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Abstract
Social media enabled a direct path from producer to consumer of contents changing the

way users get informed, debate, and shape their worldviews. Such a disintermediation
might weaken consensus on social relevant issues in favor of rumors, mistrust, or conspir-

acy thinking—e.g., chem-trails inducing global warming, the link between vaccines and

autism, or the NewWorld Order conspiracy. Previous studies pointed out that consumers of

conspiracy-like content are likely to aggregate in homophile clusters—i.e., echo-chambers.

Along this path we study, by means of a thorough quantitative analysis, how different topics

are consumed inside the conspiracy echo-chamber in the Italian Facebook. Through a

semi-automatic topic extraction strategy, we show that the most consumed contents

semantically refer to four specific categories: environment, diet, health, and geopolitics. We

find similar consumption patterns by comparing users activity (likes and comments) on

posts belonging to these different semantic categories. Finally, we model users mobility

across the distinct topics finding that the more a user is active, the more he is likely to span

on all categories. Once inside a conspiracy narrative users tend to embrace the overall

corpus.

Introduction
According to [1], causation is bound to the way communities attempt to make sense to events
or facts. Such a phenomenon is particularly evident on the web where users, immersed in
homophile and polarized clusters [2–4], process information through a shared system of mean-
ing [5, 6]. Indeed, social media enabled a direct path from producers to consumers of contents-
—i.e., disintermediation—changing the way users get informed, debate, and shape their
opinions [7–11] and confusion about causation may encourage speculation, rumors, and mis-
trust [12]. In 2011 a blogger claimed that Global Warming was a fraud aimed at diminishing
liberty and democratic tradition [13], or even more recently, rumors about Ebola caused dis-
ruption to health-care workers [14–16]. Conspiracists tend to explain significant social or polit-
ical aspects with plots conceived by powerful individuals or organizations having control of
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main stream media; their arguments can sometimes involve the rejection of science and invoke
alternative explanations to replace scientific evidence. According to [12, 17], conspiracy theo-
ries are considered to belong to false beliefs overlooking the pervasive unintended conse-
quences of political and social action.

Such a scenario presents an impressive amount of conspiracy-like narratives aimed at
explaining reality and its phenomena, and provides an unprecedented opportunity to study the
dynamics of narratives’ emergence, production, and popularity on social media.

Recently, we observed that the more users are exposed to unsubstantiated rumors, the more
they are likely to jump the credulity barrier [5, 6, 18]. As pointed out by [19], individuals can
be uninformed or misinformed, and the current means of corrections in the diffusion and for-
mation of biased beliefs are not effective. In fact, corrections frequently fail to reduce misper-
ceptions and, in several cases, they even strengthen them, acting as a backfire effect [20]. In
particular, in [21] online debunking campaigns have been shown to create a reinforcement
effect in usual consumers of conspiracy stories. Narratives grounded on conspiracy theories
play a social role in simplifying causation because they tend to reduce the complexity of reality
and are able at the same time to contain the uncertainty they generate [22–24]. In general, con-
spiracy thinking creates a climate of disengagement from mainstream society and from offi-
cially recommended practices [25]—e.g. vaccinations, diet, etc.

Despite the enthusiastic rhetoric about the collective intelligence [26, 27] the World Eco-
nomic Forum listed massive digital misinformation as one of the main threats for our society
[28]. According to this report the most discussed topics about misinformation relate to health,
economy, climate change.

A multitude of mechanisms animates the flow and acceptance of false rumors, which, in
turn, create false beliefs that are rarely corrected once adopted by an individual [29–32]. The
factors behind the acceptance of a claim (whether documented or not) may be altered by nor-
mative social influence or by the coherence with the system of beliefs of the individual [33, 34]
making the preferential driver of contents confirmation bias. A large body of literature
addresses the study of social dynamics on socio-technical systems from social contagion up to
social reinforcement [9, 10, 35–42].

Toward the understanding of the driving forces and dynamics behind the consumption and
popularity of content as well as the emergence of narratives, in this work we analyze a collec-
tion of conspiracy news sources in the Italian Facebook over a time span of 4 years. We identify
pages diffusing conspiracy news—i.e. pages promoting contents neglected by main stream
media. We define the space of our investigation with the help of Facebook groups very active in
debunking conspiracy theses (Protesi di Protesi di Complotto, Che vuol dire reale, La menzogna
diventa veritá e passa alla storia). Conversely, science pages are active in diffusing posts about
the most recent scientific advances. Pages are categorized according to their contents and their
self description. We do not focus on the truth value of information but rather on the possibility
to verify the content of the page. While the latter is an easy task for scientific news—e.g., by
identifying the authors of the study or if the paper passed a peer review process—it usually
becomes more difficult for conspiracy-like information, if not unfeasible. Through a semi-
automatic topic extraction strategy, we find that the most discussed contents refer to four well
specified semantic categories (or topics): environment, diet, health, and geopolitics. Contents
belonging to the different categories (or topics) are consumed in a very similar way by their
respective audience—i.e, users activity in terms of likes and comments on posts belonging to
different categories are similar and resolves in comparable information consumption patterns.
Conversely, if we focus on the lifetime –i.e., the distance in time between the first and the last
comment for each user—we notice a remarkable difference within topics. Users polarized on
geopolitics subjects are the most persistent in commenting, whereas the less persistent users
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are those focused on diet narratives. Finally, by analyzing mobility of users across topics, we
find that users can jump independently from one topic to another, and such a probability
increases with the user engagement. Users once inside the conspiracy corpus tend to join the
overall corpus. This work provides important insights about the fruition of conspiracy like
rumors in online social media and more generally about the mechanisms behind misinforma-
tion diffusion.

Results and Discussion
The analysis aims at characterizing the topical space in the conspiracy corpus of the Italian
Facebook. We start our investigation by outlining the emerging topics and then we focus on
the information consumption patterns. Finally we provide a data-driven model of users infor-
mation consumption patterns. Details about the mathematical and statistical tools as well as
the data used in the analysis are described in Methods section.

Topics extraction and validation
As a first step in our analysis we apply a semi-automatic topic extraction strategy aimed at clas-
sifying content. To avoid potential bias and misinterpretation of the language that is really spe-
cific of the community, we do not apply any lemmatization or stemming process to the
conspiracy corpus.

We have 205, 703 posts (98.62% of the total corpus of conspiracy posts) containing a mes-
sage—i.e. a simple text or a description of the associated photo, video, or link. We build a Doc-
ument-Term matrix (205, 703 posts × 216, 696 terms) and take all the terms with more than
500 occurrences (1820). Then, we apply a supervised preprocessing in order to identify terms
related to the conspiracy storytelling. Such a supervised task is performed by 20 volunteers sep-
arately. Notice that we consider as conspiracy terms only those terms labeled as conspiratorial
by at least the 90% of volunteers. The resulting set is composed by 159 terms.

Then, we derive the co-occurrence network of conspiracy terms—i.e., a graph where nodes
are conspiracy terms, edges bond two nodes if the corresponding terms are found in the same
post, and weights associated to edges indicate the number of times the two terms appear
together in the corpus. Such a graph has 159 nodes and 11, 840 edges.

Since the co-occurrence network is a dense graph, we apply the disparity filter algorithm
[43] (see Methods section for details) to extract the network backbone structure, thus reducing
the number of edges while preserving its multi-scale nature. The application of the filtering
algorithm with a statistical significance level of α = 0.05 results in a graph with 159 nodes and
1, 126 edges. We asked to the volunteers to provide a generic class to each term. By accounting
only for 90% of concordance within volunteers semantic tags on terms, we identify four main
semantic categories (or topics): environment, health, diet, and geopolitics. In Fig 1 we show the
backbone of the co-occurrence term network, where different colors indicate nodes belonging
to different conspiracy class.

To validate the classification, we apply three different community detection algorithms—
i.e., Walktrap [44], Multilevel [45], and Fast greedy [46] (see Methods section for further
details)—to the backbone of conspiracy terms co-occurence network.

In Fig 2 we show the classification provided by each community detection algorithm. Multi-
level and Walktrap algorithms assign each term to the same community and their accuracy
with respect to our manual classification is 100%, while the concordance index of the Fast
greedy algorithm is 88.68%.

We assign a post to a given topic according to the term in it. In case of terms belonging to
different topics, we apply the majority rule, in case of ties, the post is not labeled. Through such
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a criterion we are able to label 44, 259 posts—i.e. 9, 137 environment posts, 8, 668 health posts,
3, 762 diet posts, and 22, 692 geopolitics posts.

Attention patterns
Content consumption. In order to characterize how information belonging to the differ-

ent categories are consumed, we perform a quantitative analysis on users’ interactions—i.e.
likes, shares, and comments. Notice that each of these actions has a particular meaning [47]. A
like stands for a positive feedback to the post; a share expresses the will to increase the visibility
of a given information; and a comment is the way in which online collective debates take form
around the topic promoted by posts. Comments may contain negative or positive feedbacks
with respect to the post.

In Fig 3 we show the complementary cumulative distribution functions (CCDFs) of the
number of likes, comments, and shares received by posts group by semantic category. All dis-
tributions are long-tailed and best fitted by a power law. Lower bounds and scaling parameters-
—i.e. how the tails of the distributions behave– have been estimated via minimization of
Kolmogorov-Smirnov statistics and are shown in Table 1.

Fig 1. Backbone of conspiracy terms co-occurence network. Different colors indicate nodes belonging to different semantic category according to the
output of the supervised tagging. In particular, purple nodes belong to geopolitics, red nodes to environment, blue nodes to health, and green to diet.

doi:10.1371/journal.pone.0134641.g001
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To analyze lifetime of posts from different categories, we compute the temporal distance
between the first and last comment for each post. In Fig 4 we show the Kaplan-Meier estimates
of survival functions (see Methods for further details) in the different semantic categories. The
p-value associated to the Gehan-Wilcoxon test (a modification of the log-rank test) is
p = 0.091, which lets us conclude that there are not significant statistical differences between
the survival functions.

Our findings show that conspiracy matters are consumed in a similar way. In particular, we
find that survival functions of posts belonging to different conspiracy topics do not show differ-
ent statistical signatures.

Fig 2. Communities of conspiracy terms.Membership of conspiracy terms according to different community detection algorithms. Purple nodes belong to
geopolitics, red nodes to environment, blue nodes to health, and green to diet.

doi:10.1371/journal.pone.0134641.g002

Fig 3. Attention patterns.Complementary cumulative distribution functions (CCDFs) of the number of likes (a), comments (b), and shares (c) received by
posts belonging to different conspiracy semantic categories.

doi:10.1371/journal.pone.0134641.g003
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Users activity. Here, we consider users’ attention patterns with respect to different con-
spiracy semantic categories by analyzing the number of likes and comments, as well as the life-
time of each user—i.e. the temporal distance between his first comment and last comment on a
post belonging to a specific category—that can be intended as an approximation of users per-
sistence in online collective debating.

We consider as conspiracy users those whose liking activity on conspiracy pages is greater
than the 95% of their total liking activity—i.e., a conspiracy user left at most 5% of her likes on
posts belonging to science pages. Such a method allows to identify 790, 899 conspiracy users.
Moreover, we consider a user polarized towards a given conspiracy topic if she has more than
the 95% of her likes on posts belonging to that topic. Such a criterion allows to classify 232, 505
users (29.39% of the total). Table 2 summarizes the classification task’s results. We observe that
the majority of polarized users is concerned about conspiracy stories related to geopolitics

Table 1. Power law fit of conspiracy topics attention patterns. Lower bounds and scaling parameters estimates for the distributions of the number of
likes, comments, and shares received by posts belonging to different conspiracy semantic category.

Likes Comments Shares

x^min â x^min â x^min â

Environment 142 2.82 42 2.82 408 2.62

Health 172 2.68 37 2.59 435 2.39

Diet 135 2.84 15 2.36 358 2.59

Geopolitics 167 2.36 135 3.14 407 2.25

doi:10.1371/journal.pone.0134641.t001

Fig 4. Lifetime of conspiracy topics. Kaplan-Meier estimates of survival functions of posts by posts
belonging to different conspiracy semantic categories.

doi:10.1371/journal.pone.0134641.g004
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(62.95%), whereas conspiracy narratives about environment (18.39%) and health (12.73%)
attract a smaller yet substantial number of users, while diet (5.94%) seems to be considered a
less attractive subject.

In Fig 5 we show the CCDFs of the number of likes and comments of users polarized
towards different conspiracy category. We observe minor yet significant differences between
attention patterns of different conspiracy users. Table 3 summarizes the estimated lower
bounds and scaling parameters for each distribution. These results show that users polarized
towards different conspiracy topics consume information in a comparable way—i.e, with some
differences all are well described by a power law.

In order to analyze the persistence of polarized users, we compute the temporal distance
between the first and last comment of each user on posts belonging to the specific category on
which the user is polarized on. In Fig 6 we show the Kaplan-Meier estimates of survival func-
tions (see Methods section for further details) for conspiracy users polarized towards different
topics.

The Gehan-Wilcoxon test assesses a significant difference between the four survival func-
tions (all p-values are less than 10−6).

Summarizing, we observe minor yet significant differences in the way users polarized per-
sists in consuming their preferred contents. Moreover, by focusing on the lifetime—i.e. the
temporal distance between users’ first and last comment—we find a remarkable difference
within those users. In particular, we notice that users polarized on geopolitics subjects are the

Table 2. Polarization of users towards different conspiracy semantic category.

Users %

Geopolitics 146, 359 62.95

Environment 42, 750 18.39

Health 29, 587 12.73

Diet 13, 807 5.94

doi:10.1371/journal.pone.0134641.t002

Fig 5. Users attention patterns.CCDFs of the number of likes (a) and comments (b) by users polarized on different conspiracy topics.

doi:10.1371/journal.pone.0134641.g005
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most persistent in commenting, whereas the less persistent users are those focused on diet
related contents.

Modeling user mobility
In this section we focus on users’ activity across different parts of the conspiracy corpus. In
Table 4 we summarize users’ behavior by showing the Pearson correlations of their liking activ-
ity within the different categories of contents. We see meaningful correlations between the lik-
ing activity of users across the different semantic categories.

We analyze the relationship between the engagement of a user—i.e. the number of likes she
left on conspiracy posts—and how her activity is distributed across categories. Fig 7 shows that
the more a conspiracy user is engaged the more his activity spread on the overall corpus.

Table 3. Power law fit of conspiracy users attention patterns. Lower bounds and scaling parameters esti-
mates for the distributions of the number of likes and comments left by users polarized towards different con-
spiracy semantic categories.

Likes Comments

x^min â x^min â

Environment 5 4.37 3 2.49

Health 5 2.51 3 2.56

Diet 4 5.52 3 2.94

Geopolitics 6 3.61 6 2.88

doi:10.1371/journal.pone.0134641.t003

Fig 6. Persistence of conspiracy users. Kaplan-Meier estimates of survival functions for users polarized
towards different conspiracy topics.

doi:10.1371/journal.pone.0134641.g006
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By considering only users with at least 4 likes (n = 68, 050)—necessary condition to be active
on the four identified categories—we can model the relationship between the number of likes
and the number of categories by means of a proportional odds model (see Methods section for
an extended discussion).

In particular, we consider the number of categories liked by users as the ordinal dependent
variable, i.e. we have j = (K − 1) = 3 ordered categories: 1j2, 2j3, and 3j4. We consider the num-
ber of likes left by users as the predictor of our model. Thus, we need to estimate three inter-
cepts and one regression coefficient. Table 5 reports details about the performed regression.

The estimated coefficient, β, can be difficult to interpret because it is scaled in terms of logs.
Another way to interpret these kind of regression models is to convert the coefficient into a
odds ratio (see Methods section for further details). To get the odds ratio (OR) we exponentiate

Table 4. Mobility of users across categories. Pearson correlations coefficients of conspiracy users’ liking
activity between different categories.

Envir Health Diet GeoPol

Envir 1.00 0.68 0.61 0.64

Health 1.00 0.78 0.65

Diet 1.00 0.48

GeoPol 1.00

doi:10.1371/journal.pone.0134641.t004

Fig 7. Engagement andmobility across semantic categories. Light blue lines represent the median of the
likes distributions; pale blue shaded boxes represent the interquartile range (25–75 percentile); horizontal
bars represent the extremes of the distributions. Users active on 4 categories are 15, 510; users active on 3
categories are 20, 929; users active on 2 categories are 21, 631; and users active on 1 category are 9, 980.

doi:10.1371/journal.pone.0134641.g007
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the estimate:

OR ¼ exp ðbÞ ¼ exp ð0:1141Þ ¼ 1:12

Since OR> 1, an increase in the number of likes left by a user raises her probability to con-
sider a greater number of topics. In particular, an increase in the number of likes is associated
with 12% times increased odds of considering a higher number of topics.

The model provides four probabilities for each user to belong to one of the four categories.
For each user we consider the category associated with the higher probability as the predicted
category. In order to evaluate the goodness of fit of the model, we compare the predicted cate-
gories vs the real ones by means of the absolute distance coefficient and we find that:

d ¼ 1�
P jdij

nðK � 1Þ ¼ 0:852;

where jdij = jxi − yij is the absolute distance between the real and the predicted categories, n is
the total number of users, and K is the number of categories. Since the absolute distance coeffi-
cient is close to 1, the proposed model provides a good fit for the data.

Summarizing, the more a user is engaged in conspiracy storytelling the more her probability
to consider a higher number of different conspiracy topics. Indeed, we deliver a data-driven
model of information consumption pointing out that users engagement on different topics is
mainly driven by their overall commitment on conspiracy storytelling and that with the
increasing of the engagement they tend to span on the overall corpus.

Conclusions
Conspiracy theories are considered to belong to false beliefs overlooking the pervasive unin-
tended consequences of political and social action. Social media fostered the production of an
impressive amount of rumors, mistrust, and conspiracy-like narratives aimed at explaining

Table 5. Proportional Odds Model. Log-odds regression coefficient and intercepts with related standard errors, t-values, and p-values. Confidence interval
at 95% for the estimated coefficient is (0.1121, 0.1161). Chi-Square test’s p-value is 1, so we do not reject the null hypothesis (H0: current model is good
enough) and conclude that the model is a good fit.

Coefficients Value Std. Error t-value p-value

# of likes 0.1141 0.001016 112.3 < 10−6

Intercepts Value Std. Error t-value p-value

1j2 -0.7602 0.0135 -56.4267 < 10−6

2j3 1.0783 0.0126 85.7607 < 10−6

3j4 2.9648 0.0177 167.4990 < 10−6

doi:10.1371/journal.pone.0134641.t005

Table 6. Breakdown of the Facebook dataset.

Entity Total

Pages 39

Posts 208, 591

Likes 6, 659, 382

Comments 836, 591

Shares 16, 326, 731

Likers 864, 047

Commenters 226, 534

doi:10.1371/journal.pone.0134641.t006
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(and oversimplifying) reality and its phenomena. Such a scenario provides an unprecedented
opportunity to study the dynamics of topics emergence, production, and popularity. Indeed, in
this work we focus on how conspiracy contents are consumed in the Italian Facebook.

The understanding of consumption patterns behind unsubstantiated claims might provide
important insight both at the level of popularity of topics as well as to prevent misinformation
spreading. Users activity in terms of likes and comments on posts belonging to different cate-
gories are similar and resolves in similar information consumption patterns. Conversely, if we
focus on the lifetime—i.e., the distance in time between the first and the last comment for each
user—we notice a remarkable difference within topics. Users polarized on geopolitics subjects
are the most persistent in commenting, whereas the less persistent users are those focused on
diet narratives. Finally we focus on the mobility of users across the different semantic catego-
ries. In particular, we address the patterns behind the consumption of different topics with
respect to the user’s engagement. Previous works [4, 5] showed that users tend to aggregate
around their preferred information and build their own narrative in social echo-chambers. In
particular, conspiracy users resulted to be more focused and self-contained on their specific
contents. Here we find that, in their own echo-chamber, users can jump independently from
one semantic category to another, and such a probability increases with the user engagement
(number of likes on a single specific category). Each new like on the same category increases of
the 12% the probability to pass to a new one.

Methods

Ethics Statement
The entire data collection process has been carried out exclusively through the Facebook
Graph API [48], which is publicly available, and for the analysis (according to the specification
settings of the API) we used only public available data (users with privacy restrictions are not
included in the dataset). The pages from which we download data are public Facebook entities
(can be accessed by anyone). User content contributing to such pages is also public unless the
user’s privacy settings specify otherwise and in that case it is not available to us.

Data Collection
We define the space of our investigation with the help of some Facebook groups very active in
the debunking of conspiracy theses. The resulting dataset is composed by 39 public Italian
Facebook pages.

Notice that the dataset is the same used in [5] and [21]. However, in this paper we focus on
39 (exhaustive set) conspiracy pages aiming at characterizing attention dynamics driving the
diffusion of conspiracy topics on the Italian Facebook. We download all posts from these pages
in a timespan of 4 years (2010 to 2014). In addition, we collect all the likes and comments from
the posts, and we count the number of shares. In Table 6 we summarize the details of the data
collection.

Preliminaries and Definitions
Bipartite Network. We consider a bipartite network whose nodes are conspiracy posts and

conspiracy terms. The presence of a term on a given post determines a link between the term
and the post. More formally, a bipartite graph is a triple G = (A, B, E) where A = {ai j i = 1, . . .,
nA} and B = {bj j j = 1, . . ., nB} are two disjoint sets of nodes, and E� A × B is the set of edges—
i.e. edges exist only between nodes of the two different sets A and B. The bipartite graph G is
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described by the matrixM defined as

Mij ¼
1 if an edge exists between ai and bj

0 otherwise

(

Referring to A as the set of conspiracy terms, in our analysis we use the co-occurrence
matrix CA =MMT, that is the weighted adjacency matrix of the co-occurrence of conspiracy
terms on conspiracy posts. Each non-zero element of CA corresponds to an edge among nodes
ai and aj with weight PA

ij .

Disparity Filter. Disparity filter is a network reduction algorithm which extracts the back-
bone structure of a weighted network, thus reducing its size without destroying its multi-scale
nature. In particular, the method introduced in [43] is based on the null hypothesis that the
normalized weights corresponding to the connections of a given node with degree k are uni-
formly distributed. The disparity filter identifies which links for each node should be preserved
in the network. The null model allows such a discrimination through the computation—for
each edge of a given node—of the probability αij that its normalized weight pij is compatible
with the null hypothesis. All the links with αij smaller than a certain significance level α reject
the null hypothesis, and can be considered as significant heterogeneities characterizing the net-
work. The statistically significant edges will be those whose weights satisfy the relation

aij ¼ 1� ðk� 1Þ R pij
0
ð1� xÞk�2dx < a;

indicating that by decreasing the significance level α we can filter out additional links, and thus
focus on more relevant edges.

Community Detection Algorithms. In order to validate our manual classification of con-
spiracy terms, we apply three well known community detection algorithms to the backbone of
the conspiracy terms co-occurrence network.

Walktrap [44] computes a measure of similarities between nodes based on random walks
which has several important advantages: it captures well the community structure in a network,
it can be computed efficiently, and it can be used in an agglomerative algorithm to compute
efficiently the community structure of a network. Such an algorithm runs in timeO(mn2) and
spaceO(n2) in the worst case, and in timeO(n2 log n) and spaceO(n2) in most real-world
cases, where n andm are respectively the number of nodes and edges in the network.

Multilevel [45] is based on multilevel modularity optimization. Initially, each node is
assigned to a community on its own. In every step, nodes are re-assigned to communities in a
local, greedy way. Nodes are moved to the community in which they achieve the highest modu-
larity. Such an algorithm runs in linear time whenm* n, where n andm are respectively the
number of nodes and edges in the network.

Fast greedy [46] it is a hierarchical agglomeration algorithm for detecting community struc-
ture. Its running time on a network with n nodes andm edges isO(md log n) where d is the
depth of the dendrogram describing the community structure. Many real-world networks are
sparse and hierarchical, withm* n and d* log n, in which case such an algorithm runs in
essentially linear time,O(n log2 n).

Kaplan-Meier estimator. Let us define a random variable T on the interval [0,1), indi-
cating the time an event takes place. The cumulative distribution function (CDF), F(t) = Pr(T
� t), indicates the probability that such an event takes place within a given time t. The survival
function, defined as the complementary CDF. We remind that the CCDF of a random variable
X is one minus the CDF, the function f(x) = Pr(X> x).) of T, represents the probability that an
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event lasts beyond a given time period t. To estimate this probability we use the Kaplan–Meier
estimator [49].

Let nt denote the number of that commented before a given time step t, and let dt denote the
number of users that stop commenting precisely at t. Then, the estimated survival probability
after time t is defined as (nt − dt)/nt. Thus, if we have N observations at times t1 � t2 � � � � �
tN, assuming that the events at times ti are jointly independent, the Kaplan-Meier estimate of
the survival function at time t is defined as

ŜðtÞ ¼Qti<t

nti
� dti
nti

 !
:

Odds ratio. Probability and odds are two basic statistical terms to describe the likeliness
that an event will occur. Probability is defined as the fraction of desired outcomes in the con-
text of every possible outcome with a value in [0, 1], where 0 would be an impossible event and
1 would represent an inevitable event. Conversely, odds can assume any value in [0,1), and
they represent a ratio of desired outcomes versus undesired outcomes. Given a desired outcome
A, the relationship between the probability P(A) that event A will occur, and its odds O(A) is

PðAÞ ¼ OðAÞ
1þ OðAÞ and OðAÞ ¼ PðAÞ

1� PðAÞ :

It follows that the odds ratio (OR) of two events A and B is defined as

ORðA;BÞ ¼ OðAÞ
OðBÞ ¼

PðAÞ
1� PðAÞ
PðBÞ

1� PðBÞ
¼ PðAÞ½1� PðBÞ�

PðBÞ½1� PðAÞ� :

Proportional Odds Model. The proportional odds model is a class of generalized linear
models used for modeling the dependence of an ordinal response on discrete or continuous
covariates.

Formally, let Y denote the response category in the range 1, . . ., K with K� 2, and let πj =
Pr(Y� j j x) be the cumulative response probability when the covariate assumes value x. The
most general form of linear logistic model for the jth cumulative response probability,

logitðpjÞ ¼ ln
pj

1� pj

 !
¼ aj þ bT

j x;

is one in which both the intercept α and the regression coefficient β depend on the category j.
The proportional odds model is a linear logistic model in which the intercepts depend on j, but
the slopes are all equal, i.e.

logitðpjÞ ¼ ln
pj

1� pj

 !
¼ aj þ bTx:

In other words, proportional odds model takes logistic regression one step further in order
to account for ordered categorical responses. For instance, in our analysis we could have used a
logistic regression model to investigate the effect of the number of comments on the odds ratio
(OR) of “considering< 3 topics” vs “considering� 3 topics”. However, in such a case the cut-
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point would be arbitrary, and we could have used a similar logistic regression model to analyze
the effect on the odds ratio (OR) of “considering< 2 topics” vs “considering� 2 topics”. In
this sense, proportional odds model averages up over all possible cut-point logistic regression
models to maximize the amount of information one can get out of the data.
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