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Abstract: The International Trade Network (ITN) is the network formed by
trade relationships between world countries. The complex structure of the ITN
impacts important economic processes such as globalisation, competitiveness,
and the propagation of instabilities. Modelling the structure of the ITN in terms of
simple macroeconomic quantities is therefore of paramount importance. While
traditional macroeconomics has mainly used the gravity model to characterise the
magnitude of trade volumes, modern network theory has predominantly focused
on modelling the topology of the ITN. Combining these two complementary
approaches is still an open problem. Here we review these approaches and
emphasise the double role played by gross domestic product (GDP) in empirically
determining both the existence and the volume of trade linkages. Moreover, we
discuss a unified model that exploits these patterns and uses only the GDP as the
relevant macroeconomic factor for reproducing both the topology and the link
weights of the ITN.
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1 Introduction

The bilateral trade relationships existing between world countries form a complex network
known as the International Trade Network (ITN). The observed complex structure of the
network is at the same time the outcome and the determinant of a variety of underlying
economic processes, including economic growth, integration and globalisation. Moreover,
recent events such as the financial crisis clearly pointed out that the interdependencies
between financial markets can lead to cascading effects which, in turn, can severely affect
the real economy. International trade plays a major role among the possible channels of
interaction among countries (Kali et al., 2007, 2010; Schiavo et al., 2010; Saracco et al.,
2015), thereby possibly further propagating these cascading effects worldwide and adding
one more layer of contagion. Characterising the networked worldwide economy is therefore
an important open problem and modelling the ITN represents a crucial step of this challenge
(Serrano et al., 2003, 2007; Fagiolo et al., 2008; Barigozzi et al., 2010; De Benedictis and
Tajoli, 2011; Cristelli et al., 2013; Sinha et al., 2010).

Historically, macroeconomic models have mainly focused on modelling the trade
volumes between countries. The gravity model, which was introduced in the early 1960s
by Tinbergen (1962) (see discussion in Squartini et al., 2014), serves as powerful empirical
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model that aims at predicting the bilateral trade flow between any two (trading) countries
based on the knowledge of their gross domestic product (GDP) and mutual geographic
distance. Although the model has been upgraded, over the years, to include other possible
factors of macroeconomic relevance, like common language and trade agreements, GDP
and distance remain the two factors with largest explanatory power.

The gravity model can reproduce the observed trade volumes between countries
satisfactorily. However, at least in its simplest and most popular implementation, the model
cannot account for zero volumes, therefore predicting a fully-connected trade network.
This outcome is totally inconsistent with the observed, heterogeneous, topology of the ITN,
which represents the backbone on which trade is made. Subsequent refinements of the
gravity model allowing for zero trade flows succeeded only in reproducing the total number
of missing links, not their position in the trade network, thereby producing sparser but still
non-realistic topologies (Fagiolo et al., 2009; Fagiolo, 2010).

In conjunction with the traditional macroeconomic approach, recent years have
witnessed an approach to modelling the ITN using tools from network theory (Garlaschelli
et al., 2004, 2005, 2007; Fronczak et al., 2012; Bhattacharya et al., 2008), among which
maximum-entropy techniques (Squartini et al., 2011, 2013, 2015) have been proven
to be particularly successful.Maximum-entropy models aim at reproducing higher-order
structural properties of real-world networks using lower-order information (more precisely,
node-specific), which is constrained to be reproduced (Wells, 2004; Bargigli and Gallegati,
2011; Musmeci et al., 2013; Caldarelli et al., 2013). Important examples of local properties
that can be chosen as constraints are the degree, i.e., the number of links of a node (in the
ITN case, this is the number of trade partners of a country) and the strength, i.e., the total
weight of the links of a node (in the ITN case, this is the total trade volume of a country).
Examples of higher-order properties that the method aims at reproducing are the clustering
coefficient, which refers to the fraction of realised triangles around nodes, and the degree
correlations.

These studies have focused on both binary and weighted representations of the ITN, i.e.,
the two representations defined by the existence and by the magnitude of trade exchanges
among countries, respectively. In principle, depending on which local properties are chosen
as constraints, maximum-entropy models can either fail or succeed in replicating the higher-
order properties of the ITN. As an example, it has been shown that inferring the network
topology only from purely weighted properties such as the strength of all nodes (i.e., the
trade volumes of all countries) results in a trivial, uniform structure (almost fully connected
and, thus, unrealistic) (Squartini et al., 2011). This limitation is similar to the one discussed
above for the gravity model, which aims at reproducing the pairwise traded volumes
exclusively, while completely ignoring the underlying network topology. By contrast, the
knowledge of purely topological properties such as the degrees of all nodes (i.e., the number
of trade partners of all countries), which are usually neglected in traditional macroeconomic
models, turns out to be essential for reproducing the heterogeneous topology observed in
the ITN (Squartini et al., 2011). A combination of weighed and topological local properties
allows to reconstruct the higher-order properties of the ITN with extremely high accuracy
(Mastrandrea et al., 2014).

Despite the ability of maximum-entropy models to provide a better agreement with
the data with respect to gravity models, in principle the former do not provide any hint
on the underlying (macro)economic factors shaping the structure of the network under
consideration. These models, in fact, assign ‘hidden variables’ or ‘fitness parameters’ to
each country. These quantities arise as Lagrange multipliers involved in the constrained
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maximisation of the entropy and control for the probability that a link is established and/or
has a given weight. Even if, a priori, these parameters have no economic interpretation,
here we propose a macroeconomic identification for the underlying variables defining the
maximum-entropy models. This interpretation is supported by previous studies showing
that both topological and weighted properties of the ITN are strongly connected with purely
macroeconomic quantities, in particular the GDP (Almog et al., 2015).

In this paper we first focus on various empirical relations existing between the GDP and
a range of country-specific properties. These properties convey basic but important local
information from a network perspective. We also show that these relations are robust and
very stable throughout different decades. We then illustrate to which extent the GDP affects
the binary and weighted representations of the ITN. These results suggest a justification
for the use of GDP as an empirical fitness to be used in maximum-entropy models, thus
providing a macroeconomic interpretation for the abstract mathematical parameters defining
the model themselves. Reversing the perspective, this result enables us to introduce a novel
GDP-driven model (Almog et al., 2015) that successfully reproduces the binary and the
weighted properties of the ITN simultaneously.

The different structural mechanisms (binary and weighted) in the model can be mapped
to existing economic literature on extensive and intensive margins of trade, hence providing
an elegant bridge between the two approaches. More specifically, our formalism allows us
to introduce the (static) concept of extensive and intensive bias, definable as a the tendency
of nodes to either prefer the formation of extra links or the reinforcement of existing
link weights. Our results show that while the topology of the ITN can be successfully
inferred without any information about the weighted properties, the ITN weighted structure
cannot be inferred without any topological information: this is the origin of the limitations
of the traditional Gravity Model which, disregarding the network topology, is unable to
faithfully reproduce the ITN inter-linkages structure. The mathematical structure of the
model translates this puzzling asymmetry into the informativeness of binary and weighted
constraints (degree and strength) (Almog et al., 2015). These results represent a promising
step forward in the formulation of a unified model for modelling the structure of the ITN.

2 Data

In this study, we have used data from the Gleditsch database which spans the years
1950–2000 (Gleditsch et al., 2002), focusing only on the first year of each decade, i.e.,
six years in total. The datasets are available in the form of weighted matrices of bilateral
trade flows wij , the associated adjacency matrices aij and vectors of GDPs. There are
approximately 200 countries in the dataset covering the considered 51 years; the GDP is
measured in US dollars.

We have analysed this dataset precisely because it has been the subject of many studies
so far, focusing both on the binary and on the weighted representation of the ITN. This will
allow us to compare the performance of our GDP-driven (two-steps) method with other
reconstruction algorithms already present in the literature (Mastrandrea et al., 2014).

3 Empirical evidence

Trade exchanges between countries play a crucial role in many macroeconomic phenomena.
As a consequence, it is fundamental to be able to characterise the observed structure of the
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ITN and its properties. More specifically, the ITN can be represented in two different ways,
depending on the kind of information used to analyse the system: the first one concerns
only the existence of trade relations and gives origin to the ITN binary representation; the
second one also takes into account the volume of the trade exchanges and gives origin to
the ITN weighted representation. While the binary representation describes the skeleton of
the ITN, relating exclusively to the presence of trade relations, the weighted representation
also accounts for the volume of trade occurring ‘over’ the links, i.e., the weight of the link
once it is formed. The two representations convey very important information regarding
the ‘trade patterns’ of each country and, most importantly, correspond to different trade
mechanisms.

Traditionally, macroeconomic models have mainly focused on the weighted
representation, because economic theory perceives the latter as being genuinely more
informative than the purely binary representation: such models make use of countries gross
domestic product (GDP), their geographic distance and any other possible quantity of
(supposed) macroeconomic relevance to infer trading volumes between countries. The GDP
is the most popular measure in the economic literature. Although it is generally used as a
proxy to infer the evolution of many macroeconomic properties describing the weighted
representation of the ITN (as the countries trade exchanges), here we will show that the
GDP plays a key role not only to explain the ITN weighted structure, but also the emergence
of its binary structure.

Let us start with an empirical analysis of the GDP. We first define new rescaled quantities
of the GDP: gi and g̃i

gi ≡
GDPi∑
j GDPj

, ∀ i g̃i ≡
GDPi

GDPmean
, ∀ i, (1)

where GDPmean ≡
∑N

i GDPi

N is the average GDP for an observed year. The two quantities
adjust the values of the countries GDPs for both the size of the network and the growth, and
are a connected by a simple relation g̃i = N · gi. We use the two quantities of the rescaled
GDP throughout our analysis, mainly using gi for the reason that the quantity is bounded
0 ≤ gi ≤ 1 which coincides with our model.

In Figure 1, we plot the cumulative distribution of the rescaled GDP g̃i with i indexing
the countries for the different decades collected into our dataset. What emerges is that the
distributions of the rescaled GDPs can be described by log-normal distribution characterised
by similar values of the parameters. The log-normal curve is fitted to all the values (from the
different decades). This suggests that the rescaled GDPs are quantities which do not vary
much with the evolution of the system, thus potentially representing the (constant) hidden
macroeconomic fitness ruling the entire evolution of the system itself. This, in turn, implies
understanding the functional dependence of the key topological quantities on the countries
rescaled GDP.

As already indicated by a number of results (Squartini et al., 2013), the topological
quantities which play a major role in determining the ITN structure are the countries degrees
(i.e., the number of their trading partners) and the countries strengths (i.e., the total volume
of their trading activity). Thus, the first step to understand the role of the rescaled GDP
in shaping the ITN structure is quantifying the dependence of degrees and strengths on
it. Since we will now analyse each snapshot at a time (correction for size is not needed),
here we will use the bounded rescaled GDP gi. Moreover, this form of the rescaled GDP
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coincides with a bounded macroeconomic fitness value, which is consistent with the models
presented in the next sections.

To this aim, let us explicitly plot ki vs. gi and si vs. gi for a particular decade, as
shown in Figure 2. The red points represent the relations between the two pairs of observed
quantities for the 2000 snapshot. Interestingly, the rescaled GDP is directly proportional
to the strength (in a log-log scale), thus indicating that the wealth of countries is strongly
correlated to the total volume of trade they participate in. Such an evidence provides the
empirical basis for the definition of the gravity model, stating that the trade between any
two countries is directly proportional to the (product of the) countries GDP.

Figure 1 Empirical cumulative distributions P>(g̃) of the GDP rescaled to the mean, for different
years. The curve is a log-normal distribution fitted to the data (see online version
for colours)

On the other hand, the functional dependence of the degrees on the gi values is less simple
to decipher. Generally speaking, the relation is monotonically increasing and this means
that countries with high GDP have also an high degree, i.e., are strongly connected with
the others; coherently, countries characterised by a low value of the GDP have also a low
degree, i.e., are less connected to the rest of the world. Moreover, while for low values of
the GDP there seems to exist a linear relation (in a log-log scale) between ki and gi, as the
latter rises a saturation effect is observed (in correspondence of the value kmax = N − 1),
due to the finite size of the network under analysis. Roughly speaking, richest countries lie
on the vertical trait of the plot, while poorest countries lie on the linear trait of the same
plot: in other words, the degree of countries represents a purely topological indicator of the
countries wealth.

To sum up, Figure 2 shows that countries GDP plays a double role in shaping the ITN
structure: first, it controls for the number of trading channels each country establishes;
second, it controls for the volume of trade each country participates in, via the established
connections. The blue points in Figure 2, instead, represent the relation between ⟨ki⟩ vs.
gi and ⟨si⟩ vs. gi, where the quantities in brackets are the predicted values for degrees and
strengths generated by our model, which we will discuss later.
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Figure 2 Comparison between observed (red points) and expected (blue points) degrees and
strengths for the aggregated ITN in the 2000 snapshot. Right panel: degree ki vs.
normalised GDP gi and expected degree ⟨ki⟩ vs. normalised GDP gi. Left panel: strength
si vs. normalised GDP gi and expected strength ⟨si⟩ vs. normalised GDP gi (see online
version for colours)
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4 Null models

In order to formalise the evidence highlighted in the previous section, a theoretical
framework is needed. To this aim, we can make use of the exponential random graph
formalism (ERG in what follows). Under this formalism, one ‘generates’ a ensemble of
random networks by maximising the entropy of the ensemble. However, the maximisation
is done under certain ‘constraints’ which enforce certain properties of the random ensemble
(expectations) to be equal specific observables that are measured in the real system. Different
maximum-entropy models enforce different constraints, different properties of the real
network, and this corresponds to different probabilities and expectations of the models.

Here, we use the formulas defining the so-called enhanced configuration model (ECM
in what follows) which has been recently proposed as an improved model for the ITN
reconstruction (Mastrandrea et al., 2014). The ECM aims at reconstructing weighted
networks, by enforcing the degree and the strength sequences simultaneously (i.e., the
number of neighbours of each node and the total sum of the weights attached to each
node’s connection) (Mastrandrea et al., 2014). In words, this amounts at choosing only
some structural quantities of a given network W and treating them as constraints of a
Shannon entropy maximisation process. In particular, degrees and strengths, respectively
defined as ki(W) =

∑N
j ̸=i aij =

∑N
j ̸=i Θ[wij ], ∀ i and si(W) =

∑N
j ̸=i wij , ∀ i, can be

simultaneously constrained within the ERG framework (Mastrandrea et al., 2014). Such
a recipe amounts at choosing a network W with a probability coefficient given by
P (W) ∝ e−

∑N
i=1 αiki(W)+βisi(W): the higher the effectiveness of the chosen constraints in

reproducing the network structure, the higher the probability of picking it as the result of the
drawing process. From the perspective of network theory, specifying the countries degrees
amounts to reproduce the binary structure of the ITN or, as previously said, its skeleton;
on the other hand, specifying the countries strengths amounts to reconstruct the weight of
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each link. In economic terms, this amounts to retain two different kinds of information: the
number of trading partners of each country and the total volume of trade of each country.

Notice that previous attempts to infer the binary structure of the ITN from the information
encoded into the strength sequence alone have led to the prediction of a largely homogeneous
and very dense (sometimes fully connected) network, not compatible with the observed
one. In other words, predicting the number of partners of a given country from the total
volume of its trade leads to ‘dilute’ the total trade of each country by distributing it to almost
all other countries, dramatically overestimating the number of trading partners (Squartini
et al., 2013). This failure in correctly replicating the purely topological projection of the real
network is at the root of the bad agreement between expected and observed higher-order
properties and makes it necessary to explicitly constrain the degree of each country. This
evidence should lead us to reconsider the quantities traditionally used in economic models
and the actual role played by them in explaining a given network structure. Particularly, one
must add additional information regarding the topology of the network in order to reproduce
the complex structure of the ITN.

As a result of constraining both degrees and strengths, the ECM predicts that a trade
relation between countries i and j exists with a probability pij equal to

⟨aij⟩(x,y) ≡ pij(x,y) =
xixjyiyj

1− yiyj + xixjyiyj
(2)

(with xi = e−αi and yi = e−βi) and involves an expected volume of trade amounting to

⟨wij⟩(x,y) =
pij(x,y)

1− yiyj
=

xixjyiyj
(1− yiyj + xixjyiyj)(1− yiyj)

. (3)

The unknown vectorsx andy can be estimated according to the maximum-of-the-likelihood
prescription (Mastrandrea et al., 2014), by solving the system of 2N coupled equations

ki(W
∗) =

N∑
j ̸=i

pij(x
∗,y∗), ∀ i and si(W

∗) =
N∑
j ̸=i

⟨wij⟩(x∗,y∗), ∀ i, (4)

where W∗ indicates the particular weighted network under analysis and x∗ and y∗ indicate
the values of the Lagrange multipliers satisfying equations (4). These parameters can be
treated as fitness parameters, respectively controlling for the probability that a link exists
and that its expected weight assumes a given value.

The application of the ECM to various real-world networks shows that the model can
accurately reproduce the higher-order empirical properties of these networks (Mastrandrea
et al., 2014). When applied to the ITN in particular, the ECM replicates both binary and
weighted empirical properties, for different levels of disaggregation, and for several years
(Mastrandrea et al., 2014).

5 A GDP-driven model of the ITN

Let us now make a step forward and check whether the hidden variables xi and yi, which
effectively reproduce the observed ITN (Mastrandrea et al., 2014), can be thought of as
parameters having a clear (macro)economic interpretation. Let us start our analysis by first
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inspecting the relationship between the ECM statistics ki and si and the hidden variables
extracted from the model.

As Figure 3 shows, nodes degrees ki seems to be related to the quantities xi and gi
through a very similar relationship; on the other hand, the functional relation between si
and yi appears to be less straightforward, showing a saturation effect in correspondence of
the value y = 1. In order to discover the mathematical form of these relations, let us repeat
the analysis which led to Figure 3, by plotting xi and yi vs. gi.

Figure 3 Comparison between observed (red points) and expected (blue points) degrees and
strengths for the aggregated ITN in the 2000 snapshot. Right panel: degree ki vs.
normalised GDP gi and fitness parameter xi (calculated by the model). Left panel:
strength si vs. normalised GDP gi and fitness parameter yi (calculated by the model)
(see online version for colours)
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In Figure 4, we show the relationship between the two ECM parameters xi and yi and
the rescaled GDP for each country of the ITN in the 2000 snapshot. Such quantities are
strongly correlated, confirming the linear dependence between xi and gi and yi/(1− yi)
and gi respectively. The latter, in particular, is the simplest functional form guaranteeing
the presence of the vertical asymptote emerging from the plot as si vs. yi.

5.1 The GDP as a macroeconomic fitness

Figure 4 seems to suggest that the fitness parameter xi satisfies a approximately linear
relation with the relative GDP gi, fitted by the curve

xi =
√
a · gi (5)

where
√
a is a parameter and gi =

GDPi∑
i GDPi

.
By contrast, since the GDP is an unbounded quantity, while the fitness parameter yi is

bounded between 0 and 1 (this is a mathematical property of the model (Mastrandrea et al.,
2014; Garlaschelli and Loffredo, 2009)), the relation between yi and gi must be necessarily
non-linear. A simple functional form for such a relationship is given by
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yi =
b · gci

1 + b · gci
. (6)

Indeed, Figure 4 confirms that the above expression provides a very good fit to the data.

Figure 4 Comparison between the calculated xi and the rescaled GDP gi (right panel) and for the
calculated yi/(1− yi) and the relative GDP gi (left panel), for the aggregated ITN in the
2000 snapshot, together with a linear fit (black line) (see online version for colours)
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These findings have two important consequences: first, they confirm that the GDP of world
countries plays a double role, contributing to determine both the topological structure of
the ITN and the amount of trade exchanges; second, since the relationships summed up by
equations (5) and (6) hold true for each snapshot of the ITN in our dataset, for each year we
can insert equations (5) and (6) into equations (2) and (3) to obtain a GDP-driven model of
the ITN structure for that year. While this was already expected on the basis of the results
obtained by implementing simpler null models – constraining either the degree sequence
alone (the binary configuration model, or BCM (Squartini et al., 2013)) or the strength
sequence alone (the weighted configuration model, or WCM (Squartini et al., 2013)) –
finding the appropriate way to explicitly combine these results into a unified description of
the ITN has remained impossible so far.

5.2 Reformulating the ECM as a ‘two-step’ model

It should be noted that equations (5) and (6) can be thought of as a particular case of a
popular model among physicists, the so-called fitness model (Caldarelli et al., 2002), which
prescribes to write the connection probability pij between any two nodes i and j as a
function of some intrinsic ‘fitness’ characterising each vertex. This observation leads to the
identification of the fitness parameter with the GDP of countries, thus suggesting that, from
a purely economic point of view, GDP is the only relevant quantity that must be taken into
account in order to explain the observed structural patterns. Such a procedure, first adopted
in (Garlaschelli et al., 2004) to study the purely binary structure of the ITN1 – where a
very good agreement between the hidden variables zi, controlling solely for the degree of
node i, and the rescaled g̃i has been shown – not only allows one to make predictions of
the quantities of interest based on purely (country-specific) macroeconomic properties but
also provides an algorithm to test the effectiveness of the chosen quantities in reproducing
such observations. In fact, equations (5) and (6) could be, in principle, refined by further
inserting any supposedly relevant macroeconomic quantity (as the geographic distances);
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however, their actual (macro)economic relevance would then be tested upon quantifying
the actual fitting improvement.

At this point, it should be noted that we are arrived at two seemingly conflicting results. In
fact we have explicitly stated that both the BCM and the ECM give a very good prediction for
the binary topology of the ITN; however, the equations specifying the connection probability
pij in the two models are significantly different. This finding makes us expect that, despite
the different mathematical expressions, the numerical values of the probability coefficients
in these two models do not differ too much: the comparison between the two probability
matrices {pBCM

ij } and {pECM
ij } shows that they are, indeed, very similar (Almog et al., 2015).

This in turn, enables us to greatly simplify the equations defining the ECM, by replacing
the expression for the pij coefficients provided by the ECM with the ones provided by the
BCM. If we denote the new probability coefficients with ptsij , ‘ts’ standing for ‘two-step’
(the reason will be clear in a moment), equations (2) and (3) can be naturally rewritten as

⟨aij⟩ts(z) ≡ ptsij(z) =
zizj

1 + zizj
, (7)

⟨wij⟩ts(z,y) =
ptsij(z)

1− yiyj
, (8)

where, now, the unknown vector z, and therefore the ptsij coefficients, can be determined
by solving a system of equations formally analogue to the one defining the BCM, i.e.,
ki(W

∗) =
∑N

j ̸=i p
ts
ij(z

∗), ∀ i. In this simplified model the connection probabilities no
longer depend on the strengths as in the original ECM, while the weights still do. In other
words, we have decoupled the structural part of the system of equations defining the ECM
from the remaining one, providing a simpler set of equations to solve. This, in turn, implies
that we can specify the model via a ‘two-step’ procedure according to which

• we first solve the N equations determining the ptsij , upon constraining the nodes
degrees only

• then evaluate the remaining parameters determining ⟨wij⟩ts through the ECM.

For this reason, we denote the model as the ‘two-step’ model (TS hereafter).
The TS model inherits the functional form of the link-specific distribution of weights

from the ECM:

qtsij (wij) =
(zizj)

aij (yiyj)
wij−aij (1− yiyj)

aij

1 + zizj
. (9)

It is instructive to rewrite equation (9) as a product of two different factors, i.e., as
qtsij (wij) =

[
(zizj)

aij

1+zizj

]
· (yiyj)wij−aij (1− yiyj)

aij to better highlight the two random
processes behind the formation of each link. As a first step, one implements a Bernoulli
trial with probability ptsij in order to determine whether a link connecting i and j is created
or not. The second part of our algorithm can be interpreted as a drawing from a geometric
distribution, with parameter yiyj : if a link (or, equivalently, a unitary weight) is indeed
established, a second random process determines whether the weight of the same link
is increased by another unit (with probability yiyj) or whether the process stops (with
probability 1− yiyj). Iterating this procedure to determine the probability of obtaining
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larger weights leads precisely to equation (9). As a consistency check, one can explicitly
calculate the expected weight ⟨wij⟩ts for the nodes pair i-j through the formula

∑+∞
w=0 w ·

qtsij (w), which correctly leads to equation (8).
In more economic terms, the analysis of the ITN clearly proves that a substantial

difference exists between establishing a new trade relation and reinforcing an existing one
(by rising the exchanged amount of goods of e.g., ‘one unit’ of trade). These two processes
are described, respectively, by the coefficients ptsij and yiyj . In order to understand which
one is more probable, we can study the behaviour of the ratio

ptsij
yiyj

= fij(gi, gj |a, b, c) (10)

for each pair of countries. In fact, whenever ptsij/(yiyj) > 1 countries i and j would probably
establish a new trade relation quite easily, however experiencing a certain resistance to
reinforce it. On the other hand, whenever ptsij/(yiyj) < 1 countries i and j would experience
a certain resistance to start trading; however, in the case such a relation were established, it
would represent a channel with relatively low ‘friction’, inducing the involved partners to
strengthen it.

Before analysing the case ptsij/(yiyj) = 1 let us rewrite it as zizj
yiyj

(1− yiyj) = 1. The
expression at the first member also appears in equation (9) which, in fact, can be restated in

the following way: qtsij (wij) =
[
zizj
yiyj

(1− yiyj)
]aij (yiyj)

wij

1+zizj
. Imposing the first factor to

be equal to 1 implies reducing equation (9) to qtsij (wij) = (yiyj)
wij (1− yiyj), i.e., to the

WCM probability distribution. This model does not discriminate between the first link and
the subsequent ones, reducing tout court qtsij (wij) to a simple geometric distribution: thus,
the failure of the WCM in reproducing the observed properties of the ITN lies precisely in
its incapability to give the right importance to the very first link, treating it as a simple unit
of weight and not as the channel making the trade exchanges possible.

5.3 A GDP-driven model of the ITN

Equations (7) and (8) provide the expressions into which we can input the vector of
fitness parameters gi, ∀ i, according to the prescriptions of equations (5) and (6). As a
result, we obtain the following formulas that mathematically characterise our GDP-driven
specification of the TS model:

⟨aij⟩ts(a) ≡ ptsij(a) =
a · gigj

1 + a · gigj
, (11)

⟨wij⟩ts(a, b, c) = ptsij
(1 + b · gci )(1 + b · gcj)
(1 + b · gci + b · gcj)

. (12)

Equations (12) can be used to reverse the approach used so far: rather than determining
the 2N free parameters either of the ECM (x and y) or of the TS model (z and y), upon
constraining degrees and strengths to their observed values, we can now use the knowledge
of the GDP of all countries to obtain a model that only depends on the three parameters a,
b, c. Since the model consists of two subsequent steps, we can first assign a value to the
parameter a and, only once a is set, fit the remaining parameters b and c.
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Parameter a can be determined quite easily. In fact, following (Garlaschelli et al., 2004;
Garlaschelli and Loffredo, 2008), the value of a can be chosen as the one ensuring that the
density of connections is reproduced, i.e.,

L =
N∑
i

N∑
j ̸=i

a · gigj
1 + a · gigj

; (13)

such a prescription overcomes the limitation of econometric models (as the gravity model)
in failing to predict the right density of connections, allowing us to fix it from the very
beginning. Notice that satisfying equation (13) is equivalent to maximising the likelihood
function of the fitness model, as shown in (Garlaschelli et al., 2005).

Fixing the values of b and c is slightly more complicated. In fact, we could imagine to
impose a similar condition, as constraining the total weight W of the network. However,
since the TS model uses approximate expressions, rather than those of the ECM, maximising
the likelihood function in the second step of the model no longer coincides with the desired
condition ⟨W ⟩ = W . Similarly, extracting the parameters from the fit shown in Figure 3
does not preserve the total weight of the network. However, in absence of any a priori
preference, we chose the latter procedure, due to its relative numerical simplicity with
respect to the former one.

In Figure 5, we show a comparison between the higher-order observed properties of
the ITN in 2000 and their expected counterparts predicted by the GDP-driven TS model
(the mathematical expressions of these properties are provided in Appendix). As a baseline
comparison, we also show the predictions of the GDP-driven WCM model with continuous
weights proposed in (Fronczak et al., 2012), which coincides with a simplified version of
the gravity model.

Figure 5 Comparison between the observed properties (red points), the corresponding ensemble
averages of the GDP-driven ‘two-step’ model (blue points) of the aggregated ITN in the
2000 snapshot. Left panel: average nearest neighbours degree knn

i vs. degree ki. Right
panel: average nearest neighbours strength snn

i vs. strength si (see online version
for colours)
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Naturally, as expected, the predictions in Figure 4 are more noisy than the ECM predicted
values (the TS model makes use of three parameters only, while the ECM is defined by
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2N parameters): this is due to the fact that equations (5) (and the corresponding BCM
equation) and equation (6) describe fitting curves rather than exact relationships. However,
as a general comment, the GDP-driven TS model reproduces the empirical trends very well;
most importantly, our model performs significantly better than the GDP-driven WCM in
replicating both binary and weighted properties. Again, the drawback of these models lies in
the fact that they predict a fully connected topology and a relatively homogeneous network.
More specifically, the plot of the average nearest neighbour strengths, snn, predicted by
our model is slightly shifted with respect to the observed points. This effect is due to the
fact that, as we mentioned, the total weight of the network W (hence the average trend of
snn) is only approximately reproduced by our model, as a consequence of the simplification
leading from the ECM to the TS model. Our findings are also robust over the entire time
span of our dataset. We can therefore conclude that the ECM model, as well as its simplified
TS variant, can be successfully turned into a fully GDP-driven model that simultaneously
reproduces both the topology and the weighted structure of the ITN.

6 Conclusion

In this paper we have demonstrated the capabilities of a novel GDP-driven model which
successfully reproduces both the binary and weighted properties of the ITN. The model uses
the GDP of world countries as a sort of macroeconomic fitness that in turns determine the
probabilities for the formation of the network links. The use of the GDP as a macroeconomic
fitness parameter is motivated in the first section, where we show the extent to which this
quantity is entangled with the first order, country-specific, properties of the network. The
model also represent an improvement in the reconstruction ability of a network, by extending
it to both the binary ant the weighted representations.

Furthermore, the model dependence on the parameters a, b, c suggests an interpretation
of the latter as traditional macroeconomic elasticities. As an example, the stationary
character of the rescaled GDP would allow for a temporal analysis of bilateral trade
exchanges simply in terms of the functions a(t), b(t) and c(t): for example, an increasing
trend of a(t) would suggest an increasing tendency of countries to establish new trade
relationships. Thus, while our model shares the same mathematical features of traditional
macroeconomic models (which are defined in terms of data-driven parameters, whose
change reflects a deeper change in the system macroeconomic organisation), it overcomes
their traditional limitations, restoring the importance of purely structural quantities beside
the traditionally inspected ones.

The misunderstanding concerning the preminent role of weighted properties has its
roots in the observation that the presence of a non-zero trade relation, wij > 0, implies the
existence of the relation itself (i.e., aij > 0 if and only if wij > 0). When applied to a given
country i, this line of reasoning leads one to conclude that knowing the trade exchanges with
all its partners (i.e., the strength of country i) implies knowing also its degree. However,
this is valid only from a merely empirical point of view, at which level the dependence
of degrees on strengths, ki(si), is well known. In fact, strengths fail when requested to
predict a given binary structure: as highlighted by other works (Mastrandrea et al., 2014),
⟨ki⟩(si) ≃ N − 1 dramatically differs from ki(si).

The success of the TS model has an important interpretation. We recall that the effect
of the approximation leading from the ECM to the TS model lies in the fact that the
connection probability ptsij can be estimated separately from the weights ⟨wij⟩ts, using
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either the knowledge of the degree sequence – if equation (7) is used – or that of the
GDPs and total number of links – if equation (12) is used. By contrast, the estimation
of the expected weights cannot be carried out separately, as it requires the evaluation of
the connection probability ptsij . This asymmetry implies that the topology of the ITN can
be successfully inferred without any information about the weighted properties, while the
weighted structure cannot be inferred without any topological information.

This effect is thus the origin of the limitation of ‘purely weighted’ models, such as
the gravity model, which focus on trade volumes while disregarding the connectivity of
countries. The TS model provides a mathematical explanation for this otherwise puzzling
effect observed in the ITN.
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Note

1In the BCM, the probability that any two nodes i and j are connected has the expression pBCM
ij =

zizj
1+zizj

. The unknown parameters z can be numerically evaluated upon solving the system of N

equations ki(W∗) =
∑N

j ̸=i p
BCM
ij (z∗), ∀ i.

Appendix: higher-order properties of the undirected representation of the ITN

Table A1 gives a summarised description of the binary and weighted network quantities
analysed in this paper. Specifically, it both shows their analytical definition and the
corresponding expected value under the ECM and the GDP-driven TS model.

Table A1 Mathematical expressions for the empirical and expected properties of the undirected
representation of the ITN

Expected properties Expected properties
Empirical properties under the ECM under the TS

aij ⟨aij⟩ = pij =
xixjyiyj

1−yiyj+xixjyiyj
⟨aij⟩ = ptsij =

zizj
1+zizj

ki =
∑

j ̸=i aij ⟨ki⟩ =
∑

j ̸=i pij = ki ⟨ki⟩ts =
∑

j ̸=i p
ts
ij

knn
i =

∑
j ̸=i aijkj

ki
⟨knn

i ⟩ =
∑

j ̸=i pijkj

ki
⟨knn

i ⟩ts =
∑

j ̸=i ptsij ⟨kj⟩ts

⟨ki⟩ts

ci =
∑

j ̸=i

∑
k ̸=i,j aijajkaki

ki(ki−1)
⟨ci⟩ =

∑
j ̸=i

∑
k ̸=i,j pijpjkpki∑

j ̸=i

∑
k ̸=i,j pijpik

⟨ci⟩ts =
∑

j ̸=i

∑
k ̸=i,j ptsijp

ts
jkptski∑

j ̸=i

∑
k ̸=i,j ptsijp

ts
ik

wij ⟨wij⟩ = pij
1−yiyj

⟨wij⟩ts =
ptsij

1−yiyj

si =
∑

j ̸=i wij ⟨si⟩ =
∑

j ̸=i⟨wij⟩ ⟨si⟩ts =
∑

j ̸=i⟨wij⟩ts

snn
i =

∑
j ̸=i aijsj

ki
⟨snn

i ⟩ =
∑

j ̸=i pijsj

ki
⟨snn

i ⟩ts =
∑

j ̸=i ptsij ⟨sj⟩
ts

⟨ki⟩ts

Let us recall that a weighted undirected network can be represented through a square matrix
W, where the specific entry wij represents the edge weight between country i and country
j. The binary representation of the network, encoded into the matrix A, is straightforwardly
obtained upon defining aij ≡ Θ[wij ].

The degree and the strength of a given node, respectively defined as ki(W) =∑N
j ̸=i aij =

∑N
j ̸=i Θ[wij ], ∀ i and si(W) =

∑N
j ̸=i wij , ∀ i, are first-order properties,

describing the neighbourhood of the node itself and, specifically, the number of its first
neighbours (i.e., the other nodes sharing a direct connection with it) and its total volume.

Exploring the topological properties of more distant nodes (i.e., the neighbours of the
neighbours) implies considering longer pathways starting from node i. The simpler second-
order properties that can be defined are the average nearest neighbours degree, knni , i.e.,
the arithmetic mean of the degrees of the neighbours of node i and the average nearest
neighbours strength, snni , i.e., the arithmetic mean of the strengths of the neighbours of
node i. Once plotted vs. the corresponding node degree (strength), the knni (snni ) provides
information on the tendency of nodes degrees (strengths) to be either positively or negatively
correlated. In economic terms, the knn quantifies the tendency of strongly connected
countries to trade with strongly connected partners as well.

Another important feature of complex networks concerns the tendency of nodes to
cluster together. It can be quantified through the clustering coefficient, ci, which measures
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the percentage of closed triangles node i is part of. In economic terms, the clustering
coefficient quantifies the tendency of countries to form small communities and, at a more
general level, the hierarchical character of the ITN structure.

The measured properties of the real network need to be compared with the different
models predictions. The expected values can be obtained by simply replacing aij with the
probability coefficients ⟨aij⟩ predicted by the different models (e.g., ⟨aij⟩ = zizj

1+zizj
= ptsij

for the TS, ⟨aij⟩ = xixjyiyj

1−yiyj+xixjyiyj
for the ECM, etc.) and wij with ⟨wij⟩ (e.g., ⟨wij⟩ =

pts
ij

1−yiyj
for the TS, etc.). Whenever considering the GDP-driven TS model, the mathematical

expressions for ⟨aij⟩ and ⟨wij⟩ are the ones illustrated by equations (9) and (12).


