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ABSTRACT This paper presents a novel approach for the technical and economic assessment of Li-ion
battery energy storage systems (BESS) in smart grids supported by renewable energy sources. The approach
is based on the definition of a statistical battery degradation cost model (SBDCM), able to estimate the
expected costs related to BESS aging, according to the statistical properties of its expected cycling patterns.
This new approach can improve the assessment of the economical sustainability of BESSs in this kind of
applications, helping in this way the planning processes in electricity infrastructures in presence of high
penetration of intermittent renewable energy sources. The SBDCM proposed in this paper is a statistical
generalization of a battery degradation model presented in the literature. The proposed approach has been
validated numerically comparing the results with those of the deterministic model considering for the BESS
a stochastic dataset of input signals. In order to test the usefulness of the proposed model in a real world
application, the proposed SBDCM has been applied to the evaluation of the economic benefit associated to
the development of distributed energy storage system scenarios in the Italian power system, aimed to provide
ancillary services for supporting electricity market.

INDEX TERMS Energy storage systems, energy storage management, statistical battery degradation model,

renewable energy sources, ancillary services markets.

I. INTRODUCTION

The increasing amount of Renewable Energy Sources (RESs)
installed worldwide is introducing novel challenges in plan-
ning and management of power systems. In particular,
the fluctuating output of RESs sums up with the uncertainty
of load consumption, increasing the electricity market balanc-
ing volumes and costs [1]. In this context, the Energy Storage
Systems (ESSs) are foreseen as a possible solution in order
to reduce the workload of backup systems and improve the
overall stability of power systems [2], [3].

Despite of the results already obtained, nowadays the cost
and the efficiency of ESSs are still an open debate, since
most of the approach proposed for economic evaluations are
based on a general lifetime estimation, and does not include
a more precise aging evaluation for these type of systems.
This is particularly true for Battery-based ESSs (BESSs),
which aging properties can sensibly vary with the application,
and are known to show a highly non-linear aging behavior.
Nevertheless, some authors proposed different methods to

include a more accurate analysis of aging effects into the cost
function used for optimization usage of ESS, and particularly
BESSs, in power systems.

Among them, [4] highlighted this issue, proposing the use
of a cycling based calculation of aging, finding how the BESS
profitability strongly depends on both the type of service for
which the BESS is used for and the control method used for
its management. Recently, a more advanced aging modeling
of Li-ion BESSs has been proposed under the form of a
Battery Degradation Model (BDM) [5]. This model is able to
estimate the battery aging in a closed form considering both
the calendar aging, mainly due to the passage of time, and the
cycling aging, due to the effective usage of the BESS. As an
implementation of the proposed BDM, the implementation of
Distributed Energy Storage Systems (DESSs) for supporting
the Ancillary Services Markets (ASM) in power systems
has been considered and analyzed [5]. It points out how
DESSs can effectively improve the reliability of power grids,
reducing, at the same time, load curtailment. However, it also
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underlines how different usage of BESSs due to different size,
power to capacity ratio or control rules highly impacts on
the battery aging, which can in turn influence the economic
profitability of the process.

This is due to the complexity of the estimation of the aging
costs of the installed ESSs, which can significantly impact
on the cumulative costs of energy services and depend in
turn on the sequences of cycling and usage of the ESSs.
Furthermore, the complexity of this task increases in case
of an high randomness of the charging/discharging cycles at
which the BESS is subject to. In this case, the deterministic
analysis of the battery aging is impossible to achieve, since its
degradation is highly dependent on the incoming random sig-
nal. In order to overcome this critical issue a novel Statistical
Battery Degradation Model (SBDM) is proposed, aiming to
evaluate the BESSs aging in highly stochastic environments,
such as the ones involving an high RES penetration. The
proposed SBDM is therefore a statistical generalization of the
Battery Degradation Model (BDM) proposed in [5].

The proposed SBDM relies on the assumption that, on a
long run, stochastic signals with the same time proper-
ties (such as autocorrelation, expected value and amplitude)
produce a similar aging effect on the same type of BESSs.
This assumption has been tested numerically for Gaussian
white noise and colored noise [6], [7]. In order to apply
the SBDM in a real world application, an estimation of the
economic impact of the implementation of a publicly owned
Distributed BESS (DESS) in the Italian Ancillary Service
Markets (ASM) has been performed. For this purpose, a Sta-
tistical Battery Degradation Cost Model (SBDCM) has been
proposed, and further included in a more large Probabilis-
tic Power Flow (PPF) framework. This approach allowed
for the statistical evaluation of the BESS aging in such a
complex environment. Furthermore, the aging effects have
been described in terms of systemic costs by applying the
calculations proposed in subsec. IV-A. This finally allowed
for the evaluation of the global market costs in presence of a
DESS, which include a detailed assessment of the expected
DESS aging costs.

The results confirm, in a more precise and cost effective
way, the results shown in [4] and [5], which clearly state that
the usage of BESS in ASM is economically advantageous
only under certain usage circumstances. Moreover, a sensi-
tivity analysis shown the high dependence of the economic
result on the overnight costs and cumulative size of the DESS.

The paper is organized as follows: the proposed method-
ology and the novel SBDM is firstly described in section II.
Section III reports the procedure implemented for validating
the SBDM. In Section IV the results of the application of
the proposed model to the Italian ASM are presented and
discussed. Finally, the conclusions are reported in section V.

Il. THE STATISTICAL BATTERY DEGRADATION

COST MODEL

The estimation of the aging costs of BESSs is hard to achieve
for applications including power inputs of stochastic nature.

VOLUME 6, 2018

This is due to the difficult estimation of the aging properties
of batteries for both non-periodic usage schemes and ran-
dom fluctuations. In order to overcome the first issue, [5]
recently proposed a BDM able to estimate the aging of Li-ion
BESSs in non-regular cycling use cases. Starting from this
model, here is proposed a SBDM, based on the assumption
that random signals with defined stochastic properties impact
the BESSs aging in a similar way. The SBDM is based on
the definition of the concept of average cycle, obtained as the
integral mean of the BDM proposed in [5], weighted with
the statistical distributions of the cycle properties.

These concepts are described in detail in the following sub-
sections. In particular, subsection II-A briefly introduces the
BDM proposed by Xu et al. [S], which will serve as a starting
point for the following considerations. Then, subsection II-B
describes the here proposed SBDM, and defines an approach
for linking the statistic aging with a realistic cost estimation
of the process.

A. DETERMINISTIC BATTERY DEGRADATION MODEL

The deterministic BDM methodology defined in [5] is based
on (1), which relates the battery cycle life L with the battery
degradation function f;. The cycle life L is directly linked
with the quantity D, the remaining capacity of the degraded
BESS. In turn, f; depends on both cycle and calendar aging,
which are the effects related to the battery cycling and the
passage of time, respectively. It also includes the effect of the
initial Solid Electrolyte Inter-phase (SEI) film formation by
means of parameters o/s; and Bie;.

L=1—ogie” Pt — (1 - agep)e ™ M

The dependence of f; from the calendar aging function f; with
the cycle aging one f, can be found in (2), where N is the
number of performed cycles.

N
£a(t.8,0,TC) = filtuse, T T) + Y _fel8,0.Te)  (2)

More in detail, calendar aging function f; (s, 0, T.) is
modeled as dependent from average State Of Charge (SOC)
& and temperature 7, during usage, and from usage time 7.
The dependence from these parameters is reported in (3).
In turn, the expression of Sy, S, and St are described in (4),
(5) and (6). The parameters k;, k¢, k7, 0rer and Tir have been
selected from [5].

filt.0.Tc) = $,(1) - So(0) - S7(Tc) 3)
So(o) = 77 )

—kr(Te=Tref )75

Stc(Tc) =e (6)

Moreover, cycle aging function f.(§,0,7.) depends on
the cycle Depth of Discharge (DoD) §, the average SOC over
the cycle o and the average temperature over the cycle 7. The
expression of f.(§, o, T.) is given in (7). The expressions of
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Ss, So and St are given by (8), (5) and (6). The parameters
ks1, ksp and kg3 are obtained from [5].

fo(8,0,Tc) = S5(8) - Sp(0) - Ste(TC) 7
S5(8) = (ks18%? + ks3) ™! ®)

B. STATISTICAL GENERALIZATION OF THE BDM

The estimation of the degradation of BESSs in highly stochas-
tic environments requires a statistical description of the bat-
tery usage patterns, which does not fit with a deterministic
formulation of the BDM proposed in [5]. This is due to the
randomness of the signal in these cases. In fact, when the
usage patterns of the BESS are stochastic, it is impossible
to know in advance its exact cycling. However, if the random
signal shows specific statistical properties and is replicated
for a long enough period, it is acceptable to assume that,
on average, the cycling patterns will converge to a well
defined statistical distribution.

For this reason, the definition of the SBDM assumes a
statistical description of the charge-discharge process. This
description assumes that it is possible do estimate the cycling
statistics of the BESS in terms of x (¢, 0, 8, T,.), which is
the multivariate Probability Density Function of experiencing
a cycle with a certain combination of #cy, o, § and T. This
distribution x depends on the particular application for which
the BESS is used for. Once this quantity is known, it is
possible to estimate f;cy “, which describes the degradation
function for a statistically representative cycle, which can be
obtained by (9).

ﬁcch///fX(tcyc»UaasTc)

< falteye, 0,8, Te) - dodddT dteye (9)

Once the quantity 727 has been calculated, the expected
aging during a certain period T can be calculated by means
of (10) as a function ofﬁcy “and N¢ye, which is the number of
statistical representatives cycles observed in a time interval 7.

LT = Neye - fa™° (10)

Combining equations (1), (9) and (10), the battery life cycle
can be obtained from the proposed PPF cycles and described
in terms of L(N), where N is the number of statistically rep-
resentative cycles performed by each ESS. Given the average
cycle length Ecyc, the quantity L(N) assumes the form of a
time dependent function L,(¢) as reported in (11).

Ly(t) = L(Ateye - N) 1)

Starting from this formulation, it is possible to identify the
aging parameters of BESSs. It is common practice to consider
an ESS as degraded when it reaches 80% of the original
capacity C (L = 0.2). Using this information, and assuming
the quantity Ecyc negligible with respect of the full battery
life time, the function L,(¢) can be considered continuous.
In this way, the expected degradation time t can be obtained
from (12).

t=1L1;70.2) (12)
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This quantity is related with DESS depreciation costs by (13),
where C™! are the total installation cost of the DESS, with
Ccinst = ¢inst . Do, Here Dy is the size of the installed
BESS and ¢ are its overnight costs per unity of capacity.
Therefore, the average depreciation costs Ap, during a given
time interval At¢, are obtained by performing (13).

Cinst
Ap =

- At (13)
™D

Moreover, the maintenance cost M have been assumed to be

proportional to the installation costs. This is achieved intro-

ducing z which relates maintenance costs to the installation

costs, as reported in (14).

M=z-A (14)

Ill. NUMERICAL VALIDATION OF THE SBDM

This section aims to validate the assumptions behind the
proposed SBDM, as defined in subsec. II-B. The first assump-
tion A states that statistically equivalent BESS input signals,
eventually filtered with a well defined transfer function, cause
statistically significant aging on equivalent BESS, provided
that the signal is applied for a long enough time interval.
The second assumption A, assumes that it is possible to
statistically define a ““mean BESS cycle”’, which aging prop-
erties are representative of the ones caused by the (eventually
filtered) input signal.

Ay

START

Generate S;(t) Generate S(t)

Apply H(f(t)) Apply H(S(t))

Apply BDM to

H(S; (D) Estimate y(tcyc, 0,6, Tc)

Apply SBDM to

{Li()}

END

FIGURE 1. Validation process of the assumptions A, and A,.

In order to validate the first assumption A, consider the
simulation environment depicted in Fig. 1, left side. The
process starts with the generation of n independent and iden-
tically distributed random time series Sj(z), 0 < ¢t < T
obtained from a certain statistical distribution ¥, and with
well defined autocorrelation properties Z. Considering each
of these series S;(¢) as the input profile of the same class
of Li-ion BESS, eventually filtered with a transfer function
H(f(1)), it is possible to estimate the aging of the BESS at
time T by applying (15), where B(g) represents the whole
BDM process described in II-A. If the set {DD;(T')} (standing
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TABLE 1. Means and standard deviations for the validation of A,
assumption for WGN and AS signals.

Signal type | DD(T) | std(DD(T)) |
WGN 0.7295 0.0006
AS 0.725 0.001

for deterministic degradation) of the obtained aging outcomes
shows a small enough statistical variability, the assumption
can be considered valid. Here, the term small enough is
dependent on the context and should be evaluated accordingly
to the needs of the application.

DD{(T) = BH(Si(t)), 0<t<T (15)

In the following, the validity of this assumption is tested for
two different sets of input signals, filtered with a transfer
function H(f(¢)) corresponding with the so-called ‘“dumb
control”, described in the following. The considered input
signals are defined by different ¥ and E properties: a White
Gaussian Noise (WGN), and an Autocorrelated Signal (AS)
typical of medium sized power grids with high penetration of
RES [6], [7]. The WGN is a non-correlated Gaussian noise,
obtained by independently generating random numbers from
a Gaussian distribution [8]. On the other hand, in order to test
the assumption A1 with input signals representing a realistic
application of a BESS, a set of AS series has been generated
by using an ARMA model [7]. The choice of the ARMA
model for the sampling of power system output series has
been widely studied in literature [7], [9], and this model has
been shown to produce very good representation of this type
of signals. The ARMA parameters have been obtained by
fitting a one-year long power time series, which is the output
(at PCC) of the IEEE-69 nodes prototypical grid described
in [10] and [11]. The transfer function H, often called dumb
charging, is defined in (16). In the equation, P4 (¢) is the
available BESS power output, as defined in (17) and (18),
where Eggs(¢) is the energy stored in the BESS at time ¢, P,
and P,y are the minimum and maximum power output of the
BESS.

Pin(t) _ Pavail(t)a if Pavai{(l‘) < Si(t) (16)
Si(t) otherwise

0.1-D < Egss(t) <0.9-D (17)

Puin < Puvail(t) =< Puax (18)

The numerical sampling of {DD;(T')} has been carried out
for both WGN and AS signal types with an average value
= 0 and standard deviation o = 1, for a value of n = 500
and a value of T = 10yr (520 weeks). The signals have been
applied to a BESS of capacity C = 1 and a power to capacity
ratio of 1. All values are given in p.u. Results are shown in
table 1, where DD(T') and std(DD(T)) are the experimental
mean and standard deviation of the sample [6]. Also, the latter
measure is considered as the sampling error. The outcome
shows a relative error of approximately 1073, with the error
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associated to the AS signal being around the double of the
WGN one. This values can be considered acceptable for the
main applications associated to this type of BESSs.

The assumption Ay, states that the statistical description of
the cycling patterns which arises from the function H(S())
in terms of x (tyc, 0, 8, T¢) can be used for the definition of
a statistically representative cycle for the aging process. The
application of the SBDM in the form of (9) and (1) to this
representative cycle can then be used for the estimation of
the aging of the BESS. This represents a great advantage in
terms of assessment of the BESS life, since the definition
of x(teye, 0,8, T;) becomes the only necessary input of the
model, which can be easily measured experimentally or esti-
mated numerically. The flowchart of the validation process
is shown in Fig. 1, right part. The outcome of the process
is the value SL(t), representing the statistical aging curve of
the BESS. In order to validate the results of this process,
the resulting SL(t) has been calculated for both the WGN
and the AS signals. In order to obtain a statistically rep-
resentative x (tey¢, 0, 8, T¢), the cycling patterns have been
evaluated numerically for a simulated time period of one
year. Subsequently, the SL(t) curves have been compared
with the results of the validation for the assumption Aj. This
comparison in shown in Fig. 2. The result show that the
results of the SBDM fits with the variability of the numerical
experimental sampling in the case of the AS signal, whereas
it tend to underestimate the battery aging by 0.1% in ten years
in the case of the WGN signal. Anyway, this deviation is still
acceptable for the majority of the applications of this method.

1.00 ---- WGN, SD(t)
WGN, sampling variability
AS, SD(t)

0.95 AS, sampling variability

0.90

£0.85

0.80

0.75

0.70

0 100 200 300 400 500

Time (Weeks)

FIGURE 2. The comparison between the statistical aging SL(t) and the
numerical sampling of aging for statistically equivalent signals. The plot
shows the time evolution of the expected remaining capacity D(t) of the
BESS in both cases, for both WGN and AS signals. Results show how the
statistical aging method provides a precise estimation of aging during the
entire time frame, for both of tested signals.

IV. STATISTICAL COST EVALUATION OF THE

IMPACT OF DESS IN THE ITALIAN ASM

In order to test the application of the newly proposed SBDM
and SBDCM methods, it has been carried out an analysis
of the economic sustainability of the usage of DESS in the
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Italian ASM. The usage of DESSs in ASM is of particu-
lar interest because of the complex stochastic nature of the
power signals involved in these types of markets, especially
in case of high penetration of intermittent RES. For this
reason, the installation of a public owned DESS oriented to
the filtering of RES and loads induced fluctuations can be
useful for the reduction of ASM prices, especially for what
concerns the network balancing procedures. In order to model
this stochastic behavior of the network, the full balancing
market procedure has been simulated numerically by means
of a PPF procedure coupled with the proposed SBDCM for
the estimation of the cumulative market costs, by following
the process described in IV-A. Since it is difficult to include
BESS temperature factors in this type of analysis, the tem-
perature of the considered BESS have been considered as
constant at t,,; = 25°. The case study and simulation results
concerning the application of the proposed approach are
reported in the following. Particularly, subsec. IV-A quickly
introduces the balancing market simulation model proposed
in [12]. This model has been used in combination with
the proposed SBDCM for the estimation of the economic
impact of Distributed ESSs in the balancing market of the
Italian power system. The Subsec. IV-B introduces the Italian
power system, its related electricity market, and the DESS
scenarios considered in the planning analysis. Subsequently,
Subsec. IV-C reports the statistical results of the proposed
methodology regarding the DESS usage and the DESS cycle
life assessment. Finally, the results of the economic analysis
are presented, discussed and compared with the canonical
lifetime estimation methods in Subsec. IV-D.

A. APPLICATION OF THE SBDM TO THE ASSESSMENT

OF ESS COSTS IN MARKET APPLICATIONS

Different approaches have been proposed in technical liter-
ature for the planning, the sizing and management of ESSs
in power systems [3], [13]-[20]. In particular, the coupling
between electricity markets and storage systems, making use
of different techniques for mimicking the market, has been
investigated. This includes game theory-based approaches,
time series reconstruction and risk-based algorithms will-
ing to simulate the impact of ESSs on electricity markets.
In recent years, the estimation of market volatility and costs
in systems with high penetration of RES has been addressed
with Probabilistic Power Flow (PPF) procedures [21]-[24].
The use of PPF procedures is necessary, since the randomness
of RES power production cannot be modeled with a determin-
istic approach. As expected, the results of these approaches
show how, in general, an increase in the RES penetration
leads to an increased volatility in markets [24]. The use of
ESS for the provision of ancillary services in power systems
is seen as a viable path to reduce the volatility of the associ-
ated markets [10], [25], [26]. However, the lack of statistical
models for the assessment of battery degradation makes a
correct estimation of the Battery amortization costs difficult
to achieve, possibly leading to an incorrect estimation of the
global cost of the process.

42200

In order to test a real world application of the proposed
SBDM, it has been performed an investigation of the eco-
nomic sustainability of a DESS for the provision of ancillary
services in power systems. This has been achieved by inte-
grating the SBDM with a Probabilistic Power Flow (PPF)
procedure. Results have been used to identify the best
DESS configurations under different price scenarios. Finally,
the best solutions for each scenario have been analyzed to
understand the economic sustainability of DESSs by consid-
ering different overnight costs.

The overall procedure consists in the evaluation of the
results of a PPF performed on the system under varying con-
ditions, given by different combinations of DESS sizes D and
overnight costs ¢!, A schematic summary of the procedure
is given in Fig. 3.

Power system configuration
(load, generation, network
and DESS)
PPF Statistical BDM
Usage statistics of
ABM OPF DESS . Identification of
Market € sampling > femen
L _______ L
* ‘ Statistical estimation
assessment of v
 Mmarketcosts Assessment of
depreciation costs

Degradation and

Distribution of . maintainance
market costs Cuggs";‘""e costs of DESS
Function
End

FIGURE 3. The flowchart of the proposed methodology.

The PPF procedure is necessary since the balancing pro-
cess in power systems is intrinsically random, due to the inter-
mittent nature of power demand and RES generation. In this
paper, the proposed PPF procedure resorts to the stochastic
sampling procedure proposed in [12]. This procedure con-
sisted in the sampling of R possible market configurations
per each combination of D and C™'. Each sample obtained
by the procedure is in fact the merit-order based OPF of the
specific realization, obtained by stochastically perturbing the
initial condition. As outcome of each of the samplings, it has
been possible to obtain both a series of total market costs and
a series of time evolutions of the SOC of the ESSs composing
the DESS, which allowed in turn the calculation of the aging
costs associated to the usage of DESSs in the considered
scenario. All these costs have then been aggregated with the
DESS maintenance costs, allowing for the estimation of the
global system costs in all the simulated scenarios.

The market costs of DESSs are described by means of
a statistical distribution representing the market cumulative
cost CCp. This cumulative cost is related to: the daily market
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costs Cp; the depreciation costs of the entire DESS Ap(c™?);
its maintenance costs MD(ci"S’ ); and the costs of its asso-
ciated losses Ip. In turn, all these quantities depend on D,
the planned DESS capacity, and are evaluated considering the
time period At according to (13). In particular, the distribu-
tion CCp can be calculated as reported in (19).

CCp=Cp+Ap+Mp+1Ip (19)

In general, Cp, Ap, Mp and Ip depend on the DESS config-
uration. Particularly, Cp and Ip are obtained directly from
the PPF procedure, and generally vary for varying DESS
capacities. The estimation of Ap and Mp can be determined
by means of the proposed SBDCM.

The estimation of CCp allows for the identification of other
important key performance indexes of the proposed scenario:
the DESS Total Repay Time (TRT) rﬁn and the Total Repay
Ratio (TRR) IT%R. In particular, since the expected effect
of DESS is the reduction of the balancing market costs,
the economic improvement of Gp can be determined by
means of (20), where K, are the market costs in a certain
reference market configuration.

Gp =K,y —Cp —Ip (20)

Given the overnight costs C', the system’s TRT and TRR
are calculated by means of (21) and (22) respectively.

D (1 4 Z)CinSt(D, Cinst)

TIRT = Gp 2D
D tT%eT
™D

B. CASE STUDY: APPLICATION TO THE

ITALIAN POWER SYSTEM

The proposed methodology has been applied referring to the
balancing phase of the ASM of the Italian power system.
The tested DESS have been spatially distributed considering
as planning criteria the expected power variability induced
by RES and load of each node. The system configuration
has been obtained from two main datasets. The first one,
is extracted from the public documentation provided by the
Italian Transmission System Operator (TSO) TERNA on its
website which gives the characteristics of the power system.
It includes the location of each 220 and 380 kV substa-
tions and the distribution of transmission lines with their
electrical characteristics. The location of conventional gen-
erators with both their power rates and ramp limits is also
detailed. Moreover, it includes a description of the system
market zones. The second dataset is provided by the Ital-
ian market supervisor (GME) on its website. It reports the
detailed time evolution of production and consumption for
each 15 minutes of reference days. The RES production has
been estimated referring to the procedure described in [12],
using the original datasets regarding the wind and photo-
voltaic local production published on its website by the Italian
authority for RES, the GSE. The resulting structure of the
Italian power system is reported in Fig.4. The red circles
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FIGURE 4. Geographical representation of the Italian power system
employed as case of study. The red circles are the generation nodes
where the balancing market transaction are allowed, while blue edges
are the transmission lines.

are the generation nodes where the balancing market trans-
action are allowed, while blue edges are the transmission
lines. In this paper, the methodology for the economic assess-
ment described in IV-A has been applied considering dif-
ferent planning scenarios characterized by DESS cumulative
capacities of D = 1,2, ..., 10 GWh respectively. The PPF
procedure consisted in the sequential sampling of 1000 full
reference days. In turn, each day consisted in evaluating the
time evolution of 96 time intervals, representing the system
progression in 15 minutes steps.

C. BATTERY USAGE AND DEGRADATION RESULTS
The simulation results are presented in Figs. 5, 6, 7 and 8.
In particular, 5 shows a representation of the bivariate dis-
tribution x (8, o), for a value of D = 1 GWh. Fig. 6 shows
the statistical distribution of cycles time length chyc(tcyc) per
each tested value of D. Furthermore, Fig 7 shows the cycle
life curve D = 1 — L;(¢) of the DESS, where the red dotted
line refers to a remaining cumulative capacity ratio of 80%,
at which the batteries of DESS can be considered degraded.
Finally, Fig. 8 reports the statistical distribution of DoDs
xs(8), for all the tested values of the DESS capacities D.
Fig. 5 shows the obtained distribution x in terms of § and o,
which show an high probability to experience cycles with
8 =~ 0.1, being them at low or high average o. The results of
Fig. 6 highlight how the ESS cycling periods are narrowly dis-
tributed around an average value 7., characterized by a value
of 45 minutes which is not affected by the variation of the
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FIGURE 5. The numerically obtained multivariate Probability Density
Function of x (5, o), for a value of D = 1 GWh. In general, the x (3, o)
shows a decreasing trend for increasing § and o, showing the presence of
an high number of low DoD cycles.

0.12
— D =1.0GWh
D = 2.0GWh
D = 3.0GWh
0.10 D = 4.0GWh
— D =5.0GWh
D = 6.0GWh
— D=7.0GWh
0.08 D = 8.0GWh
—— D =9.0GWh
2> D = 10.0GWh
2 0.06
[
o
0.04
0.02
O'OOO 100 150 200

Cycle length (minutes)

FIGURE 6. Statistical distribution of the time length of cycles, per
different values of D (cumulative capacity). Though very noisy, the most
expected time length is around 45 minutes for every considered

value of D.

cumulative capacity D of DESS. Figs. 5 and 6, together, pro-
vide a graphical representation of x (tcyc, 0, 8, T¢) used in (9)
for the calculation of the aging of the statistical representa-
tive cycle f_dcy “ (since T, is considered constant during the
entire process). By applying (1), (9) and (10) to the obtained
X (teye, 0, 8, Te) it has been possible to assess the DESS life
cycle for the case of study considering different values of
cumulative capacities D. These findings are reported in Fig. 7,
and show how bigger DESS sizes are related to higher battery
life. This is mainly due to the different cycling patterns of
the tested DESS, as shown in the y;(§) distribution reported
in Fig. 8, for all the tested values of D. Looking at this Figure,
it is clear how the higher is D, the smaller is the average
cycling DoD performed by the DESS, increasing in this way
the expected DESS life cycle.
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FIGURE 7. Degradation curves per different values of D (cumulative
capacity). Each curve shows the time evolution of D(t), the remaining
capacity after time £. In general, battery expected lifetime increases with
increasing installed capacity, ranging between 3 and 5.5 yrs.

0.30

— D =1.0GWh
D =2.0GWh
D = 3.0GWh
D = 4.0GWh
— D =5.0GWh
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D = 10.0GWh

Probability

03 04 05 06 07 08
Depth of Discharge (DoD)

FIGURE 8. Estimated statistical distribution of the cycling Depth of
Discharge § per different values of D (cumulative capacity).

The previously given findings allow the identification of
P, which increases monotonically with D ranging between
1050 and 2000 days, i.e. 3 and 5.5 years. Considering the
value of 7., = 45 mins, the number of statistically represen-
tative cycles, before degradation of ESSs occur, correspond
to values ranging between 35000 and 60000. Such relevant
number is explained by the frequent cycling characterized
by small DoD, which is related to the intermittence of the
ancillary service in the balancing market at which the ESSs
are devoted to. The larger 2 for increasing values of D is
mainly due to the different shapes of the x5(8, D). As reported
in Fig. 8, high values of D show an increased probability
of performing low DoD cycles, which in turn impact less
on the battery degradation. Furthermore, in Fig. 9 the p
distribution for the analyzed case study, which reports the
delivered power ratio for different values of D, is presented.
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FIGURE 9. Simulation results of the proposed methodology achieved for
the Italian power system oriented to the stochastic analysis of the usage
patterns of the DESS. Probability to provide a power ratio p, for each ESS
of the system. Results are shown for DESS cumulative capacities of

D =2, 4,6, 8 and 10 GWh respectively.

It refers to DESSs cumulative capacities of D = 2,4,6,8
and 10 GWh respectively. Results show how these distribu-
tions are bimodal, revealing one peak around low values of p
and one peak around 100% of the available power. The prob-
ability of observing p = 100% strongly depends on the DESS
capacity D. In particular, a DESS with D = 10 GWh works at
full power with a probability of 10%. This value increases for
decreasing installed capacity, and for D = 4 GWh the DESS
works at power rate higher than > 50% of rating power for
more than 50% of the time. The reduced power usage of the
DESS in the balancing phase can translate in free resources,
which can be used for providing further ancillary services to
the system.

D. COSTS ESTIMATION
The information regarding the battery life cycle obtained by
the PPF+SBDCM methodology in the Italian power system
has been used to identify the average daily market cumulative
costs CCp for different cumulative capacities D. These values
represent the combined cost of the balancing market of the
system, summed with the battery depreciation and operative
costs. In order to compare these results with the current
configuration, the results include the CC,,r, which are the
balancing market costs for a cumulative capacity of DESS
D equal to zero. If the decrease in daily market costs due to
the presence of the DESS is larger than its daily deprecia-
tion and operative costs, then CCp < CCy,r. In this case,
the installation of DESS is economically advantageous with
respect to the current configuration. Since the depreciation
costs Ap of the DESS depends on its overnight costs per
unit of capacity, the CCp has been evaluated for the different
values of ¢’ ranging between 200 and 800 Euros/kWh. The
obtained results for this case study are shown in Fig. 10.
Particularly, the cumulative costs curves show a non-
monotonic behavior, with a global minimum dependent
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FIGURE 10. Simulation results regarding the daily cumulative balancing
market cost of the analyzed case study versus the cumulative capacity of
DESS for different values of specific cost of battery capacity cist,
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FIGURE 11. Comparison between the cumulative market costs calculated
with aging costs obtained with both SBDM (continuous line) and a fixed
5 yr lifetime (dashed line) for different values of specific cost of battery
capacity c/st,

on ¢, This minimum has been found to be smaller than
CC,ef for every value of ¢! in the considered case study.
The relative decrease in cumulative costs ranges from about
10% for ¢™' = 800 Euro/kWh, to a value of 30% for a
¢t = 200 Euro/kWh. Moreover, the proposed methodol-
ogy allows for the identification of the storage capacity D
minimizing the daily cumulative cost of the balancing market
for different values of ¢!, As expected, the outcome of the
analysis sensibly varies with ¢, In particular, the analysis
with ¢ = 800 Euro/kWh shows a minimum cost region
around of a cumulative capacity of | GWh, whereas a value of
¢! = 200 Euro/kWh shows an range of cumulative capacity
between between 2 and 5 GWh. This result highlights how the
installation of a DESS for balancing purposes is economically
profitable in the case study. Finally, Table 3 shows the values
of IT%T and Tgm for different combinations of D and ¢
in the case of study. These quantities represent, respectively,
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and 2

D
TABLE 2. Values of 7. TRR

TRT

for different combinations of D and ¢/t in the analyzed case of study. The green cells highlight the economically

sustainable results, the red cells highlight the non-economically sustainable ones.

| st (Euro/KWh) | 200 | 300 | 400 | 500 | 600 | 700 | 800 |
‘ D(GWh) ‘ TPRT ‘ TPRR ‘ TPRT ‘ TPRR ‘ TPRT ‘ PrE ‘ TFRT ‘ TPRR ‘ TFRT ‘ TFrR ‘ TFRT ‘ TrRR ‘ TPRr ‘ TFRR ‘
1 184 | 0177 | 276 | 0266 | 369 | 0355 | 461 | 0443 | 553 | 0532 | 645 | 0621 | 737 | 0.709
2 276 | 0242 | 414 | 0364 | 552 | 0485 | 690 | 0.606 | 828 | 0.727 | 966 | 0.848 | 1104 | 097
3 370 | 0302 | 556 | 0453 | 741 | 0605 | 926 | 0.756 | 1111 | 0907 | 1296 | 1.058 | 1482 | 1.209
4 463 | 0354 | 695 | 0531 | 927 | 0709 | 1159 | 0.886 | 1390 | 1.063 | 1622 | 124 | 1854 | 1.417
5 S84 | 0421 | 876 | 0632 | 1168 | 0.842 | 1460 | 1.053 | 1752 | 1.264 | 2044 | 1474 | 2337 | 1.685
6 703 | 0485 | 1055 | 0728 | 1407 | 097 | 1758 | 1213 | 2110 | 1456 | 2461 | 1.698 | 2813 | 1.941
7 841 | 0555 | 1261 | 0.832 | 1681 | 1.109 | 2101 | 1.387 | 2522 | 1.664 | 2942 | 1.941 | 3362 | 2218
8 989 | 0632 | 1483 | 0948 | 1978 | 1.264 | 2472 | 158 | 2967 | 1.896 | 3461 | 2212 | 3956 | 2.529
9 1153 | 0713 | 1730 | 1.069 | 2306 | 1.426 | 2883 | 1.782 | 3459 | 2.138 | 4036 | 2495 | 4612 | 2.851
10 1333 | 0.798 | 1999 | 1.196 | 2665 | 1595 | 3332 | 1.994 | 3998 | 2393 | 4664 | 2791 | 5331 | 3.19

TABLE 3. List of acronyms used in the paper.

BESS Battery Energy Storage Systems
RES Renewable Energy Sources
SBDM Statistical Battery Degradation Model
SBDCM | Statistical Battery Degradation Cost Model
DESS Distributed Energy Storage system
ESS Energy Storage systems
BDM Battery Degradation Model
ASM Ancillary Services Markets
PPF Probabilistic Power Flow
SEI Solid Electrolyte Interphase
DoD Depth of Discharge
SOC State Of Charge
PDF Probability Density Function
WGN White Gaussian Noise
AS Autocorrelated Signal
TRT Total Repay Time
TRT Total Repay Ratio
TSO Transmission System Operator

the payback time of the DESS for different values of D, and
the ratio between the payback time and the DESS degradation
time. The DESS can be fully payed back only if r%R < 1.
As expected, I%T and TTDRR clearly increase with growing D
and ¢’ Results confirm how each value of ¢’ has a range
of installed storage D which makes DESSs economically
sustainable, just by providing ancillary services to balancing
markets. The analysis of the results represents the expected
feedback in the planning process of DESS. Moreover, as high-
lighted by Fig.9 for this particular case study, the applica-
tion of DESS in the balancing market leaves a significant
probability to experience free DESS power capacity, useful
to provide further ancillary services.

Finally, the obtained results have been compared with an
estimation of the market cumulative costs in which the DESS
amortization costs have been assessed by considering a fixed
lifetime estimation of 5 yrs. The comparison shows how this
results tends to underestimate the global costs for small DESS
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sizes, and to overestimate them for big DESS sizes. This is
due to the fact that smaller BESSs tend to perform more high
DoD cycles, which reduces their expected lifetime. If this
effect is not correctly characterized, their amortization costs
are underestimated, leading to a non correct estimation of the
global costs of the process. This in turn can lead to a non
correct planning procedure.

V. CONCLUSION

The introduction of a statistical-based assessment of the
Li-Ion BESS degradation allows for the estimation of the
amortization costs of this type of batteries for use cases
in highly stochastic operating conditions. The model, once
validated on two toy-model test cases, has been applied for
the assessment of the electric and economic impacts of dif-
ferent DESS planning scenarios on the Italian market-based
power system, by also including the battery aging effects.
In particular, the results of the case study put in evidence
the existence of an economically sustainable configuration
of DESS, with optimal size dependent on its overnight costs
and ranging between 1 and 5 GWh. Moreover, the power
usage statistics of the DESS during the provision of ancillary
services in balancing markets show a significant availability
of spare resources, allowing the provision of further ancillary
service in the balancing market. The obtained results make
the proposed methodology suitable for further investigation
related to economic evaluation of additional services that can
be provided by Li-ion ESS, especially for use cases involving
the random usage of this devices.
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