponding to the inequalities in each stage k “ 0, . . . , N ,
respectively. We can now define Gact,k at some feasible point y, as follows:

Gact,k :“
Browipckq

By
pyq : i P Akpyq(52)

for k “ 0, . . . , N . Again, we omit y in the notation for Gact,k for improved readability
of the equations. Furthermore, we define GJact :“ pGJact,0 | ¨ ¨ ¨ | G

J
act,N q. We remark

that GJactGact P SN,nx,nu

OCP . Using these definitions, we can establish the following
theorem.

Theorem 4.7. Consider QP (2) and Definition 4.4 and assume that LICQ holds.
Then, it holds that

rZJH rZ ą 0
ðñ

Dγ P R, DU P SN,nx,nu

OCP : ZJUZ “ 0, H ` γGJactGact ` U ą 0.

Proof. The proof follows from Theorem 4.6 with matrix Γ “ γI and Theorem 3.10.
Note that the sparsity structure of H is preserved in rH :“ H ` γGJactGact ` U , as
U P SN,nx,nu

OCP and GJactGact P SN,nx,nu

OCP .

We now present the structure-preserving convexification algorithm, for problems
with inequalities, in Algorithm 4. It works along the same lines as Algorithm 2, with
the difference that we add γGJact,kGact,k to the original Hessian blocks. For clarity,
we introduce an operator HpH, δ, γ,Aq that computes the convexified Hessian rH.

Moreover, in the OCP case, we can again show that the primal solutions of QP(H)
and QP( rH) are equal.

Algorithm 4. Structure-preserving convexification: Inequality constrained case.

Input: H, δ, γ, current active set A
Output: rH :“ HpH, δ, γ,Aq

1: rQN “ δI
2: QN “ pQN ` γG

J
act,NGact,N ´ rQN

3: for k “ N ´ 1, . . . , 0 do

4:

«

pQk
pSJk

pSk
pRk

ff

“

„

Qk SJk
Sk Rk



`

„

AJkQk`1Ak AJkQk`1Bk

BJk Qk`1Ak BJk Qk`1Bk



` γGJact,kGact,k

5: rQk :“ pSJk
pR´1

k
pSk ` δI

6: rHk :“

«

rQk
pSJk

pSk
pRk

ff

7: Qk “
pQk ´ rQk

8: end for
9: rH :“ diagp rH0, . . . , rQN q
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A SPARSITY PRESERVING CONVEXIFICATION 2101

Theorem 4.8. Consider a primal solution w‹ of QPpHq as defined in (2) with
optimal active set A‹QP. Furthermore, consider Definitions 4.3 and 4.4, and we assume
that LICQ and rZJH rZ ą 0 hold at w‹. Then there exist δ, γ such that w‹ is the unique
primal solution of QPp rHq with rH “ HpH, δ, γ,A‹QPq.

Proof. The proof is based on the null space method for solving equality con-
strained QPs, as presented in [21]. We decompose the primal solution vector w as
follows:

w “ rZwz ` rY wy(53)

with rZ as in Definition 4.4, and we complement the basis of the null space of rG with
a basis of its range space rY , such that p rZ|rY qJp rZ|rY q “ I. We can compute wy from
the constraints:

GrY wy “ ´g,(54)

Gact rY wy “ ´gact.(55)

We can obtain wz as follows. From the first order optimality conditions for QP (2)
we have that

H rZwz `H rY wy `G
Jλ`GJactµ “ 0.(56)

Multiplying from the left with rZJ gives
rZJH rZwz “ ´ rZJH rY wy,(57)

where we used the fact that rZ forms a basis for the null space of rG. Since rZJH rZ ą 0
by assumption, the solution is well-defined. SubstitutingH by rH “ H`U`γGJactGact,
we have that

¨

˝
rZJH rZ ` rZJU rZ

loomoon

“0

`γ rZJGJact
looomooon

“0

Gact rZ

˛

‚wz

“ ´ rZJH rY wy ´ rZJU rY wy ´ rZJGJact
looomooon

“0

Gact rY wy.

(58)

The left-hand side of (58) is equal to the left-hand side of (57), due to Theorem 4.7 and
Definition 4.4. In order to prove equality of the right-hand side, we use Definition 4.4
and (17) to obtain

rZJU rY wy “ rZJGJ
loomoon

“0

QpG` ΣqrY wy ` rZJΣJQGrY wy,(59)

and we can show that rZJΣJQGrY wy “ 0 as follows:

rZJΣJQGrY wy “ rZJΣJQp´gq from (54)
“ 0,

where the last step follows from the fact that only the first nx rows of g are nonzero
(see (13)), and the first nx columns of ZJc ΣJQ are zero (see (18) and (45)). Thus,
(57) and (58) are identical and, together with (54)–(55), yield the same solution for
wy, wz, from which we can compute the primal solution w of the QP.

4.3. Recovering the dual solution. Recovering the Lagrange multipliers of
the original problem is possible also for the case of active inequalities. Suppose we are
sufficiently close to a regular solution of NLP (39) such that QP (42) has a regular
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2102 R. VERSCHUEREN, M. ZANON, R. QUIRYNEN, AND M. DIEHL

solution whose active set is the same as the one from the solution y‹ of the NLP, as
in Lemma 4.2. Supposing we have identified the correct active set, we can write the
QP as in (43). The corresponding Lagrangian function and its gradient are

Lpw, λ, µq :“
1
2
wJHw ` λJpGw ` gq ` µJactpGactw ` gactq,(60)

∇wLpw, λ, µq “ Hw `GJλ`GJactµact,(61)

where we define gact :“ cipyq, i P Apy‹q, and µact are the multipliers corresponding to
the active inequalities.

Multipliers of active inequality constraints. Using the definitions of rG, rZ,Zc as
in (45), and stating ∇wLpw‹, λ‹, µ‹q “ 0, we can write

pGactZcq
Jµ‹act “ ´Z

J
c pHw

‹q,(62)

where we multiplied ∇wLpw‹, λ‹, µ‹q “ 0 from the left with ZJc . Note that the
matrix GactZc is invertible, for the same reasons as given in the proof of Lemma 4.5.
Substituting the original Hessian H by the convexified Hessian rH “ H`U`γGJactGact
gives us an expression for the multipliers corresponding to the active inequalities of
the convexified problem:

pGactZcq
Jµ‹conv,act “ ´Z

J
c pHw

‹ ` Uw‹ ` γGJactGactw
‹q.(63)

For QPs with OCP structure, as in (2), it holds that

ZJc Uw
‹ “ ZJc G

J
loomoon

“0

QpG` Σqw‹ ` ZJc ΣJQGw‹

“ ZJc ΣJQp´gq
“ 0,

where we used a similar argument as in the proof of Theorem 4.8.
Comparing (62) and (63), we can recover the correct multipliers of the original

problem as

µ‹act “ µ‹conv,act ` γGactw
‹.(64)

We remark that the multipliers of the inequalities can be recovered in a stagewise
fashion, as with the multipliers corresponding to the equality constraints, as shown
in Algorithm 5.

Algorithm 5. Recovery of Lagrange multipliers: Inequality constrained case.
Input: w, µconv,act

Output: λ, µact

1: µact,N Ð µconv,act,N ` γGact,N xN

2: λN Ð pQNxN ` C
J
N µact,N

3: for k “ N ´ 1, . . . , 0 do
4: µact,k Ð µconv,act,k ` γGact,k wk

5: λk Ð Qkxk ` S
J
k uk `A

J
k λk`1 ` C

J
k,x µact,k

6: end for
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A SPARSITY PRESERVING CONVEXIFICATION 2103

Multipliers of equality constraints. We need to make a small modification to Algo-
rithm 3 in order to recover the correct multipliers of the equality constraints, because
they depend on the multipliers of the active inequality constraints. With the notation
of QP (2), the procedure is shown in Algorithm 5.

To summarize, we first compute the primal solution; the QP solver provides us
with µconv,act, with which we compute the multipliers corresponding to the active
inequalities and the equality constraints.

4.4. Local convergence of SQP method with structure-preserving
convexification. Since our convexification method locally does not alter the primal
solution, and we can correctly recover the dual solution, a full step SQP algorithm
that employs our structure-preserving convexification algorithm converges quadrati-
cally under some assumptions, as is established in the next theorem. Note that this is
a local convergence result in a neighborhood of a minimizer, while global convergence
results require additional globalization strategies as discussed in [21].

Theorem 4.9. Regard NLP (1) with a regular solution z‹ “ py‹, λ‹, µ‹q. Then
there exist δ ą 0, γ ą 0, and ε ą 0 so that for all z0 “ py0, λ0, µ0q with }z0 ´ z‹} ă ε,
a full step SQP algorithm with Hessian approximation rH “ Hp∇2

yyLpzq, δ, γ,Apy‹qq
converges, the QP subproblems are convex, and the convergence rate is quadratic.

Proof. We start the iterations with the optimal active set Apy‹q and the exact
Hessian at z0. By convexifying the exact Hessian, we do not alter the primal solu-
tion, as established in Theorem 4.8. Moreover, by using Algorithm 5 we also recover
the correct dual step. Therefore, by using our convexification approach we take the
same primal-dual steps as the exact-Hessian SQP method while solving convex QP
subproblems. The quadratic convergence then follows from a standard convergence
proof of Newton’s method, e.g., Theorem 3.5 in [21].

Remark 4.10. In Theorem 4.9 we assume that the SQP iterations start by using
the optimal active set of the NLP solution. We remark that this assumption is not
very restrictive: it is a standard property (see, e.g., [4]) that if z0 is close enough to z‹,
the QP subproblem even with inexact positive definite Hessian matrix will identify the
correct active set. This is further illustrated by the numerical experiments in section 6.

5. Dealing with indefinite reduced problems. In the previous sections, we
assumed a positive reduced Hessian. We call problems with an indefinite reduced
Hessian rZJH rZ č 0 indefinite reduced problems. In order to compute a positive
definite Hessian approximation, we need to introduce some regularization. There are
different heuristics of doing this which modify the problem in different ways to allow
a unique global solution. We present one alternative here.

5.1. Regularization of the Hessian. Consider Algorithm 4. For an indefinite
reduced problem, it is possible that pRk č 0 holds in line 5 of the algorithm, such
that the Schur complement lemma no longer holds. Instead, we still compute pHk

but regularize this Hessian block by removing all negative eigenvalues and replacing
them with slightly positive eigenvalues. We call this action the “projection” of the
eigenvalues as in (38), where ε ą 0 is some small positive number. Applying this
regularization results in Algorithm 6, which is based on Algorithm 4 but includes an
if-clause checking for positive definiteness of pRk.

Remark 5.1. In Theorem 4.7, we establish that there exists some γ ą 0, such
that there exists a positive definite convexified Hessian. In an SQP setting, when we
are close to a local solution of NLP (39), the active set of NLP (39) and QP (42) are
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Algorithm 6. Structure-preserving convexification for inequality constrained opti-
mization, including the regularization of Hessian blocks.

Input: H, δ, γ, ε, current active set A
Output: rH

1: rQN “ δI
2: QN “ pQN ` γG

J
act,NGact,N ´ rQN

3: for k “ N ´ 1, . . . , 0 do

4:

«

pQk
pSJk

pSk
pRk

ff

:“
„

Qk SJk
Sk Rk



`

„

AJkQk`1Ak AJkQk`1Bk

BJk Qk`1Ak BJk Qk`1Bk



` γGJact,kGact,k

5: if pRk č 0 then

6: qHk :“

«

qQk
qSJk

qSk
qRk

ff

“ projectp pHk, εq

7: else

8: qHk :“

«

qQk
qSJk

qSk
qRk

ff

“

«

pQk
pSJk

pSk
pRk

ff

9: end if
10: rQk :“ qSJk

qR´1
k

qSk ` δI

11: rHk :“

«

rQk
qSJk

qSk
qRk

ff

12: Qk “
qQk ´ rQk

13: end for
14: rH :“ diagp rH0, . . . , rQN q

identical and, in principle, we can choose γ arbitrarily big. However, when we are at a
point that is far from a local solution and the active set is not stable yet, large values
for γ might result in poor convergence. A possible heuristic as an alternative to a
fixed value γ is motivated by referring to Algorithm 6. In line 5 of the algorithm, we
check for positive definiteness of pRk. In line 4, we will try to make this matrix positive
definite by adding a matrix GJact,kΓGact,k, where we compute Γ as follows. Consider
a decomposition of matrix Rk `B

J
k Qk`1Bk in a basis for the range space Yact,k and

null space Zact,k of Gact,k. A necessary condition for the positive definiteness of pRk,
by the Schur complement lemma, is then

Y Jact,kpRk `B
J
k Qk`1Bk `G

J
act,kΓGact,kqYact,k ą 0,(65)

such that we could propose the expression for Γ

Γ “ ´pY Jact,kG
J
act,kq

´1Y Jact,kpRk `B
J
k Qk`1BkqYact,kpGact,kYact,kq

´1 ` γI(66)

for some γ ą 0, where we used the fact that Gact,kYact,k is invertible by construction.
Note that (66) is a heuristic choice for Γ in the sense that the above condition is
only necessary, i.e., you still might have to apply regularization on pHk, as in line 6 of
Algorithm 6.

5.2. Recovering Lagrange multipliers. By applying our structure-preserving
regularization method that is based on the convexification method of section 3.2,
we have QP( rH) resulting in a different primal and dual solution than the original
problem. We need to recover the dual solution with respect to the modified problem,
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A SPARSITY PRESERVING CONVEXIFICATION 2105

i.e., without the backward transfer of cost but including the extra convexity introduced
by the “project” operation in line 6 of Algorithm 6. In order to do so, we do not start
from the original Hessian as in Algorithm 5. Instead, we make use of the Hessian with
the regularization terms added, but without the cost transfer terms. In other words,
we keep a separate modified Hessian, which consists of the following blocks:

Hmod “ H `∆H “ H ` diagp∆H0, . . . ,∆HN´1, 0q,(67)

where ∆Hk “ 0 when there was no regularization and ∆Hk “ qHk ´ pHk otherwise.
We then apply Algorithm 5 to Hmod instead of H.

6. Numerical example. In this section, we offer a numerical example as an
illustration of the practical use of our convexification method. We will solve a nonlin-
ear OCP on an inverted pendulum. This system, depicted in Figure 2, consists of a
rod of length l making an angle θ with the vertical axis, attached to a cart with mass
M that can move horizontally only, driven by a force F . At the end of the rod is a
ball of mass m.

The dynamics of the inverted pendulum are described by the following ODE,
where p, v are the horizontal displacement and horizontal velocity, respectively, θ is
the angle with the vertical (see Figure 2), and ω is the corresponding angular velocity:

9p “ v,(68a)
9θ “ ω,(68b)

9v “
´ml sinpθq 9θ2 `mg cospθq sinpθq ` F

M `m´mpcospθqq2
,(68c)

9ω “
´ml cospθq sinpθq 9θ2 ` F cospθq ` pM `mqg sinpθq

lpM `m´mpcospθqq2q
.(68d)

The control objective is to swing up the ball (θ “ 0), starting with the rod hanging
vertically down, θ “ π. We collect the states in the state vector s :“ rp, θ, v, ωsJ. A
multiple-shooting discretization of the control problem corresponds to the following
OCP formulation:

minimize
s0,...,sN ,

F0,...,FN´1

N´1
ÿ

k“0

„

sk

Fk

J „

Q 0
0 R

 „

sk

Fk



` sJNQsN(69a)

subject to sk`1 “ φkpsk, Fkq, k “ 0, . . . , N´1,(69b)
´80 ď Fk ď 80, k “ 0, . . . , N´1,(69c)
s0 “ s0,(69d)

θ

M

m

l

F

Fig. 2. Schematic illustrating the inverted pendulum on top of a cart.
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Table 1
Exact-Hessian SQP iterations for the pendulum example (N=100), using the structure-

preserving convexification method from Algorithm 6.

It. KKT
norm

Step
size

H ą 0 rZJH rZ ą 0 ZJHZ ą 0 Regs.
Act.
set

chgs.

1 1.52e+02 7.39e+02 True True True 0 74
2 5.33e+06 9.63e+02 9 10
3 2.02e+06 6.01e+02 9 1
4 1.47e+06 3.27e+02 5 4
5 9.44e+05 3.22e+02 4 0
6 3.75e+05 4.87e+02 3 7
7 1.04e+05 4.93e+02 1 22
8 9.13e+03 3.23e+02 2 14
9 3.90e+02 4.14e+02 True 0 2
10 1.25e+02 9.53e+01 True 0 5
11 6.66e+00 3.21e+00 True 0 0
12 1.38e-03 2.88e-03 True 0 0
13 2.02e-08 5.33e-09 True 0 0
14 1.42e-10 6.99e-11 True 0 0

where φ denotes a numerical integration method (explicit Runge–Kutta method of
order 4) to simulate the continuous-time dynamics in (68) over one shooting interval,
the weight matrices are chosen as Q “ diagpr1000, 1000, 0.01, 0.01sq, R “ 0.01. Be-
cause our aim is to swing the pendulum up, we selected strong weights on the position
and angle. The other states and the control are assigned a weak penalty in order to
avoid too-abrupt swing-ups and to favor smooth trajectories. Note that the weighting
matrices Q and R are tuning parameters used by the control engineer in the design
process in order to obtain a desired behavior. Different choices are therefore equally
valid. The initial value is s0 “ r0, π, 0, 0sJ. We choose N “ 100 shooting intervals of
length 0.01 s.

We solve NLP (69) with a full-step SQP method, starting from z0 “ p0, 0, 0q,
i.e., we assume all inequality constraints inactive. In each iteration, we apply our
convexification method. We choose the following values for the parameters: δ “
1 ¨ 10´4, γ “ 1. In Table 1, the iterations are given. The SQP scheme converges in
14 steps given a tolerance of 10´8. Only in the first iteration the Hessian matrix
is positive definite. At the solution, only the reduced Hessian is positive definite.
Whenever the reduced Hessian is not positive definite, we need to apply regularization
as in Algorithm 6. This is denoted in Table 1 with the amount of shooting intervals
in which we needed to regularize in the next to last column. The number of active
set changes in each iteration is listed in the rightmost column.

It is interesting to remark that whenever the reduced Hessian rZJH rZ is pos-
itive definite, but ZJHZ č 0, we do not need to regularize thanks to the terms
γGJact,kGact,k coming from the active inequality constraints in each stage k. However,
please note that adding this term when we are still far from the NLP solution adds
extra regularization, as the correct active set has not been identified yet. In the case
the reduced Hessian is not positive definite and as a consequence we have to regu-
larize, we only need to do so at maximum 9 intervals of the 100 control intervals (in
iterations 2 and 3; see Table 1).

We compare these results obtained with the structure-preserving convexification
against two other regularization methods, namely, project and mirror as described in
(38), applied directly to each Hessian block in order to preserve the OCP structure,
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Fig. 3. Comparison of the convergence of an SQP-type method applied to obtain the solution
to NLP (69), with three different regularization methods. We compare two OCP instances: on the
left N “ 100, and on the right N “ 200.

where we choose ε “ δ “ 1 ¨ 10´4. The comparison in convergence is made in Fig-
ure 3. As can be seen, using the convexification as a regularization method yields
faster convergence, namely, convergence in less than half the number of iterations
of regularization by projection, using a tolerance of 10´8. Moreover, we obtain
quadratic convergence, as we established in Theorem 4.9, when using the convex-
ification method once the optimal active set is found (see Table 1). By contrast,
the other regularization methods result in linear convergence. For different horizon
lengths, e.g., N “ 50, 150, 200, the convergence behavior of the structure-preserving
convexification method is similar to the one reported in Table 1 and we obtain similar
convergence profiles for the other methods (see Figure 3, right side).

We remark that more advanced regularization schemes than the two that we
are comparing to would yield similar convergence rates, e.g., the methods in [16] or
in [30]. Those methods, however, do not fulfill the desired properties (as mentioned
in the introduction and section 3.7) of the regularization schemes. The possibility of
combining our approach with the one of [16] is the subject of ongoing research.

7. Conclusions. In this paper, we presented a structure-preserving convexifi-
cation procedure for indefinite QPs arising from solving nonlinear OCPs using SQP.
We proved that there is an equivalence between the existence of a convexified Hes-
sian and the reduced Hessian being positive definite, which result in equal primal
solutions. Furthermore, we offered an algorithm that constructs such a convexified
Hessian with the same structure as the original Hessian and recovers the dual solution
of the original problem. Doing so, we retain a locally quadratic rate of convergence
using full steps in the SQP algorithm.

In the case the reduced Hessian is not positive definite, we proposed a regulariza-
tion method based on the convexification. We illustrated our findings with a numer-
ical example, which consists of solving a nonlinear OCP with an SQP-type method.
Possible regularization methods were compared for the indefinite reduced case.

Further research will aim at comparing the computational complexity of condens-
ing based methods against the convexification method presented here. Furthermore,
we aim at an efficient implementation of the convexification algorithm, coupled with
existing structure-exploiting QP solvers that work only with positive definite block
diagonal Hessians. Finally, the automatic selection of parameters δ, γ, ε will be inves-
tigated in future research.
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