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Additive manufacturing technologies are a key point of the current era of Industry 4.0, promoting the production of mechanical
components via the addition of subsequent layers of material. Then, they may be also used to produce surfaces tailored to achieve
a desired mechanical contact response. In this work, we develop a method to prototype profiles optimizing a suitable trade-off
between two different target mechanical responses.Themechanical design problem is solved relying on both physical assumptions
and optimization methods. An algorithm is proposed, exploiting an analogy between genetics and the multiscale characterization
of roughness, where various length-scales are described in terms of rough profiles, named chromosomes. Finally, the proposed
algorithm is tested on a representative example, and the topological and spectral features of roughness of the optimized profiles are
discussed.

1. Introduction

The role of the interface between different material con-
stituents/phases is a main research topic in this current era
of Industry 4.0, which is radically changing perspectives of
industry about the technological manufacturing of compo-
nents and/or materials [1, 2]. In engineering applications, one
often requires the design of surface textures able to satisfy
desired target responses and/or to allow rapidmanufacturing
and morphological changes. This can be useful, e.g., for the
in-line control of mechanical components [3, 4]. Moreover,
the use of additive manufacturing technologies is currently
promoting a detailed and unified specific description of
roughness, able to take into account several length-scales in
its representation [5, 6].

Nowadays, most approaches to design roughness are
based either on mimicking natural surfaces [7, 8], or on
performing parametric studies via artificially generated sur-
faces [9, 10]. In this context, the present work proposes a
method to design roughness with the aim of matching two
givenmechanical contact target responses as close as possible.
These two targets are associated with a frictionless elastic
normal contact problem. In the article, multiscale roughness
is modeled by a finite series of cosinusoids which, using a

biological analogy, is called the surface roughness genome.
Then, the constituent waves identifying various length-scales
of roughness are properly selected and mixed based on
mechanical considerations and suitable optimization tools.
The resulting profile achieves a mechanical response that
optimizes a suitable multiplicative trade-off between the two
different mechanical targets.

The article is structured as follows. In Section 2, we
summarize the contact problem and we introduce the surface
roughness genome. In Section 3, we propose an algorithm
to generate prototype profiles with the aim of reproducing
two given target mechanical contact responses as close as
possible. In Section 4, the effectiveness of the proposed
algorithm is tested on a representative numerical example.
Finally, Section 5 concludes the paper and discusses possible
extensions.

2. Contact Problem and Roughness Model

This study refers to the modeling and optimization of the
mechanical behavior of two contacting rough surfaces. First,
the contact problem and the roughness model are presented.
Then, the mechanical interaction of different roughness
length-scales is used to identify two categories of roughness.
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Finally, an algorithm is proposed to optimize roughness,
expressing the objective function of the optimization problem
as a suitable trade-off between two different target responses.
To model contact, the frictionless elastic normal case is
considered, taking as targets a desired stiffness-load curve,𝐾(𝑝), and a desired contact area-load curve, 𝐴(𝑝).
2.1. Contact between Two Rough Surfaces. Following the
seminal work of Johnson [11], under the assumption of linear
elasticity, the nonconforming contact problem between two
rough surfaces is equivalent to a contact problem between
a rigid composite rough surface and a half-plane depending
on effective elastic parameters; see also Barber [12] for details
and proofs. Normal contact is herein controlled by imposing
an approaching far-field closing displacementΔ, whose value
is computed from the tallest summit of the rough surface,
whose height is denoted as ℎ𝑠. The deformation of asperities
produces a normal contact traction distribution in the contact
area 𝐴. The average total contact pressure 𝑝 is computed as
the sum of all the contact forces acting in this area divided
by the nominal contact area. The derivative of the contact
pressure 𝑝 with respect to the imposed displacement Δ
defines the contact stiffness 𝐾.

As an example, in Figure 1, which refers to a two-
dimensional case, the topography of a numerically generated
rough surface is presented (a), together with its deformed
configuration during contact with a half-plane (b). In the
figure, Δ∗ = Δ/ℎ𝑠 denotes the value of the dimensionless
displacement.

In the work, roughness is described in terms of various
parameters (see Section 2.2). For each choice of the set of
parameters, the contact problem is solved using theBoundary
Element Method (BEM); see Bemporad and Paggi [13] for
a comparison of various techniques which can be used to
impose the satisfaction of unilateral contact constraints.

2.2. Roughness Description over Multiple Length-Scales.
Referring now for simplicity to one-dimensional rough pro-
files, their topography 𝑍(𝑥) is herein described in terms
of the real part of the Multivariate Weierstrass-Mandelbrot
function (MWM). Ausloos and Berman [14] proposed the
MWM function to describe stochastic processes with a larger
number of features than in the original 2D formulation early
proposed by Mandelbrot [15].

A rough profile𝑍(𝑥)modeled via theMWMfunction has
then a topography depending on several parameters:

𝑍 (𝑥) = A√ log (𝛾)
M

(2𝜋𝜆 )−H

⋅ M∑
𝑚=1

𝑛𝑓∑
𝑛=𝑛𝑠

𝛾−(𝑛−1)H [cos (𝜙𝑚,𝑛)
− cos(2𝜋𝜆 𝛾𝑛−1𝑥 + 𝜙𝑚,𝑛)] .

(1)

In the absence of any subscript, the base 10 is used to
compute the logarithm. In (1), the parameterM is a positive

integer, the parameters H, A, 𝜆, 𝛾 > 0, and the parameter𝜙𝑚,𝑛 ∈ [0, 2𝜋). These parameters are called genes, exploiting
an analogy with biology. Similarly, the expression surface
roughness genome refers to the overall ensemble of genes
providing the realization of a profile over several different
length-scales.

The indices 𝑛𝑠 and 𝑛𝑓 are integers, which determine,
respectively, the longest and the shortest wavelengths con-
tributing to the definition of the rough profile 𝑍(𝑥). Such a
rough profile is realized over an observation length 𝐿, and
sampled in 𝑁 = 𝐿/𝛿 + 1 nodes according to a resolution𝛿. Therefore, in this model, roughness is realized by varying
the index 𝑛 between 𝑛𝑠 and 𝑛𝑓, together with the other
parameters. Taking into account the reference wavelength 𝜆,
the indices 𝑛𝑠 and 𝑛𝑓 are expressed as follows:

𝑛𝑠 = ⌊log𝛾 (𝜆𝐿)⌋ + 1 ≥ 1,
𝑛𝑓 = ⌊log𝛾 (𝜆𝛿)⌋ + 1.

(2)

In (2), the notation ⌊⋅⌋ denotes the largest integer smaller than
or equal to its argument. The number of terms in the inner
summation in (1) is 𝑛𝑐 = 𝑛𝑓 − 𝑛𝑠 + 1. The reader is referred
to Majumbdar and Bhushan [16]; Wang and Komvopoulos
[17]; Wu [18, 19] for further details on the spectral properties
relating (2) to (1).

The particular combination of genes associated with each
fixed value of the index 𝑛 identifies a rough profile, whose
expression reads

C𝑛 (𝑥) = A√ log (𝛾)
M

(2𝜋𝜆 )−H M∑
𝑚=1

𝛾−(𝑛−1)H [cos (𝜙𝑚,𝑛)
− cos(2𝜋𝜆 𝛾𝑛−1𝑥 + 𝜙𝑚,𝑛)] ,

(3)

and which is named chromosome. This profile is associated
with the features of roughness defined at the fixed reference
length-scale 𝜆𝑛 = 𝜆𝛾1−𝑛. In this way, it is possible to describe
the features of a single length-scale of roughness in terms of a
chromosome and obtain the complete profile 𝑍(𝑥) summing
up 𝑛𝑐 chromosomes:

𝑍 (𝑥) = 𝑛𝑓∑
𝑛=𝑛𝑠

C𝑛 (𝑥) . (4)

Without loss of generality, the value 𝑛𝑠 = 1 is assigned to the
chromosomewith the longest wavelength, which refers to the
coarsest realization of the profile.

2.3. Macroscale and Microscale Roughness. The nonlinear
interaction of multiple length-scales of roughness provides
the collective mechanical response of a rough profile. For
example, the thermal/electric contact conductance is inti-
mately related to the stiffness-load curve 𝐾(𝑝), as addressed
by Barber [12]. Moreover, as investigated by Paggi and Barber
[20], the stiffness-load curve 𝐾(𝑝) is mainly affected by
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Figure 1: (a) Topography of a numerically generated rough surface. (b) Its deformed configuration during contact with a half-plane for the
frictionless elastic normal problem.

the long wavelengths contributions. On the other hand,
the contact area morphology is determined by the short
wavelengths composing the power spectral density (PSD), as
confirmed by many authors; see, e.g., Barber [12]; Paggi and
Barber [20]; Yastrebov et al. [21].

In the following, the parameters that identify the stiffness-
load curve 𝐾(𝑝) are isolated and emphasized. Here, rough-
ness is characterized as a result of two contributions, accord-
ing to the role of each chromosome in the definition of
the 𝐾(𝑝) evolution. Considering a given observation length-
scale, the associated rough profile𝑍(𝑥) is split into two rough
contributions 𝑍𝐿(𝑥) and 𝑍𝑆(𝑥):

𝑍 (𝑥) = 𝑍𝐿 (𝑥) + 𝑍𝑆 (𝑥) . (5)

The profile𝑍𝐿(𝑥), which represents themacroscale rough-
ness, is obtained by summing up the chromosomes C𝑛(𝑥)
whose𝐾(𝑝) evolution correlates with the one of the complete
profile with a correlation coefficient 𝑐𝑛 > 0.95.

The profile 𝑍𝑆(𝑥), which represents themicroscale rough-
ness, is associated with the remaining set of chromosomes,
having 𝑐𝑛 ≤ 0.95.

This distinction is shown in Figure 2. The macroscale
contribution 𝑍𝐿(𝑥) is depicted with a red line and the
microscale one 𝑍𝑆(𝑥) with a blue line. Their sum gives the
complete rough profile 𝑍(𝑥) (black line). The stiffness-load
curve𝐾(𝑝) and the area-load curve𝐴(𝑝) of those profiles are
shown in Figure 3.

Regarding the 𝐾(𝑝) curves, the ones provided by
macroscale roughness and by the complete profile almost
overlap. The same observation can be done for the 𝐴(𝑝)
evolution for small pressures. However, the two curves
diverge for 𝑝 ≳ 1 × 10−4 N/m.

From the operative stand point, chromosomes associated
with macro-roughness are selected as follows. First, the𝐾(𝑝)
evolution of a rough profile 𝑍(𝑥) is computed by solving
the frictionless normal elastic contact problem with 𝑛𝑡 =20 imposed displacements Δ in its peak-valley amplitude.
To solve such a problem, the Nonnegative Least Squares
method proposed in Bemporad and Paggi [13] is used.
Then, the 𝑦𝑛 = 𝐾𝑛(𝑝) evolution is computed for each of
the 𝑛𝑐 chromosomes C𝑛(𝑥) in the power density spectrum

of the profile, and the correlation coefficient 𝑐𝑛 between𝐾𝑛(𝑝) and the curve 𝐾(𝑝) associated with the complete
profile is computed. Chromosomes with 𝑐𝑛 > 0.95, i.e.,
the ones leading to macroscale roughness, are included in
a set of chromosomes 𝑈𝑐. The remaining chromosomes are
associated with microscale roughness.

3. Optimal Design of a Rough Profile

In the following, we consider the problem of designing a
rough profile in such a way that its stiffness-load curve
and contact area-load curve are close, respectively, to a
given target stiffness-load curve 𝐾(𝑝), and a given target
contact area-load curve 𝐴(𝑝). To do that, we propose an
algorithm, calledMixed Chromosomes Cross-Over (M-CCO).
Loosely speaking, starting from a given genome database, the
algorithm mixes chromosomes belonging to genomes in the
database leading tomacro-roughness (whichmake it possible
to achieve the 𝐾(𝑝) target) with chromosomes belonging
to genomes in the database leading to micro-roughness
(which make it possible to achieve also the 𝐴(𝑝) target).
Then, their parameters (genes) are optimized to refine and
further improve matching with the target contact responses.
In Section 3.1, we describe the M-CCO algorithm. Then, in
Section 3.2, we report some details on another algorithm, in
this case taken from the literature, which is exploited in an
inner loop of the proposed M-CCO algorithm.

3.1. Proposed Algorithm: Mixed Chromosomes Cross-Over (M-
CCO). Before going into the details of the proposedM-CCO
algorithm, we introduce some notations and concepts. First,
we define the similarity score

𝑠(𝑗)𝑖 = 𝑠 (𝑦(𝑗)𝑡 , 𝑦(𝑗)𝑖 ) = 1 − 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑦(𝑗)𝑡 (𝑝) − 𝑦(𝑗)𝑖 (𝑝)

𝑦(𝑗)𝑡 (𝑝)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞ (6)

which quantifies, for each index 𝑗 ∈ {1, 2}, how much the
target mechanical response, 𝑦(𝑗)𝑡 (𝑝), and the one 𝑦(𝑗)𝑖 (𝑝) asso-
ciated with the 𝑖-th rough profile (genome) in the database
are similar. For 𝑗 = 1, the target and the 𝑖-th response are,
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Figure 3: (a) Stiffness-load curve 𝐾(𝑝) and (b) contact area-load curve 𝐴(𝑝) for the rough profile 𝑍(𝑥) in Figure 2 and for its associated
macroscale and microscale profile contributions 𝑍𝐿(𝑥) and 𝑍𝑆(𝑥) (one-dimensional profiles are considered in the figure).

respectively, 𝐾(𝑝) and 𝐾𝑖(𝑝) (where the index 𝑖 refers here
to the 𝑖-th genome in the database). For 𝑗 = 2, they are,
respectively, 𝐴(𝑝) and 𝐴 𝑖(𝑝). In (6), ‖ ⋅ ‖∞ denotes the 𝑙∞-
norm, computed on the 𝑛𝑡 points used to discretize each
mechanical response. The 𝑖-th mechanical response 𝑦(𝑗)𝑖 (𝑝)
coincides with the target one when 𝑠(𝑗)𝑖 = 1 holds.

To compute consistently the similarity scores in (6),
we have to assume that the two mechanical responses are
evaluated on the same range of pressures (from 0 to the same
maximum pressure), i.e., that 𝑝𝑖max = 𝑝𝑡max. To do that, for
each genome in the database, its amplitude geneA𝑖 is rescaled
as

A𝑖 ←󳨀 𝑝𝑡max𝑝𝑖max
A𝑖, (7)

where the step in (7) is possible because the gap function in
the BEM formulation scales linearly with the height field, and
so does the pressure; see Johnson [11].Themaximumpressure
level 𝑝𝑡max is achieved by solving the contact problem with a
far-field displacement Δ equal to the target profile amplitude.
The same remark holds for the maximum pressure level 𝑝𝑖max
of the 𝑖-th genome.Moreover, all the genomes in the database
refer to the same reference length 𝐿.

The steps of the M-CCO algorithm are reported in Algo-
rithm 1 and are described as follows. Firstly, the similarity
score in (6) is computed separately between each target (𝑦(1)𝑡
or 𝑦(2)𝑡 ) and the corresponding mechanical response (𝑦(1)𝑖 or𝑦(2)𝑖 ) associated with each genome in the database, obtaining
the vectors 𝑠(1) and 𝑠(2) with components 𝑠(1)𝑖 and 𝑠(2)𝑖 (Steps(1)-(2)).
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Input: targets 𝑦(1)𝑡 , 𝑦(2)𝑡 , genome database with reference length 𝐿
Output: new genome 𝑈𝑀𝐼𝑋 with mechanical responses close to 𝑦(1)𝑡 and 𝑦(2)𝑡(1) 𝑠(1) from Eq. (6) with 𝑦(1)𝑡 and the 𝑦(1)𝑖 s(2) 𝑠(2) from Eq. (6) with 𝑦(2)𝑡 and the 𝑦(2)𝑖 s(3) 𝑈1 ←󳨀 C𝑛(𝑥) for those genomes in the database with 𝑠(1)𝑖 > 0.95 (keeping only their chromosomes with

correlation coefficient larger than 0.95 between the stiffness-load response and the target 𝐾(𝑝))(4) 𝑈2 ←󳨀 C𝑛(𝑥) for those genomes in the database with 𝑠(2)𝑖 > 0.95 (keeping only their chromosomes with
correlation coefficient larger than 0.95 between the contact area-load response and the target 𝐴(𝑝))(5) for all 𝑖1 = 1 : 𝑛1 do (𝑛1 = 𝑐𝑎𝑟𝑑(𝑈1))(6) for all 𝑖2 = 1 : 𝑛2 do (𝑛2 = 𝑐𝑎𝑟𝑑(𝑈2))(7) 𝑈(𝑖1 ,𝑖2)3 ←󳨀 𝑈(𝑖1)1 +𝑈(𝑖2)2(8) 𝐾(𝑖1 ,𝑖2)(𝑝), 𝐴 (𝑖1 ,𝑖2)(𝑝) for 𝑈(𝑖1 ,𝑖2)3 , with its amplitude geneA(𝑖1 ,𝑖2) rescaled according to Eq. (7)(9) 𝑠(1)

(𝑖1 ,𝑖2)
←󳨀 Eq. (6) for 𝑦(1)𝑡 (𝑝) and 𝐾(𝑖1 ,𝑖2)(𝑝)

(10) 𝑠(2)
(𝑖1 ,𝑖2)

←󳨀 Eq. (6) for 𝑦(2)𝑡 (𝑝) and 𝐴 (𝑖1 ,𝑖2)(𝑝)
(11) 𝑠(3)

(𝑖1 ,𝑖2)
←󳨀 𝑠(1)
(𝑖1 ,𝑖2)

× 𝑠(2)
(𝑖1 ,𝑖2)

(12) end for
(13) end for
(14) 𝑈4 ←󳨀 the three genomes in 𝑈3 with the largest scores 𝑠(3)𝑖 (obtained from 𝑠(3))
(15) for all 𝑖 = 1 : 𝑛4 do (𝑛4 = 𝑐𝑎𝑟𝑑(𝑈4))
(16) 𝑓𝑖 ←󳨀 𝑠(𝑦(1)𝑡 (𝑝), 𝐾𝑖(𝑝)) × 𝑠(𝑦(2)𝑡 (𝑝), 𝐴 𝑖(𝑝)), 𝑈̂(𝑖)4 , both from GCMMA on macro-roughness, initialized

with 𝑈(𝑖)4
(17) 𝑓𝑖 ←󳨀 𝑠(𝑦(1)𝑡 (𝑝), 𝐾𝑖(𝑝)) × 𝑠(𝑦(2)𝑡 (𝑝), 𝐴 𝑖(𝑝)), 𝑈̂(𝑖)5 , both from GCMMA on micro-roughness, initialized

with 𝑈̂(𝑖)4
(18) end for
(19) 𝑈𝑀𝐼𝑋 ←󳨀 𝑈̂argmax(𝑓𝑖)

5

Algorithm 1:Mixed Chromosomes Cross-Over (M-CCO).

Then, the macroscale roughness is firstly identified, find-
ing all the genomes with a similarity score 𝑠(1)𝑖 larger than0.95. At this point, these genomes are reduced, limiting to
their chromosomes leading to macro-roughness. In other
words, for each 𝑖-th selected genome, only the chromosomes
that affect the target 𝐾(𝑝) significantly (i.e., the ones for
which their stiffness-load response and𝐾(𝑝) have correlation
coefficients larger than 0.95) are kept. The set of reduced
genomes obtained in this way is named 𝑈1 (Step (3)).

Similarly, the genomes with a similarity score 𝑠(2)𝑖 larger
than 0.95 are determined. Then, they are reduced, keep-
ing only their chromosomes leading to micro-roughness.
In other words, for each 𝑖-th selected genome, only the
chromosomes that affect the target 𝐴(𝑝) significantly (i.e.,
the ones for which their contact area-load response and𝐴(𝑝) have correlation coefficients larger than 0.95) are kept.
The set of reduced genomes so obtained is named 𝑈2 (Step(4)).

The resulting sets 𝑈1 and 𝑈2 contain information about
different sets of chromosomes. All possible new genomes
obtained by summing a reduced genome from the set 𝑈1
and one from 𝑈2 are stored in the set 𝑈3 of genomes (Step(7)). For each such genome 𝑈(𝑖1 ,𝑖2)3 , the contact mechanics
problem is solved via BEM, determining its 𝐾(𝑖1 ,𝑖2)(𝑝) and𝐴 (𝑖1 ,𝑖2)(𝑝) curves (Step (8)). Moreover, its amplitude gene
A(𝑖1 ,𝑖2) is rescaled in order to satisfy the maximum pressure
requirement, according to (7).

For each genome 𝑈(𝑖1 ,𝑖2)3 , two similarity scores are now
computed, 𝑠(1)

(𝑖1 ,𝑖2)
and 𝑠(2)

(𝑖1 ,𝑖2)
. They refer, respectively, to the

similarity of each target response (𝐾(𝑝) or 𝐴(𝑝)) and the
related mechanical response curve (𝐾(𝑖1 ,𝑖2)(𝑝) or 𝐴 (𝑖1 ,𝑖2)(𝑝))
associated with that genome. A mixed similarity score is also
computed, by multiplying these two similarity scores, i.e.,𝑠(3)
(𝑖1 ,𝑖2)

←󳨀 𝑠(1)
(𝑖1 ,𝑖2)

× 𝑠(2)
(𝑖1 ,𝑖2)

(Steps (9)-(11)).
Now, the three genomes in 𝑈3 with the largest mixed

similarity score are stored in the set 𝑈4 (Step (14)). Then, for
each genome in 𝑈4, the similarity with the target function
(the mixed similarity score) is increased by optimizing the
values of the genes belonging to the chromosomes related
to macro-roughness. As an alternative, the weighted sum of
two objectives (i.e., of the squares of the two similarity scores)
could be optimized, as done in [22, 23] for different problems.
This approach resembles some regularization techniques
applied in machine learning problems; see, e.g., Gnecco and
Sanguineti [24, 25]; Gnecco et al. [26]. However, for such
techniques, the optimal selection of the regularization param-
eter may not be straightforward. Nevertheless, the weighted
product of the two objectives can be a valid alternative. See
Gnecco et al. [23]; Gnecco [27] for some numerical examples.

The square of the mixed similarly score is maximized by
applying theGloballyConvergentMethod ofMovingAsymp-
totes (GCMMA) algorithm [28, 29] (Step (16)); see Section 3.2
for further details.Then, starting from the optimized genome,
theGCMMA is applied to its remaining chromosomes, which
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are associated with microroughness (Step (17)), considering
the same objective function of Step (11).

Finally, the new genome 𝑈𝑀𝐼𝑋 with the maximum
obtained value of the similarity score is identified (Step (19)).

3.2. GCMMA and Its Use inside the M-CCO Algorithm.
The Globally Convergent Method of Moving Asymptotes
(GCMMA) [28, 29] is an algorithm to solve nonlinearly
constrained optimization problems. It replaces each such
problemwith a sequence of approximating optimization sub-
problems. These are easier to solve, and are still nonlinearly
constrained.

The termmoving asymptotes refers to the functions which
are used in the formulations of the approximating subprob-
lems. Such asymptotes usually change from one iteration of
the GCMMA to the successive one. The GCMMA is globally
convergent in the sense that, for each possible initialization of
the vector of parameters to optimize, the algorithm is proved
to be convergent to a stationary point of the initial problem.

In Steps (16) and (17) of Algorithm 1, the GCMMA
is applied by taking as objective function not the mixed
similarity score 𝑠(3), but its square. This is done in order to
get a smoother objective function. The GCMMA iterative
solution is obtained after a number 𝑛𝑖𝑡 of steps, starting from
an initial choice for the vector of parameters to optimize. For
the simulations, 𝑛𝑖𝑡 = 3 has been chosen, in order to keep the
computational time per iteration small.

To apply the GCMMA algorithm inside Algorithm 1,
a MATLAB implementation has been made, based on the
MATLAB functions mmasub.m and subsolv.m, developed
by Svanberg himself. Technical details on the implementation
of these two MATLAB functions are provided in Svanberg
[30]. At each step of the GCMMA, the partial derivatives of
the objective function with respect to all the optimization
variables are computed numerically, via a small perturbation𝜖 > 0 for each such variable. Moreover, the amplitude
parameter is rescaled according to Eq. (7).

The GCMMA algorithm is applied with several differ-
ent initializations, in order to increase the probability of
obtaining a good constrained local maximizer of the original
objective function. Finally, the best solution, i.e., the one
associated with the greatest (square of the) mixed similarity
score obtained during the various optimizations, is produced
as output, for both Steps (16) and (17) of Algorithm 1.

To save computational time, the number of variables in
each optimization problem is reduced as described in the
following. The parameters (genes) H, 𝜆 and 𝛾 determine
the frequency spectrum, i.e., the interaction among several
length-scales. Hence, they are not modified during the
optimization, but they are fixed to their original values. The
parameterA is rescaled at each optimization step in order to
satisfy the pressure requirement, i.e., applyingEq. (7). So, only
the phases 𝜙𝑚,𝑛 are considered as parameters to optimize. In
the optimization, their values are constrained in the range
between ∓10% of their initial values, in order to preserve
the main features of the original chromosomes. Moreover,
for both Steps (16) and (17) of Algorithm 1, only the phase
genes𝜙𝑚,𝑛 associatedwith the subset of chromosomes related,

respectively, with macro-roughness and micro-roughness,
are optimized.

4. Numerical Experiments

TheM-CCO algorithm is now tested, designing roughness in
a realization length 𝐿 = 849.42𝜇m. First, an artificial genome
database is generated to emulate a priori known database of
real rough profiles (see Section 4.1). The two targets 𝑦(1)𝑡 =𝐾(𝑝) and 𝑦(2)𝑡 = 𝐴(𝑝) are therefore selected not to match any
of the mechanical responses associated with one of the rough
profiles in the database. The two selected targets are shown
as red lines in Figures 4(a) and 4(b), respectively. Numerical
results about the application of the M-CCO algorithm to this
specific case are reported in Section 4.2.

4.1. Genome Database. For all the profiles in the database,
the amplitude gene is fixed to A = 1. Moreover, the main
wavelength is set equal to 𝜆 = 849.42𝜇m. Twenty different
pairs of values for H and 𝛾 have been generated according
to a Sobol’ sequence [31]. To generate the phase matrix Φ,
M = 1 has been imposed for all the genomes. Three phase
vectors of thirty elements each have been generated, with
values from 0 to 2𝜋 for their components. Such values have
been also determined using a Sobol’ sequence. Combining
the (H, 𝛾) pairs with the phase vectors, a database made of20 × 3 genomes has been obtained.

Each profile 𝑍𝑖(𝑥) in the database has been discretized
using𝑁 = 512nodes. To formulate and solve each frictionless
normal contact problem, the elastic modulus has been set
equal to 𝐸 = 1MPa.Then, the mechanical response has been
computed in 𝑛𝑡 = 20 equally displaced far-field displacementsΔ starting from the tallest summit of the rough profile,
proceeding likewise in Johnson [11]; Bemporad and Paggi
[13].

4.2. Numerical Results. The three best genomes obtained
from the M-CCO algorithm are summarized in Table 1.
The table reports, for each such 𝑖-th genome, its mixed
similarity score 𝑠(3)𝑖 , and the similarity scores 𝑠(1)𝑖 and 𝑠(2)𝑖
of its mechanical responses with respect to the two targets.
Also, it reports the genomes used in the initialization of the
GCMMA algorithm in Steps (16) and (17) of Algorithm 1.
Such genomes are used to represent, respectively, macro- and
micro-roughness.The first index refers to the pair (𝛾,H) (see
Figure 5(a)), whereas the second one to the vector of phases
(see Figure 5(b)).

The best approximation of the target contact responses is
provided by the genome 𝑈̂(1)4 , whose mechanical responses𝑦(1)1 and 𝑦(2)1 are shown by blue curves with round markers
in Figures 6(a) and 6(b), respectively. Looking at the contact
area-load curves reported in Figure 6(b), one can notice that
the mechanical responses of all these three solutions diverge
consistently from the target curve 𝑦(2)𝑡 in the range of contact
pressures between 𝑝 = 0.2 × 10−4 N/m and 𝑝 = 0.9 × 10−4
N/m.
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Table 1: For the three best genomes obtained from the M-CCO algorithm: mixed similarity score 𝑠(3)𝑖 and similarity scores 𝑠(1)𝑖 and 𝑠(2)𝑖 with
the two targets. Also, the table reports the genomes used to initialize the GCMMA algorithm in Steps (16) and (17) of Algorithm 1.

genome 𝑓𝑖 𝑠(𝑦(1)𝑡 (𝑝), 𝐾𝑖(𝑝)) 𝑠(𝑦(2)𝑡 (𝑝), 𝐴 𝑖(𝑝)) GCMMA initialization GCMMA initialization
for Step (16) of Algorithm 1 for Step (17) of Algorithm 1

𝑈̂(1)4 0.863 0.955 0.903 5-1 2-2𝑈̂(2)4 0.838 0.952 0.88 11-1 2-2𝑈̂(3)4 0.811 0.943 0.86 5-1 2-1
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Figure 6: Mechanical responses of the best rough profiles obtained from the M-CCO algorithm to achieve the two targets 𝑦(1)𝑡 and 𝑦(2)𝑡
(one-dimensional profiles are considered in the figure). For the topography of these profiles, see Figure 7.

As far as the stiffness-load curve is concerned (see
Figure 6(a)), the𝑦(1)1 and𝑦(1)3 curves show a very good overlap
with the target 𝑦(1)1 . The second solution 𝑦(1)2 is the only
one associated with a different genome representing macro-
roughness, and its trend is not close to 𝑦(1)𝑡 in the range of
contact pressures between 𝑝 = 0.2 × 10−4 N/m and 𝑝 =0.8 × 10−4 N/m.

The 𝑦(1)1 curve almost overlaps 𝑦(1)3 for 𝑝 ≳ 1 × 10−4 N/m.
Indeed, the genomes 𝑈̂(1)4 and 𝑈̂(3)4 are composed by the same
starting sets of chromosomes representingmacro-roughness.
Also the curves𝑦(2)1 and𝑦(2)3 are very similar (see Figure 6(b)),
and quite close to the target 𝑦(2)𝑡 , apart from an intermediate
range of values for the contact pressure.

For both genomes 𝑈̂(1)4 and 𝑈̂(3)4 , the same pair (𝛾,H)
is used to represent micro-roughness, but a different vector
of phases is used in the GCMMA initialization in Step (17)
of Algorithm 1. This highlights the dominant role of macro-
roughness in the frictionless elastic normal contact response.

The three rough profiles obtained from theM-CCO algo-
rithm are visualized in Figure 7, which emphasizes the roles
of macro-roughness (see Figure 7(a)), and micro-roughness
(see Figure 7(b)). Each rough profile in Figure 7(c) is obtained
by summing these component profiles (represented by the
same colors and line types).

In Figure 7(a), the macro-roughness of each solution is
depicted. The dashed blue and the dash-dotted red profiles,
which are associated, respectively, with the genomes 𝑈̂(1)4 and𝑈̂(3)4 , have a similar macro-roughness topography, with small

differences, e.g., in the range between 𝑥 = 0.4×10−4 N/m and𝑥 = 2.125 × 10−4 N/m.
As observed before, these solutions are originated from

the same set of chromosomes as regards themacro-roughness
level. Moreover, they have also quite close values of similarity
scores (see Table 1).

The micro-roughness of genomes 𝑈̂(1)4 and 𝑈̂(3)4 is shown
in Figure 7(b).The figure shows that they have similar micro-
roughness, as they are associated with the same pair (𝛾,H).
The resulting topographies of the genomes 𝑈̂(1)4 and 𝑈̂(3)4 are
shown in Figure 7(c) and are also quite similar. Moreover,
these two genomes have quite close mechanical responses
(see Figure 6).

The topography of genome 𝑈̂(2)4 is quite different from the
ones of 𝑈̂(1)4 and 𝑈̂(3)4 , since its macro-roughness component
differs significantly.

Finally, the spectral decomposition of the three genomes
is shown in Figure 8 (in the figure, 𝜔 has the same dimension
as 2𝜋/𝜆).The difference in amplitude is due to different values
for the amplitude geneA, which are obtained by applying Eq.
(7) with respect to the threshold pressure.

All the results of Fast Fourier Transform (FFT) filtering
show a power spectral density of the complete profile con-
taining several peaks. For all the three genomes, the first
part of the PSD does not present any evident peak. For the
genome 𝑈̂(2)4 , the FFT filtering peaks are close to the discrete
spectrum of the genome (see the squares in the central part
of the spectrum in Figure 8(b)). Moreover, the squares in
Figure 8(b), which represent the micro-roughness, are six,
whereas the peaks observed from the FFT filtering are five.
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Figure 7: Results of the M-CCO algorithm. For each of the three obtained genomes: (a) shows the macro-roughness; (b) shows the micro-
roughness; (c) shows the complete profile.

Looking at the solutions 𝑈̂(1)4 and 𝑈̂(3)4 , which show similar
mechanical responses and topographies, one can notice that
they present also similar PSDs in the low-frequency part of
the spectrum. However, their high-frequency behaviors are
different, because they derive from different genomes.

5. Conclusion

In this paper, the Mixed Chromosomes Cross-Over (M-
CCO) algorithm has been proposed to optimize a roughness
topography to match two different target mechanical contact
responses, namely the normal contact stiffness 𝐾(𝑝) and
the real contact area 𝐴(𝑝); both are expressed as functions
of the average contact pressure 𝑝. The algorithm has been
inspired by an analogy with genetics, according to which
the M-CCO mixes the macro-roughness and the micro-
roughness of two different “genomes”.Then, an application of

the algorithm to a representative numerical example has been
described, showing very promising results. One can conclude
that two particular classes of genomes can be identified
and combined to match both the 𝐾(𝑝) and 𝐴(𝑝) targets.
Particularly, chromosomes associated with macro-roughness
are fundamental for an optimal design.

Still, the results show that there is room for possible
improvement, which could be obtained, e.g., by future vari-
ations of the M-CCO algorithm. Particularly, the algorithm
could be improved in the selection of the chromosomes to
combine. Future work will also concern the introduction of
additional interactions between the rough surfaces in contact,
such as friction, adhesion, wear, and so on. Such mechanical
interactions are difficult to predict using BEM, and it is
probably necessary to move to the Finite Element Method
(FEM) to tackle nonlinear multi-field coupled contact and
fracture problems with complex and realistic geometries. For
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Figure 8: Power spectral densities of the three genomes obtained from theM-CCOalgorithm,whose associated profiles are shown in Figure 7.

example, the case of elasto-plastic contact is certainly a fun-
damental aspect to be investigated, and plastic deformation
can be taken into account by using ad hoc computational
models.

This work is a first step in the generation of surface
topographies achieving desired target mechanical responses.
The problem investigated in the article and the M-CCO
algorithm are potentially useful for the production of surface
pressure sensors in sealing applications. In this case, the
contact has to be assured for a contact pressure larger than
some threshold. At the same time, the electrical conductivity
is associated with the 𝐾(𝑝) curve. Then, the 𝐾(𝑝) curve
might change its trend suddenly above the contact pressure
threshold. Finally, the 𝐴(𝑝) curve may be chosen in such a
way to improve sealing.

Another important potential application refers to the
problem of surface morphing. In this case, roughness may
be modified in time based on external stimuli. Morphing is a
quite novel concept, which has been recently applied to smart
structures and devices. However, its application to surfaces is
a very new research area.

The problem considered in the work is important also
in view of the fact that, nowadays, additive manufactur-
ing technologies simplify the realization of topographies,
enabling the production of surface prototypes. 3D printing
is one of the most fascinating and robust technology, due
to its very fast progress and impact on several industrial
sectors, which promotes technology transfer and patent
applications. Applications of the proposed methodology to
surface printing could open new research areas.
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