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We consider cosmologies in which a dark-energy scalar field interacts with cold dark matter. The

growth of perturbations is followed beyond the linear level by means of the time-renormalization-group

method, which is extended to describe a multicomponent matter sector. Even in the absence of the extra

interaction, a scale-dependent bias is generated as a consequence of the different initial conditions for

baryons and dark matter after decoupling. The effect is enhanced significantly by the extra coupling and

can be at the 2%–3% level in the range of scales of baryonic acoustic oscillations. We compare our results

with N-body simulations, finding very good agreement.
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I. INTRODUCTION

The power spectrum of matter perturbations reflects the
evolution of the Universe since the time of matter-radiation
equality. For given initial conditions, determined by the
primordial spectrum (usually assumed to be scale invari-
ant), the growth of perturbations depends on the cosmo-
logical scenario. The calculation of the present matter
power spectrum can constrain this scenario through the
comparison of the deduced spectrum with the observed
large-scale structure. A major technical difficulty in the
realization of such a program is the failure of linear-
perturbation theory to describe present-day fluctuations
with characteristic length scales below roughly 100 Mpc.
At length scales below about 10 Mpc, the evolution is
highly nonlinear, so that only numerical N-body simula-
tions can capture the dynamics of the formation of galaxies
and clusters of galaxies. Fluctuations with length scales of
around 100 Mpc fall within the mildly nonlinear regime,
for which analytical methods have been developed. These
scales (corresponding to wave numbers in the
0:03–0:25 h=Mpc range) are of particular interest, because
they correspond to the sound horizon at decoupling, which
can be determined by reconstructing the oscillatory behav-
ior of the matter power spectrum due to baryonic acoustic
oscillations (BAOs).

The various analytical methods [1–9] essentially amount
to resummations of subsets of perturbative diagrams of
arbitrarily high order, in a way analogous to the renormal-
ization group (RG). In this work we shall follow the
approach of [5], named time-RG or TRG. In the context
of the RG the various observables depend on a character-
istic energy scale, and evolve as this scale is varied. The
TRG uses time as the flow parameter that describes the
evolution of physical quantities, such as the spectrum of
perturbations. The method is characterized by conceptual

simplicity. It has been applied to �CDM and quintessence
cosmologies [5], as well as models with massive neutrinos
[6].
The fundamental equations in the TRG approach are the

‘‘equations of motion,’’ i.e., the continuity, Euler and
Poisson equations. From these, equations can be derived
for the time evolution of correlation functions for the
density and velocity fields. The various spectra are ob-
tained through appropriate Fourier transforms of the cor-
relation functions. The method results in a coupled infinite
system of integro-differential equations for the time evo-
lution of the spectrum, bispectrum, etc. The crucial ap-
proximation, which makes a solution possible, is to neglect
the effect of the higher-order correlation functions in the
evolution equations of the lower-order ones. The calcula-
tions performed so far take into account the spectrum and
bispectrum and set the higher-level spectra to zero.
The procedure of truncating the system of equations is

commonly employed in the applications of the Wilsonian
RG to field theory or statistical physics. (For a review, see
[10].) The accuracy of the calculation can be determined
either by enlarging the truncated system (by including the
trispectrum, for example) and examining the stability of
the results or by comparing with alternative methods. The
second approach is often followed, because enlarging the
truncation can increase the complexity of the calculation
considerably. In the case of the TRG, the agreement with
results from N-body simulations for �CDM has been
confirmed [5]. Also, a comparative analysis of several
analytical methods, using N-body simulations as a refer-
ence, has been carried out in Ref. [11]. The study demon-
strates that the TRG remains accurate at the 1%–2% level
over the whole BAO range at all redshifts.
In Fig. 5 of Ref. [11] the deviation of the TRG prediction

from a reference spectrum derived through simulations for
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�CDM is depicted. At a redshift z ¼ 1 the deviation is at
the 1% level, or smaller, over the whole depicted range 0 �
k � 0:15 h=Mpc. For z ¼ 0 the deviation may exceed 1%
for some values of k, but stays below 2% over the whole
depicted range. Based on these findings and the analysis of
[5] we estimate an accuracy of 1% for z ¼ 1 and 2% for
z ¼ 0 over the range 0 � k � 0:2 h=Mpc. The accuracy of
one-loop standard perturbation theory (SPT) can be in-
ferred from Fig. 1 of Ref. [11]. At z ¼ 1 the accuracy is
at the 1% level for 0 � k � 0:1 h=Mpc, while at z ¼ 0 it is
at the 2% level for 0 � k � 0:05 h=Mpc. We depict these
ranges in Figs. 3–6 of the current paper. The additional
approximations that we make in this paper for the study of
models with nonzero coupling between dark matter and
dark energy induce uncertainties at the subpercent level.
We discuss this issue in detail in subsection III A. For this
reason the level of accuracy of our results for the power
spectra in the coupled case is expected to be similar to that
for �CDM. Its magnitude is set by the truncations in the
evolution equations (the omission of the effect of the
trispectrum and higher spectra), which are similar in all
models.

The purpose of the present work is threefold:
(1) We extend the formalism to more complicated mod-

els. We introduce two modifications to previous
studies: (a) Within the matter sector we allow for
an arbitrary number of species with independent
spectra. These include baryonic matter (BM) and
cold (pressureless) dark matter (CDM). One may
also consider contributions from massive neutrinos,
etc. (b) We allow for an interaction between CDM
and dark energy (DE). We consider a class of quin-
tessence models, in which there is direct coupling
between CDM and the quintessence field. The form
of the interaction is a generalization of the universal
coupling to all species present in scalar-tensor theo-
ries in the Einstein frame. It is modeled through the
dependence of the mass of the CDM particles on the
quintessence field [12–20].

(2) We test the accuracy of the method in this enlarged
framework by comparing with available N-body
simulations. We perform our numerical analysis
for a model for which results from simulations are
given in Ref. [21]. In the context of coupled quin-
tessence, the cosmological evolution can be very
diverse [14,20,22,23]. It is very time-consuming to
study exhaustively every model through N-body
simulations. Our approach provides an alternative
method, which can be much faster, while retaining
the necessary accuracy. It is also important to note
that, while the N-body simulations are highly accu-
rate at the length scales of galaxies and clusters of
galaxies, they are less accurate in the BAO range
because of the required large volumes. On the other
hand, analytical methods, like ours, are more accu-

rate in the quasilinear regime of large length scales.
The two approaches can be viewed as complemen-
tary.

(3) We provide predictions for observables for which
nonlinear corrections can be important. As such, we
study the bias between dark and baryonic matter in
the BAO range for models of coupled quintessence.

The couplings between the matter sector and DE are
constrained by observations. For the BM-DE coupling, the
bound from the Cassini spacecraft [24] limits its order of
magnitude to be below 10�3. As such small couplings
produce negligible effects on the power spectrum, we
assume that the BM-DE coupling is exactly zero. The
coupling between CDM and DE is constrained by various
considerations, such as the modification of the spectrum of
the cosmic microwave background (CMB) or that of the
matter distribution. A common feature of the class of
models we are considering is that the presence of an addi-
tional long-range force between CDM particles, induced
by the DE field, modifies their clustering properties. The
various observable consequences have been discussed in
the literature [21,25–40]. The strength of the CDM-DE
interaction is constrained through the comparison with
the observed CMB and matter spectra. It has been shown
that, for particular models, the CDM-DE coupling must be
considerably smaller than the gravitational one [39,40].
Such constraints cannot be considered generic, because
the evolution of the cosmological background and the
perturbations around it varies considerably from model to
model. We work within the model of [21], because our
main objective is to compare with the results of N-body
simulations presented there. The couplings that we con-
sider are roughly consistent with the bounds deduced in
[39,40] for a model similar to ours.
In this work we follow a novel approach for the deriva-

tion of the fundamental equations. We derive the continu-
ity, Euler and Poisson equations on an expanding
background, starting from the conservation of the energy-
momentum tensor. In order to cast these equations in a
form that generalizes the standard expressions on a static
background, we need to impose a certain hierarchy be-
tween the density perturbations, the velocity field and the
potentials. Our derivation makes it straightforward to gen-
eralize these equations in future studies in order to take into
account nonzero pressure and higher-order terms. Next, we
derive the system of differential equations for the spectrum
and bispectrum, within a truncation that neglects higher-
level spectra. We integrate these equations numerically in
order to produce the nonlinear spectra at low redshift and
compare with the results of N-body simulations. We study
in detail the difference, usually characterized as bias, be-
tween the spectra of dark and baryonic matter. We find that
the CDM-DE coupling enhances significantly the bias of
the decoupled case.
In the following section we derive the evolution equa-

tions for the spectra of dark and baryonic matter. The
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details of the derivation for the case of one massive com-
ponent are given in Appendix A. The generalization for an
arbitrary number of massive components is presented in
Appendix B. The results of the numerical integration of the
evolution equations are presented in Sec. III. We compare
them with the results of N-body simulation. We also dis-
cuss in detail the form of the bias in the BAO range.

II. DARK MATTER COUPLED TO DARK ENERGY

A. Nonlinear evolution equations for the perturbations

We assume that the energy density of the Universe
receives significant contributions from three components:
(a) standard BM, (b) a species of weakly interacting,
massive particles, which we identify withCDM, and (c) a
slowly varying, classical scalar field�, whose contribution
to the energy density is characterized as DE. We also
consider the possibility that there is a direct coupling
between the CDM particles and the scalar field. Its equa-
tion of motion takes the form

1ffiffiffiffiffiffiffi�g
p @

@x�

� ffiffiffiffiffiffiffi�g
p

g�� @�

@x�

�
¼ �dU

d�
þ �ð�ÞðTCDMÞ��:

(2.1)

We normalize all dimensionful quantities, such as the

scalar field, with respect to the reduced Planck mass M ¼
ð8�GÞ�1=2. The full M dependence is displayed explicitly
in Appendix A. Our normalization here is equivalent to
setting M ¼ 1. Equation (2.1) can be obtained if we as-
sume that the mass m of the particles has a dependence on
� [41]. Then we have �ð�Þ ¼ �d lnmð�Þ=d�. In order to
be consistent with the stringent observational constraints
for the baryonic sector, we assume that the interaction with
the DE scalar field is confined to the CDM sector. The BM
has no direct coupling to �.

For the metric, we consider an ansatz of the form

ds2 ¼ a2ð�Þ½ð1þ 2�ð�; ~xÞÞd�2 � ð1� 2�ð�; ~xÞÞd~xd~x�:
(2.2)

We assume that the Newtonian potential � is weak, � �
1, and that the field � can be decomposed as

�ð�; ~xÞ ¼ ��ð�Þ þ ��ð�; ~xÞ; (2.3)

with ��= �� � 1. In general, �� ¼ Oð1Þ in units ofM. The
magnitude of the fluctuations of� is expected to be similar
to that of the gravitational field �. The reason is that the
source for both is the dark matter density, to which they
couple with comparable strength (as will be apparent in the
following). Finally, the density can be decomposed as

�ð�; ~xÞ ¼ ��ð�Þ þ ��ð�; ~xÞ: (2.4)

We allow for significant density fluctuations, even though
our analysis is not applicable when they are much larger
than the background density. Our aim is to take into
account the effect of the local velocity field � ~v, when

this becomes significant because of large field gradients.
For subhorizon perturbations with momenta k � H ¼
_a=a, the linear analysis predicts j� ~vj � ðk=H Þ��
ðH =kÞð��= ��Þ. A consistent expansion scheme can be
obtained if we assume that � � j� ~vj � 1. Including the
density perturbations, our assumptions can be summarized
in the hierarchy of scales: �, ��= �� � j� ~vj � ��= �� &
1. At the linear level, we have � ~v2 ��ð��= ��Þ. We as-
sume that such a relation holds at the nonlinear level as
well, within the range of applicability of our scheme. The
velocity field is driven by the spatial derivatives of the
potentials �, ��= ��. As we are dealing with subhorizon
perturbations, it is consistent to make the additional as-
sumption that the spatial derivatives of �, �� dominate
over their time derivatives. The predictions of the linear
analysis allow us to make a more quantitative statement.
We assume that a spatial derivative acting on �, �� or � ~v
increases the position of that quantity in the hierarchy by

one level. In this sense ~r� is comparable to � ~v, while
r2� is comparable to ��.
With the above assumptions, one can derive the equa-

tions that describe the evolution of the Universe. For one
nonrelativistic species, the derivation is presented in
Appendix A. It is generalized to two species in
Appendix B. The evolution of the homogeneous back-
ground is described by

H 2 ¼ 1

3

�
a2

X
i¼1;2

��i þ 1

2
_��
2 þ a2Uð ��Þ

�

� 1

3
a2�tot; (2.5a)

_��i þ 3H ��i ¼ ��i
_�� ��i; (2.5b)

€��þ 2H _�� ¼ �a2
�
dU

d�
ð ��Þ � X

i¼1;2

�i ��i

�
; (2.5c)

where we have defined �tot � P
i ��i þ _��

2
=ð2a2Þ þUð ��Þ.

For the CDM we have a nonzero constant �1 ¼ �, while
for BM, because of the strong constraints from solar sys-
tem tests of general relativity [24], we set �2 ¼ 0.
We describe the perturbations in terms of the scalar-field

perturbation ��, the Newtonian potential �, the density
perturbations ��i and the velocity fields vi. We have two
Poisson equations

r2�� ¼ �a2
X
i

�i��i � �3
X
i

�iH 2�i�i; (2.6a)

r2� ¼ 1

2
a2
X
i

��i � 3

2
H 2

X
i

�i�i; (2.6b)

with �ið�Þ � ��ia
2=ð3H 2Þ, and the continuity and Euler

equations
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� _�i þ 3H��i þ ~r½ð ��i þ��iÞ� ~vi� ¼ ��i
_����i;

(2.7a)

� _~vi þ ðH ��i
_��Þ� ~vi þ ð� ~vi � ~rÞ� ~vi ¼� ~r�þ�i

~r��:

(2.7b)

B. The CDM-BM quadruplet and the power spectra

The evolution equations are expressed in their most
useful form in terms of the density contrasts �i �
��i= ��i & 1 and 	iðk; �Þ � ~r � ~�viðk; �Þ. For the Fourier
transformed quantities, we obtain from Eq. (2.7a)

_�iðk; �Þ þ 	iðk; �Þ þ
Z

d3k1d
3k2�Dðk� k1 � k2Þ

	 ~
ðk1;k2Þ	iðk1; �Þ�iðk2; �Þ ¼ 0; (2.8)

where

~
ðk1;k2Þ ¼ k1 � ðk1 þ k2Þ
k21

: (2.9)

Equations (2.7b), (2.6a), and (2.6b) give

_	iðk; �Þ þ ðH � �i
_��Þ	iðk; �Þ

þ
3H 2P

j
�jð2�i�j þ 1Þ�jðk; �Þ

2
þ
Z

d3k1d
3k2�D

	 ðk� k1 � k2Þ ~�ðk1;k2Þ	iðk1; �Þ	iðk2; �Þ ¼ 0;

(2.10)

where

~�ðk1;k2Þ ¼ ðk1 þ k2Þ2k1 � k2

2k21k
2
2

: (2.11)

In Appendix B we discuss the above equations for an
arbitrary number of nonrelativistic species. Here we con-
centrate on the case of interest, i.e., CDM coupled to� and
BM only gravitationally coupled. We define the quadruplet

’1ðk; �Þ
’2ðk; �Þ
’3ðk; �Þ
’4ðk; �Þ

0
BBB@

1
CCCA ¼ e��

�CDMðk; �Þ
� 	CDMðk;�Þ

H
�BMðk; �Þ
� 	BMðk;�Þ

H

0
BBB@

1
CCCA; (2.12)

where � ¼ lnað�Þ. This allows us to bring Eqs. (2.8) and
(2.10) in the form [1,4,5]

@�’aðk; �Þ þ�ab’bðk; �Þ ¼ e��abcðk;�k1;�k2Þ
	 ’bðk1; �Þ’cðk2; �Þ:

(2.13)

The indices a, b, c take values 1; . . . ; 4. The values 1,2
characterize CDM density and velocity perturbations,
while 3,4 refer to BM quantities. Repeated momenta are
integrated over, while repeated indices are summed over.
The functions �, which determine effective vertices, are
analogous to those employed in [4,5]. The nonzero com-
ponents are

�121ðk;k1;k2Þ ¼ ~
ðk1;k2Þ
2

�Dðkþ k1 þ k2Þ
¼ �112ðk;k2;k1Þ;

�222ðk;k1;k2Þ ¼ ~�ðk1;k2Þ�Dðkþ k1 þ k2Þ;

�343ðk;k3;k4Þ ¼ ~
ðk3;k4Þ
2

�Dðkþ k3 þ k4Þ
¼ �334ðk;k4;k3Þ;

�444ðk;k3;k4Þ ¼ ~�ðk3;k4Þ�Dðkþ k3 þ k4Þ:

(2.14)

The � matrix is

�ð�Þ ¼
1 �1 0 0

� 3
2�CDMð2�2 þ 1Þ 2� � ��0 þ H 0

H � 3
2�BM 0

0 0 1 �1
� 3

2�CDM 0 � 3
2�BM 2þ H 0

H

0
BBB@

1
CCCA; (2.15)

where a prime denotes a derivative with respect to �.
The next step is to derive evolution equations for the power spectra. The spectra, bispectra and trispectra are defined as

h’aðk;�Þ’bðq;�Þi � �DðkþqÞPabðk;�Þ;
h’aðk;�Þ’bðq;�Þ’cðp;�Þi � �DðkþqþpÞBabcðk;q;p;�Þ;

h’aðk;�Þ’bðq;�Þ’cðp;�Þ’dðr;�Þi � �DðkþqÞ�Dðpþ rÞPabðk;�ÞPcdðp;�Þþ�DðkþpÞ�Dðqþ rÞPacðk;�ÞPbdðq;�Þ
þ�Dðkþ rÞ�DðqþpÞPadðk;�ÞPbcðq;�Þþ�Dðkþpþqþ rÞQabcdðk;p;q;r;�Þ:

(2.16)

In Appendix B we summarize the derivation of the evolution equations for an arbitrary number of species. The essential
approximation that we have to make in order to obtain a closed system is to neglect the effect of the trispectrum on the
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evolution of the bispectrum. In this way we obtain

@�Pabðk; �Þ ¼ ��acPcbðk; �Þ ��bcPacðk; �Þ þ e�
Z

d3q½�acdðk;�q;q� kÞBbcdðk;�q;q� kÞ
þ �bcdðk;�q;q� kÞBacdðk;�q;q� kÞ�; (2.17)

@�Babcðk;�q;q� kÞ ¼ ��adBdbcðk;�q;q� kÞ ��bdBadcðk;�q;q� kÞ ��cdBabdðk;�q;q� kÞ
þ 2e�

Z
d3q½�adeðk;�q;q� kÞPdbðq; �ÞPecðk� q; �Þ

þ �bdeð�q;q� k;kÞPdcðk� q; �ÞPeaðk; �Þ þ �cdeðq� k;k;�qÞPdaðk; �ÞPebðq; �Þ�:
(2.18)

The formal solution of the above system is given by

Pabðk; �Þ ¼ gacðk; �; 0Þgbdðk; �; 0ÞPcdðk; � ¼ 0Þ þ
Z �

0
d�0e�0 Z

d3qgaeðk; �; �0Þgbfðk; �; �0Þ
	 ½�ecdðk;�q;q� kÞBfcdðk;�q;q� k;�0Þ þ �fcdðk;�q;q� kÞBecdðk;�q;q� k;�0Þ�; (2.19)

Babcðk;�q;q� k;�Þ ¼ gadðk; �; 0Þgbeð�q; �; 0Þgcfðq� k; �; 0ÞBdefðk;�q;q� k;� ¼ 0Þ
þ 2

Z �

0
d�0e�0

gadðk; �; �0Þgbeð�q; �; �0Þgcfðq� k; �; �0Þ½�dghðk;�q;q� kÞ
	 Pegðq; �0ÞPfhðq� k; �0Þ þ �eghð�q;q� k;kÞPfgðq� k; �0ÞPdhðk; �0Þ
þ �fghðq� k;k;�qÞPdgðk; �0ÞPehðq; �0Þ�; (2.20)

where gabðk; �; �0Þ is the linear propagator, which gives
the evolution of the field at the linear level: ’L

a ðk; �Þ ¼
gabðk; �; �0Þ’L

b ðk; �0Þ.
The solutions can be expanded in powers of the interac-

tion vertex �abc, in order to establish the connection with
perturbation theory [5]. The lowest order, corresponding to
linear theory, is obtained by setting �abc ¼ 0. The linear
spectrum PL

ab and bispectrum BL
abc are given by the first

line of each of the above equations. The Oð�Þ correction
for the bispectrum is obtained by inserting PL

ab in place of

Pab in the right-hand side of Eq. (2.20). Inserting the
bispectrum at this order in Eq. (2.19) generates the Oð�Þ
and Oð�2Þ contributions to the power spectrum. At this
order, the result for the power spectrum reproduces exactly
the one-loop expression in SPT [42]. Iterating the proce-
dure generates the higher-order corrections. However, dif-
ferences with perturbation theory arise at higher orders,
because of the approximation Qabcd ¼ 0 that we have
made in deriving the evolution equations for the power
spectrum and bispectrum.

III. NUMERICAL ANALYSIS

A. Approximations

The presence of two massive species (BM and CDM)
complicates the structure of the equations compared to the
case where they are treated as a single fluid, discussed in
[5]. The full system of Eqs. (2.17) and (2.18) contains 74

equations, namely, 10 for the power spectra and 64 for the
bispectra, compared to the 11 equations of the single-
matter case. An accurate calculation also requires the dis-
cretization of the k space with at least 500 points. Taking
into account that the bispectra depend on three external
momenta, it is apparent that the necessary computing
power is significant.
The system can be reduced if additional approximations

are made, based on the following observations:
(i) The dynamical vertices of Eq. (2.14) do not mix the

CDM components with the BM ones. The coupling
between the two types of components is entirely due
to the linear part of the equations, and especially to
the�23 and�41 entries of Eq. (2.15), through which
the 1,2 and 3,4 indices are mixed. These originate in
the Poisson equation, in which the fluctuations of all
the matter species contribute universally to the gravi-
tational potential.

(ii) The ratio of BM and CDM density perturbations is
usually characterized as bias: b ¼ �BM=�CDM. If at
early times b is independent of k, the subsequent
linear evolution preserves this independence, so that
b is only a function of �. At the linear level, the
density-velocity and velocity-velocity spectra are
proportional to the density-density ones, with
k-independent proportionality factors. These factors
are appropriate powers of the linear growth func-
tions, so that the growing modes are selected [5].
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(iii) The effect of the CDM-DE coupling � on the bias
can be estimated analytically in the linear approxi-
mation. For � ¼ 0 the evolution equations for CDM
and BM are the same, so that, for identical initial
conditions, we have P11 ¼ P33 ¼ P13. For � � 0,
the growing mode solution of the linearized equa-
tions has the form ’aðk; �Þ ¼ ’ðk; �Þ	
½1; fð�Þ; bð�Þ; bð�Þfð�Þ�, where fð�Þ, bð�Þ are so-
lutions of the system

3

2
�CDMð2�2 þ 1Þ þ 3

2
�BMb� 3

2

1

b
�CDM

� 3

2
�BM þ � ��0f ¼ 0; (3.1)

f0 þH 0

H
fþ fþ f2 � 3

2

1

b
�CDM � 3

2
�BM ¼ 0;

(3.2)

with the prime denoting derivatives with respect to
� ¼ lnað�Þ. For � ¼ 0, we have b ¼ b0 ¼ 1 and
f ¼ f0ð�Þ, with f0ð�Þ the growth function of the
corresponding decoupled model. The corrections for
� � 0 are Oð�2Þ. This is obvious for those arising
from the first term in Eq. (3.1). The last term in the
same equation has a similar effect because the evo-
lution of the field is given by Eq. (2.5c). In all models
in which the CDM-DE coupling affects the cosmo-
logical evolution, the two terms in the right-hand
side of Eq. (2.5c) are comparable, so that ��0 ¼
Oð�Þ.

(iv) The nonlinear corrections induce a k dependence at
low redshifts and large k. Again this is an Oð�2Þ
effect. This can be verified in the context of the loop
expansion, as the vertices are � independent, while
the propagators for CDM and BM differ by terms of
Oð�2Þ.

(v) Finally, there is a bias induced by the initial con-
ditions for the CDM and BM spectra, which are not
identical at the end of the decoupling era. The mag-
nitude of this effect can be deduced from our sub-
sequent analysis, and is apparent in Fig. 6, in which
the bias in the BAO region is depicted at a redshift
z ¼ 1:12. The bias deviates from 1 at a level smaller
than 2% for the decoupled scenario (� ¼ 0). We
have checked that at z ¼ 0 the effect is below 1%.

(vi) The estimates on the � dependence of the bias are
also confirmed by Fig. 6: Within the BAO range, the
bias factor b receives corrections of Oð�2Þ relative
to the � ¼ 0 case.
These observations offer the possibility to reduce the
number of evolution equations by computing only
the pure CDM or BM spectra and approximating the
mixed ones. In the resulting equations for the pure
spectra we make the following approximations:

(vii) In the right-hand side of Eq. (2.17) we approximate
the mixed power spectra as the geometrical averages
of the pure ones, i.e.,

P13ðk; �Þ ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P11ðk; �ÞP33ðk; �Þ

q
;

P14ðk; �Þ ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P11ðk; �ÞP44ðk; �Þ

q
;

P23ðk; �Þ ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P22ðk; �ÞP33ðk; �Þ

q
;

P24ðk; �Þ ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P22ðk; �ÞP44ðk; �Þ

q
:

(3.3)

If the bias were k independent, we would have P13 ¼
bP11, P33 ¼ b2P11, and the first relation would be
exact. The same is true for the other relations, be-
cause of the k independence of the linear growth
functions. The accuracy of the resulting mixed
power spectra can be estimated through the k depen-
dence of the bias. As we have discussed above, this is
an Oð�2Þ effect, which is smaller than 1% for the
values of � that we use (� � 0:1).

(viii) In the right-hand side of Eq. (2.18) the mixed com-
ponents of the bispectra are approximated by the
corresponding pure ones, e.g.,

B113 ’ B111; (3.4)

and so on. The direction of the approximation
(whether a CDM index is turned into a BM one, or
vice versa) is decided by a majority criterium: if a
bispectrum has two CDM components and a BM
one, it is approximated by a purely CDM bispec-
trum, and vice versa. The accuracy of this approxi-
mation is determined by the magnitude of the bias.
The deviation of the bias from 1 receives a correction
around 1%–2% at low redshifts because of the differ-
ent initial conditions for CDM and BM, and a cor-
rection of Oð�2Þ because of the CDM-BM coupling
� � 0.
We emphasize that this approximation affects the
calculation of the power spectra only indirectly.
The approximated mixed bispectra appear in the
right-hand side of Eq. (2.18) along with several
pure ones. This induces an error in the pure bispec-
tra, obtained through the integration of Eq. (2.18),
which is significantly smaller than 1%–2%. The pure
bispectra then affect the calculation of the power
spectra by appearing in the right-hand side of Eq.
(2.17). We expect the residual effect of approxima-
tions such as (3.4) on the accuracy of the computed
power spectra to be below 1%.

Through the above approximations the system is re-
duced to a set of 22 coupled equations, which can be solved
in a way analogous to that described in Appendix B of [5].
As we have explained in detail, our approximations are
expected to be valid at the subpercent level for the power
spectra within the BAO range. This can be verified a
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posteriori, by comparing with N-body simulations, as we
will do in the following section. Of course, the most
unambiguous test would be the comparison with an exact
solution of the full 74 equations (2.17) and (2.18).
Unfortunately, it is very difficult to keep the numerical
accuracy of the solution of such a huge system of integro-
differential equations at the subpercent level, in order to
carry out this test.

B. Results

We have applied the formalism of the TRG to a quin-
tessence model with nonzero coupling between CDM and
the quintessence field �. We chose a particular model for
which the matter spectrum has been calculated in [21]
through numerical N-body simulations. The field has a
potential Vð�Þ ���
, with 
 ¼ 0:143. The present-day
energy content of the Universe has�DE ¼ 0:743,�CDM ¼
0:213, �BM ¼ 0:044. The Universe is assumed to have
vanishing spatial curvature (�k ¼ 0), current expansion
rate H0 ¼ 71:9 km s�1 Mpc�1. The mass variance is taken

8 ¼ 0:769, as calculated from the linear spectrum.

The initial conditions for the integration of the evolution
equations for the spectra have been set at a redshift z ¼ 40.
At such early times the evolution is linear to a very good
approximation. We employed the implementation of the
background and linear-perturbation equations in the
Boltzmann code CMBEASY [43], generalized for the inter-
acting case [21]. We assumed that the primordial spectrum
is scale invariant with spectral index n ¼ 0:963. We chose
the initial value of the scalar field close to its tracker value
in the uncoupled case, and adjusted the value of the di-
mensionful constant in its potential so as to obtain the
present-day energy content listed above.

In the �CDM case the momentum dependence of the
power spectrum ensures that the momentum integrations in
the evolution equations (2.17) and (2.18) are both infrared
(IR) and ultraviolet (UV) finite at any order in perturbation
theory. However, in order to perform numerical computa-
tions these integrations must be cut off both in the IR and
the UV. An appropriate IR limit eliminates contributions
from very large length scales, of the order of the horizon
distance. In our numerical study of the case of coupled
quintessence we employ an IR cutoff kIR ’ 10�2 h=Mpc.
We have checked that an IR cutoff kIR ’ 10�3 h=Mpc does
not alter our results for the spectra. It tends, however, to
increase the noise for numerical integrations with larger
time steps than the ones we employ. In principle, the UV
cutoff must also be chosen with care. Contributions with
very large momenta correspond to length scales for which
our method is not accurate. At scales below a few Mpc the
process of virialization is crucial for the formation of
galaxies and clusters of galaxies. The nonlinear corrections
that we take into account through the TRG are not suffi-
cient for the quantitative description of the physics at these
scales. For this reason we implement an UV cutoff kUV ’

2:3 h=Mpc. We have checked that the variation of kUV by a
factor of 2 induces a variation of the spectra in the BAO
range (0:03 h=Mpc & k & 0:25 h=Mpc) at the subpercent
level. As a result, the evolution at small length scales does
not influence appreciably the evolution at the scales rele-
vant for the BAOs, which are the main focus of our
calculation.
We can check the reliability of the TRG approach by

comparing our results with those fromN-body simulations.
In Figs. 1 and 2 we display the ratio of nonlinear to linear
power spectra at z ¼ 0, for � ¼ 0:05 and 0.1, respectively.
The lines correspond to our results for the CDM and BM
density-density power spectra. The points indicate the
results of the N-body simulations presented in [21] for
the same quantities. No error bars are given for these
results that would permit an accurate assessment of the
level of agreement with our findings. On the other hand, we
observe consistency of the two methods at scales below
0:5 h=Mpc: The growth of the nonlinear power spectrum
relative to the linear one at small length scales is captured
well by the TRG. It is also obvious from the same figures
that the two approaches give results that start to deviate for
k * 0:5 h=Mpc. This is expected, as the TRG cannot
capture the processes of formation of bound structures
that dominate at large momentum scales. Our main interest
lies in the region 0:03 h=Mpc & k & 0:25 h=Mpc, in
which the BAOs are visible. We also point out that the
N-body simulations are rather noisy at such length scales
because of finite volume effects, as they are optimized for
scales smaller than the BAO range. For this reason, the two
methods, N-body simulations and TRG, can be viewed as
complementary: N-body simulations give a reliable de-
scription of the process of virialization at relatively small
length scales, while the TRG is the appropriate tool for the
study of nonlinear effects at the BAO range. The agreement
of the two methods in the intermediate range of overlap is a
confirmation their consistency.
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FIG. 1 (color online). Comparison of results from N-body
simulations and our calculation (� ¼ 0:05). We display the ratio
of the nonlinear and linear spectra for z ¼ 0.
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In Figs. 3–5, we display the linear and nonlinear power
spectra for models with � ¼ 0, 0.05 and 0.1. We focus on
the BAO range. In order to provide a clear depiction of the
oscillatory behavior of the spectra, we divide them by the
smooth function of Ref. [44] for �BM ¼ 0.

In Fig. 3 we display the density-density power spectra
for CDM for various values of �. It is apparent that the
inclusion of the nonlinear effects causes the spectrum to
increase at large momenta. For k & 0:06h h=Mpc (a re-
gion that includes the first peak), the linear and nonlinear
spectra are indistinguishable. This indicates that the non-
linear corrections become negligible at large length scales.
On the other hand, the nonlinear spectrum becomes sig-
nificantly larger than the linear one at smaller length scales.
The nonlinear effects are quantitatively important in the

BAO range. In the vicinity of the second peak they provide
corrections at the level of a few percent, while in the
vicinity of the third peak the corrections are about 10%.
These features of the nonlinear corrections on the matter
power spectrum in the � ¼ 0 case have been discussed in
full detail in the past (for instance, in [5]).
The presence of an extra CDM-DE coupling causes an

additional enhancement of the spectrum. For example, for
k ¼ 0:3 h=Mpc the differences of the nonlinear spectra for
� ¼ 0, 0.05 and 0.1 have roughly doubled compared to the
corresponding differences of the linear spectra. A qualita-
tive change in the spectrum is that the third peak ceases to
exist for � ’ 0:1. It is likely that the disappearance of
higher-order peaks is common in models of coupled quin-
tessence. However, it is not possible to investigate this
feature in a model-independent way. The large variability
of the evolution of the cosmological background and the
perturbations in models of coupled quintessence makes it
very difficult to identify generic features.
In Fig. 4 we display the density-density power spectra of

BM. They are very similar to those of CDM. A close
inspection reveals that the enhancement of the spectrum
with increasing � is smaller than for the CDM case. This is
more apparent for k ¼ 0:3 h=Mpc. The reason can be
traced to the additional attractive force between CDM
particles, mediated by the quintessence field. As the addi-
tional force is not felt by the baryons, the enhancement
affects CDM and baryons differently; i.e., a bias is pro-
duced. This is apparent already at the linear level, but it
becomes an even stronger effect at the nonlinear level. The
baryons are not subject to this force and tend to collapse
more slowly [26]. The bias is scale dependent, as we
discuss in detail below.
In Fig. 5 we depict the velocity-velocity power spectra

for CDM. Similarly to the density-density spectra, the
higher-order peaks are washed away by the combined
effect of the nonlinear corrections and the CDM-DE inter-
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FIG. 2 (color online). Comparison of results from N-body
simulations and our calculation (� ¼ 0:1). We display the ratio
of the nonlinear and linear spectra for z ¼ 0.
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function of [44]. The spectra have been multiplied by an addi-
tional �-dependent factor in order to be equal to 1 for k ! 0. We
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action. The nonlinear density-density (dd), density-
velocity (dv) and velocity-velocity (vv) power spectra dis-
play similar behavior. The BM spectra follow closely the
variation of the corresponding DM ones. There is also a
hierarchy in the magnitude of the spectra for large k. The
reason is that the velocity field is much smaller than the
density perturbation at subhorizon scales. As a result, the
nonlinear effects that enhance the spectra at large k are
more pronounced for the density-density spectra and
smallest for the velocity-velocity ones.

The bias in the BAO region is depicted in Fig. 6 for

a redshift z ¼ 1:12. It is defined as bðkÞ ¼
ðPBMðkÞ=PCDMðkÞÞ1=2. The small kinks in the curves give
an indication of the numerical errors in our calculation. We
notice that, even at vanishing coupling (� ¼ 0), there is a
bias as a result of the different initial conditions between
BM and CDM after decoupling [26]. However, in the � ¼
0 case the bias parameter tends to unity at lower redshifts,
as is well known. When � � 0 the initial unbalance be-

tween baryons and CDM is never washed out, as a con-
sequence of the extra scalar force acting on the latter and
not on the former. In linear-perturbation theory, this causes
a scale-independent bias in recent epochs [26]. When non-
linear corrections are taken into account, the situation
changes dramatically. The CDM and BM components,
having different initial conditions, evolve differently even
in the � ¼ 0 case, with the BM fluid being always more
‘‘linear’’ than the CDM one. Moreover, since the nonlinear
growth factors are scale-dependent, nonlinear corrections
cause a scale-dependent bias even at � ¼ 0 [27]. It is clear
from Fig. 6 that both effects, i.e., the bias and its scale
dependence, are enhanced by a nonvanishing coupling.
This feature could provide a distinctive signature for this
kind of models. These results are consistent with the con-
clusions of Refs. [21,45], in which the emphasis is put on
the halo region of the spectrum.

IV. CONCLUSIONS

In this paper we have extended the TRG formalism
introduced in Ref. [5] in two respects. First, we described
the matter sector of the theory keeping track of the CDM
and BM components separately, instead of treating them as
a single fluid. Second, we introduced a new scalar force
that couples differently to CDM and BM. As was discussed
recently in [27], an accurate computation of the evolution
of the different components is mandatory if one wants to
achieve high precision modeling of structure formation. In
order to test the accuracy of the TRG method for this more
general class of cosmological scenarios, we analyzed the
same cosmologies considered in [21], and compared our
results with those of the N-body simulations presented
there. The agreement is very good up to k ’ 0:5 h=Mpc
at z ¼ 0, where the nonlinear power spectrum is roughly
twice the linear one. These results confirm the reliability of
the TRG as a computational tool that can fill the gap
between linear and nonlinear scales.
Even in the absence of an extra force, or in the case that

the extra force couples universally to all matter species, the
evolution of BM and CDM differs as a consequence of
different initial conditions after decoupling. In linear the-
ory, the initial unbalance between BM and CDM fluctua-
tions is almost completely washed out by the present
epoch. However, when nonlinearities are taken into ac-
count the bias persists. We have seen that the effect is at
the percent level in the BAO range at low redshift in the
uncoupled case, but it may grow up to the 2.5% level when
a nonzero coupling is turned on with a value compatible
with present bounds (obtained within the linear approxi-
mation [39,40]). As a result, these models will receive
significant constraints from future galaxy surveys, which
aim to measure the power spectrum within the BAO range
with an accuracy at the percent level. A thorough inves-
tigation of this model-dependent issue goes beyond the
purpose of this paper and is postponed for future work.
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The most interesting outcome of our analysis from the
point of view of observations concerns the form of the bias
between CDM and BM spectra. In linear theory, the bias is
scale independent in recent epochs [26]. The nonlinear
corrections remove this feature, and make the bias scale
dependent, consistent with the results of [21]. We confirm
and extend these results for the BAO region
(0:03 h=Mpc & k & 0:25 h=Mpc), where we expect the
TRG method to be reliable. The effect becomes more
pronounced with increasing coupling between CDM and
DE (assuming that the respective coupling for BM van-
ishes). The form of the bias provides an additional obser-
vational handle for the differentiation between various
models. For example, in models with massive neutrinos
the growth of the spectrum induced by the nonlinearities at
small length scales is compensated by the free-streaming
of neutrinos [6]. On the other hand, the bias is expected to
remain scale dependent at the nonlinear level if there is a
substantial CDM-DE coupling.
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APPENDIX A: NONLINEAR EVOLUTION OF
PERTURBATIONS

We consider first the possibility that the energy density
of the Universe is dominated by two components: (a) a
species of weakly interacting, massive particles, which we
identify with dark matter (CDM), and (b) a slowly varying,
classical scalar field�, whose contribution is characterized
as DE. There is a direct coupling between the particles and
the scalar field: The massm of the particles depends on the
value of �. For classical particles, the action of the system
can be written as

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

16�G
Rþ 1

2

@�

@x�
@�

@x�
g�� �Uð�Þ

�

�X
i

Z
mð�ðxiÞÞdsi; (A1)

with dsi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g��ðxiÞdx�i dx�i

q
and the second integral taken

over particle trajectories. Variation of the action with re-
spect to � results in the equation of motion

1ffiffiffiffiffiffiffi�g
p @

@x�

� ffiffiffiffiffiffiffi�g
p

g�� @�

@x�

�
¼ �dU

d�
� 1ffiffiffiffiffiffiffi�g

p
X
i

Z
dsi

	 dmð�ðxiÞÞ
d�

�ð4Þðx� xiÞ

¼ �dU

d�
þ �ð�Þ

M
ðTCDMÞ��;

(A2)

with the energy-momentum tensor associated with the gas
of particles given by

ðTCDMÞ�� ¼ 1ffiffiffiffiffiffiffi�g
p

X
i

Z
dsimð�ðxiÞÞdx

�
i

dsi

dx�i
dsi

�ð4Þðx� xiÞ:

(A3)

Here M is the reduced Planck mass M ¼ ð8�GÞ�1=2 and
we have defined �ð�Þ=M ¼ �d lnmð�Þ=d�. In the fol-
lowing we shall use Eq. (A2), but we shall approximate the
energy-momentum tensor as that of an ideal pressureless
fluid. The same equation is obtained for scalar-tensor
theories of gravity in the Einstein frame. If more than
one massive species is present in such theories, its coupling
to the scalar field is universal. In order to be as general as
possible when we discuss multiple massive species in the
following appendix, we assume that each species has a
different coupling �i, induced through the � dependence
of its mass.
For the metric, we consider an ansatz of the form (2.2).

We assume that the Newtonian potential � is weak, � �
1, and that the field � can be decomposed as in Eq. (2.3),
with ��= �� � 1. In general, �� ¼ OðMÞ. The magnitude
of the fluctuations of � is expected to be similar to that of
the gravitational field �. The reason is that the source for
both is the dark matter density, to which they couple with
comparable strength. Finally, the density can be decom-
posed as in Eq. (2.4). Our aim is to take into account the
effect of the local velocity field � ~v, when this becomes
significant because of large field gradients. For subhorizon
perturbations with momenta k � H ¼ _a=a, the linear
analysis predicts � ~v� ðk=H Þ�� ðH =kÞð��= ��Þ. We as-
sume that these relations are approximately valid even at
the nonlinear level, within the range of validity of our
scheme. Our assumptions can be summarized in the hier-
archy of scales: �, ��= �� � j� ~vj � ��= �� & 1. At the
linear level, we have � ~v2 ��ð��= ��Þ. We assume that
such a relation holds at the nonlinear level as well. As
we are dealing with subhorizon perturbations, we expect
that the spatial derivatives of �, �� dominate over their
time derivatives. Following linear theory, we make the
more specific assumption that a spatial derivative acting
on �, �� or � ~v increases the position of that quantity in

the hierarchy by one level. In this sense ~r� is comparable
to � ~v, while r2� is comparable to ��.
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We approximate the energy-momentum tensor of dark
matter as ðTCDMÞ�� ¼ �V�V�. We define the peculiar
velocity through Vi ¼ �vi=a. Keeping the leading terms
in our expansion gives

ðTCDMÞ00 ¼ �ð1þ � ~v2Þ; ðTCDMÞ0i ¼ ���vi;

ðTCDMÞij ¼ ���vi�vj;
(A4)

with �vj ¼ �vj. We emphasize at this point that our

assumption for the form of ðTCDMÞij is consistent with
the presence of only one gravitational potential � in our
ansatz (2.2) for the metric, within the order that this po-
tential will be determined through the Einstein equations.

The energy-momentum tensor of the scalar field has the
leading part

ðTSÞ00 ¼
1

2a2
_��
2 þUð ��Þ; ðTSÞ0i ¼ 0;

ðTSÞij ¼
�
� 1

2a2
_��
2 þUð ��Þ

�
�i

j;

(A5)

with a dot denoting a derivative with respect to �. It also
includes a perturbation
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�
� _��
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�
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ð�TSÞ0i ¼
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a2
_����;i;
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1
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�
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�� _��� _�þ 1

2
ð ~r��Þ2

þ a2
dUð ��Þ
d�

��

�
�i

j �
@ið��Þ@jð��Þ

a2
:

(A6)

Notice that we have included a term ð ~r��Þ2=2, as it is
comparable to � ~v2 or�within our assumed hierarchy. The

same is not true for ð� _�Þ2=2, which is subleading.
The equation of motion of the scalar field (A2) can be

split into an equation for the homogeneous part,

€��þ 2
_a

a
_��þ a2

dUð ��Þ
d�

¼ þ�ð ��Þ
M

a2 ��; (A7)

and one for the perturbation,

� €�þ 2
_a

a
� _��r2��þ a2

d2Uð ��Þ
d�2

��

� 4 _�� _�þ2a2
dUð ��Þ
d�

�

¼ �ð ��Þ
M

a2��þ 1

M

d�ð ��Þ
d�

a2ð ��þ ��Þ��: (A8)

The terms with time derivatives are subdominant according
to our assumptions. Neglecting them results in

�r2��þ
�
a2

d2Uð ��Þ
d�2

� 1

M

d�ð ��Þ
d�

ð ��þ ��Þ
�
��

þ 2a2
dUð ��Þ
d�

� ¼ �ð ��Þ
M

a2��: (A9)

For the scalar field �� to evolve at cosmological times, it
must have a mass term d2Uð ��Þ=d�2 ¼ OðH 2Þ. We also
have Uð ��Þ, �� ¼ OðH 2M2Þ. It is natural to expect
dUð ��Þ=d� ¼ OðH 2MÞ. For subhorizon perturbations
with momenta k � H , neglecting the subleading terms
results in a very simple Poisson equation for the field ��:

r2�� ¼ ��ð ��Þ
M

a2��: (A10)

The equation of motion for the gravitational potential�
can be obtained from the first Einstein equation. The lead-
ing terms give

H 2 ¼
�
_a

a

�
2 ¼ 1

3M2

�
a2 ��þ 1

2
_��
2 þ a2Uð ��Þ

�
; (A11)

while the equation for the perturbation is

r2�� 3H _�� 3H 2�¼ 1

2M2

�
a2��þ a2 ��� ~v2 � _��

2
�

þ _��� _�þ a2
dUð ��Þ
d�

��

�
:

(A12)

Our assumptions about the hierarchy of the various scales
and the dominance of the spatial derivatives lead to the
Poisson equation for the gravitational field �:

r2� ¼ 1

2M2
a2��: (A13)

We now turn to equations derived from the conservation
of the total energy-momentum tensor T��

;� ¼ 0. For � ¼
0, the leading terms give

_��þ 3H �� ¼ �
_��

a2

�
€��þ 2H _��þ a2

dUð ��Þ
d�

�

¼ ��ð ��Þ
M

_�� ��; (A14)

where we have employed Eq. (A7). The equation for the
perturbations is more complicated. It can be simplified
considerably through our assumptions about the hierarchy
of the various fields. We obtain

� _�þ 3H��þ ~r½ð ��þ ��Þ� ~v� ¼
_��

a2
r2��

¼ ��ð ��Þ
M

_����; (A15)

where we have employed Eq. (A10).
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For � ¼ i ¼ 1, 2, 3 we obtain the generalization of the
Euler equation for this system. After eliminating higher-
order terms we find

ð ��þ ��Þ½� _~vþH� ~vþ ð� ~v ~rÞ� ~v�
þ ½ _��þ 3H ��þ � _�þ 3H��þ ~r½ð ��þ ��Þ� ~v��� ~v

¼ �ð ��þ ��Þ ~r�þ 1

a2

�
€��þ 2H _���r2��

þ a2
dUð ��Þ
d�

�
~r��: (A16)

Employing Eqs. (A7), (A10), (A14), and (A15) we find

� _~vþ
�
H � �ð ��Þ

M
_��

�
� ~vþ ð� ~v ~rÞ� ~v

¼ � ~r�þ �ð ��Þ
M

~r��: (A17)

For constant �, we can form a combination of
Eqs. (A10) and (A13) of the form

r2 ~� ¼ 1

2 ~M
a2��; (A18)

where ~� ¼ �� ���=M and ~M2 ¼ M2=ð1þ 2�2Þ.
Equation (A17) becomes

� _~vþ
�
H � �

M
_��

�
� ~vþ ð� ~v ~rÞ� ~v ¼ � ~r ~� : (A19)

We can see that the Newtonian potential for the perturba-

tions involves a stronger Newton’s constant ~G ¼
ð8� ~M2Þ�1 ¼ ð1þ 2�2ÞG. There is also a correction

� _��� ~v in the left-hand side of the Euler equation, because
the particles do not follow geodesic motion with respect to
the background metric.

APPENDIX B: SEVERAL SPECIES OF
NONRELATIVISTIC MATTER

In this appendix we generalize the formalism to the case
that there is more than one particle species contributing
significantly to the energy density. Each of them couples to
the scalar field with a different coupling �i. One example
of particular interest includes CDM with �CDM � 0 and
BM, for which we assume that �BM ¼ 0 in order to be
consistent with observational constraints. We also normal-
ize all dimensionful quantities in terms of the Planck mass.
This is equivalent to setting M ¼ 1 in the expressions of
Appendix A.

The background equations are

H 2 ¼ 1

3

�
a2
X
i

��i þ 1

2
_��
2 þ a2Uð ��Þ

�
; (B1)

_�� i þ 3H ��i ¼ � _���i ��i; (B2)

€��þ 2H _��þ a2
dUð ��Þ
d�

¼ a2
X
i

�i ��i; (B3)

with the index i counting the various species.
For the perturbations, Eq. (A10) becomes

r2�� ¼ �a2
X
i

�i��i; (B4)

and Eq. (A13)

r2� ¼ 1

2
a2
X
i

��i: (B5)

Equation (A15) generalizes to

� _�i þ 3H��i þ ~r½ð ��i þ ��iÞ� ~vi� ¼ ��i
_����i: (B6)

Finally, Eq. (A17) becomes

� _~vi þ ðH � �i
_��Þ� ~vi þ ð� ~vi

~rÞ� ~vi ¼ � ~r�þ �i
~r��:

(B7)

We can write the above equations in a more useful form
by defining the density contrasts �i � ��i= ��i & 1 and

	iðk; �Þ � ~r � ~�viðk; �Þ. For the density contrasts we ob-
tain

_� i þ ~r½ð1þ �iÞ ~�vi� ¼ 0: (B8)

For the Fourier transformed quantities, Eq. (B8) gives
Eq. (2.8), while Eq. (2.7b) gives Eq. (2.10).
We replace time by the variable � ¼ lnað�Þ. For n

species of nonrelativistic matter we define the field
’ðk; �Þ as a vector with 2n components:

’ðk; �Þ ¼

’1ðk; �Þ
’2ðk; �Þ

..

.

’2n�1ðk; �Þ
’2nðk; �Þ

0
BBBBBB@

1
CCCCCCA ¼ e��

�1ðk; �Þ
� 	1ðk;�Þ

H

..

.

�nðk; �Þ
� 	nðk;�Þ

H

0
BBBBBBB@

1
CCCCCCCA:

This allows us to bring Eqs. (2.8) and (2.10) in the usual
form [1,4,5]:

@�’aðk; �Þ þ�ab’bðk; �Þ ¼ e��abcðk;�k1;�k2Þ
	 ’aðk1; �Þ’bðk2; �Þ:

(B9)

The indices a, b, c take values 1; . . . ; 2n. Repeated mo-
menta are integrated over while repeated indices are
summed over. The functions �, which determine effective
vertices, are analogous to those employed in [4,5]. We find
that the nonzero functions are
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�2i�1;2i;2i�1ðk;k1;k2Þ ¼ ~
ðk1;k2Þ
2

�Dðkþ k1 þ k2Þ
¼ �2i�1;2i�1;2iðk;k2;k1Þ;

�2i;2i;2iðk;k1;k2Þ ¼ ~�ðk1;k2Þ�Dðkþ k1 þ k2Þ:
(B10)

The � matrix of Eq. (B9) is a 2n	 2n matrix. Let us
define the 2	 2 matrices !ið�Þ and !i;jð�Þ, with i; j ¼
1; . . . ; n and i � j, as

!ið�Þ ¼ 1 �1
� 3

2�ið2�2
i þ 1Þ 2� �i

��0 þ H 0
H

 !
(B11)

and

!i;jð�Þ ¼ 0 0
� 3

2�jð2�i�j þ 1Þ 0

� �
; (B12)

where a prime denotes a derivative with respect to �. Then,
the � matrix can be written as

�ð�Þ ¼
!1 !1;2 . . . !1;n

!2;1 !2 . . . !2;n

..

. . .
.

!n;1 !n;2 . . . !n

0
BBBB@

1
CCCCA: (B13)

Notice that the only way in which different species of
matter influence each other is through the matrices !i;j,

while the vertices do not mix contributions from different
species.
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