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In the paper, a simple but effective algorithm is proposed to solve the problem of curve identification in the presence of curve
intersections. The problem is motivated by the fact that, in several engineering problems, one has to deal with samples of possibly
intersecting curves, and a successful identification can significantly improve their visualization through a successive function
interpolation step. Numerical results are presented, together with possible areas of application of the algorithm.

1. Introduction

In several problems in engineering, one has to deal with
samples of possibly intersecting curves. As an example, when
studying dispersivewave-propagation properties of phononic
[1] and photonic [2] periodic structures, one simultaneously
obtains samples of various curves by evaluating the eigen-
values of a suitable Hermitian matrix (or, more often, the
generalized eigenvalues [3] of a pair of suitable Hermitian
matrices) depending continuously on a scalar parameter, for
various discrete choices of such a parameter. In this case,
curve intersections can arise in the presence of eigenvalue
degeneracy, i.e., for those values of the parameter for which
at least one eigenvalue has multiplicity larger than one as a
root of the characteristic polynomial. As a second example,
curves may represent the positions of point objects (e.g., of
markers detected by cameras in a motion-capture system
[4]) with respect to time. In this situation, even assuming
that no two objects can occupy the same position at the
same time, intersections may still arise either in case of noisy
measures or in case of only two components of the three-
dimensional position vectors (e.g., the ones belonging to
either a horizontal or a vertical plane) being measured.

Attributing the curve samples to the correct curves
(where the “correct” choice may be defined, e.g., as the
one making the resulting reconstructed curves as smooth as
possible) not only is of interest per se, but also represents

an important preliminary step for a successive curve inter-
polation procedure, which can significantly improve their
visualization in case of an initially small number of samples.
The latter may be motivated, e.g., by a possibly high cost
of generating the single sample or simply by a technical
limit in the acquisition process (e.g., a small frame rate). For
instance, in the example above related to wave propagation, it
often happens that theHermitianmatrix has large dimension,
which makes the computational time required to solve the
eigenvalue problem large for each choice of the parameter,
especially if a high precision in the eigenvalue computations
is needed. This is the typical case of eigenvalue problems
of interest in engineering applications, as they are often ill-
conditioned [5].

In this framework, in the paper we propose and test a sim-
ple but effective algorithm for the problemof curve identifica-
tion in the possible presence of curve intersections. The algo-
rithm requires only, as a very reasonable assumption, that the
curves do not intersect for at least one value of the indepen-
dent variable (for simplicity andwithout loss of generality, the
first one, in the description of the algorithm provided in the
next section). Related works are [6, 7] (an extended version
of which is [8]). However, [7] presents a multitarget tracking
algorithm which requires, among other assumptions, the
availability of a model of the “law of motion” for each curve,
whereas [6] presents an approach more similar to the one
adopted in the present work (by using current possible curve
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orientations to estimate next curve points, emulating human
perception of intersecting curves), but does not process all
the curves simultaneously. Instead, it relies on a preliminary
rough curve detection based on an algorithm proposed in [9],
followed by a correction of the estimated curve at successive
junctions, based on current possible curve orientations for
the estimation of next curve points. In more detail,

(i) the correction of the preliminarily estimated curve is
implemented only when such a curve is characterized
by large slope changes (i.e., numerical approximations
of second derivatives) on a discretization of the
horizontal axis;

(ii) the corrected estimated curve is constrained to have
small slope changes on the same discretization.

These two features may lead to an incorrect curve identifica-
tion, respectively, when

(i) two intersecting curves are erroneously identified by
the algorithm proposed in [9]; in this case, when their
second derivatives are small with respect to a given
threshold, no correction is implemented;

(ii) the curves to be identified have large second deriva-
tives in some parts of the domain.

In contrast, the algorithm proposed in this work

(i) always uses (apart from its first two initialization
steps (see Section 2 for their description)) current
possible curve orientations for the estimation of next
curve points, without needing a preliminary rough
curve identification and thresholds on the second
derivatives of preliminarily estimated curves;

(ii) does not require any bounds on the slope changes
of each curve, allowing in principle identifying even
curves with large slope changes.

The paper is organized as follows. In Section 2, the pro-
posed algorithm is presented. Section 3 provides numerical
results related to the application of the algorithm to four
different tests. Section 4 applies the algorithm to the problem
of identifying smooth eigenvalue curves. Finally, Section 5
concludes the paper and discusses possible extensions.

2. Description of the Algorithm

To describe the proposed algorithm, the following notation is
introduced. Let 𝑁, 𝑙 be positive integers and, for 𝑛 = 1, . . . ,
𝑁, let 𝑓(𝑛) : [0, 1] 󳨀→ R𝑙 be 𝑁 smooth functions (i.e.,
smooth curves parameterized by the independent variable
𝑥). The functions 𝑓(𝑛)(𝑥) are uniformly sampled for a total
of 𝑆 > 2 samples each, located at 𝑥 = 0, 1/(𝑆 − 1), 2/(𝑆 −
1), . . . , (𝑆 − 2)/(𝑆 − 1), 1. Moreover, it is assumed that the
samples are distinct for 𝑥 = 0. For 𝑠 = 0, . . . , 𝑆 − 1, the
set of samples evaluated at 𝑥 = 𝑠/(𝑆 − 1) is denoted by
𝐹𝑠 := {𝑓

(𝑛)(𝑠/(𝑆 − 1)) : 𝑛 = 1, . . . ,𝑁}. The idea behind the
algorithm is the following. For each sampled value 𝑠/(𝑆−1) of
the independent variable, the algorithm attributes to the 𝑛-th
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Figure 1: An example of the sets𝐹0 and𝐹1 (with 𝑛 = 10) and of their
matchings obtained using Step 2 of the proposed algorithm.

reconstructed curve a sample 𝑦(𝑛)
𝑠
∈ 𝐹𝑠, and (for 𝑠 + 1 = 2,

. . . , 𝑆 − 1) a feasible increment 𝑖(𝑛)𝑠+1 ∈ R𝑙. The two are
combined (apart from the cases 𝑠 = 0, 1 and 𝑆 − 1) to
generate, still for the 𝑛-th reconstructed curve, a prediction
𝑦̂(𝑛)
𝑠+1

of the point obtained for the successive sampled value
(𝑠 + 1)/(𝑆 −1) of the independent variable. The𝑁 predictions
are compared with the set of actual samples 𝐹𝑠+1, to attribute
each of them, in a one-to-one way, to one of the reconstructed
curves, generating the points 𝑦(𝑛)

𝑠+1
and, apart when 𝑠 + 1 =

𝑆 − 1, also the next feasible increments 𝑖(𝑛)𝑠+2. To conclude,
each reconstructed (sampled) curve is the collection 𝐶(𝑛) :=
{(𝑠/(𝑆 − 1), 𝑦(𝑛)

𝑠
) : 𝑠 = 0, . . . , 𝑆 − 1}. In more detail, the

algorithm works as follows.

Step 1. Each element of 𝐹0 is attributed to one of the 𝑁
reconstructed curves. For 𝑛 = 1, . . . ,𝑁, let 𝑦(𝑛)

0
∈ 𝐹0 be the

sample attributed to the 𝑛-th reconstructed curve.

Step 2. The elements of 𝐹1 are attributed (matched) to the
elements of 𝐹0 (then, due to Step 1, also to the corresponding
reconstructed curves) in the following way (possible ties in
the next descriptions are solved by coin flipping). A copy 𝐹0
of 𝐹0 and a copy 𝐹1 of 𝐹1 are constructed. Then, one denotes
by 𝑦̃
1
the nearest element (in terms of the Euclidean distance)

of 𝐹1 from 𝐹0. Such an element is attributed to the element
𝑦̃
0
of 𝐹0 that minimizes its own distance from 𝑦̃

1
. Then, 𝑦̃

0

and 𝑦̃
1
are removed from 𝐹0 and 𝐹1, respectively, and the

procedure is repeated until both sets become empty. Finally,
for 𝑛 = 1, . . . ,𝑁, let 𝑦(𝑛)

1
∈ 𝐹1 be the sample attributed to the

𝑛-the reconstructed curve. Figure 1 shows an example of the
sets 𝐹0 and 𝐹1 and of their matchings obtained using Step 2 of
the proposed algorithm.

Step 3. This step is repeated for 𝑠 = 2, . . . , 𝑆−1. For each such
𝑠, the elements of 𝐹𝑠 are attributed (matched) to the elements
of 𝐹𝑠−1 (then, due to either Step 2 or the previous iteration of
Step 3, also to the corresponding reconstructed curves) in the
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Figure 2: An example of the sets 𝐹1 and 𝐹2 (with 𝑛 = 10) and of
their matchings obtained using Step 3 of the proposed algorithm.

following way (again, possible ties in the next descriptions are
solved by coin flipping). For each 𝑛 = 1, . . . , 𝑁, the feasible
direction 𝑖(𝑛)𝑠 := 𝑦

(𝑛)

𝑠−1
− 𝑦(𝑛)
𝑠−2

is constructed, together with
the estimate 𝑦̂(𝑛)

𝑠
:= 𝑦(𝑛)
𝑠−1
+ 𝑖(𝑛)𝑠 of the next point on the 𝑛-

th reconstructed curve.The set of such estimates 𝐺𝑠 := {𝑦̂
(𝑛)

𝑠
:

𝑛 = 1, . . . , 𝑁} is defined. Copies 𝐹𝑠, 𝐹𝑠−1, and 𝐺𝑠 of 𝐹𝑠, 𝐹𝑠−1,
and 𝐺𝑠, respectively, are constructed. Then, one denotes by
𝑦̃
𝑠
the nearest element (in terms of the Euclidean distance) of
𝐹𝑠 from 𝐺𝑠. Such an element is attributed to the element 𝑦̃

𝑠−1

of 𝐹𝑠−1 whose associated estimate 𝑦̂
𝑠
∈ 𝐺𝑠 minimizes its own

distance from 𝑦̃
𝑠
. Then, 𝑦̃

𝑠−1
, 𝑦̃
𝑠
, and 𝑦̂

𝑠
are removed from

𝐹𝑠−1, 𝐹𝑠, and 𝐺𝑠, respectively, and the procedure is repeated
until all the three sets become empty. Finally, for 𝑛 = 1, . . . , 𝑁,
let𝑦(𝑛)
𝑠
∈ 𝐹𝑠 be the sample attributed to the 𝑛-th reconstructed

curve. Figure 2 shows an example of the sets 𝐹1 and 𝐹2 and
of their matchings obtained using Step 3 of the proposed
algorithm, for 𝑠 = 2.

The reason for which the algorithm is able to generate
smooth reconstructed curves is that it penalizes large slope
changes when attributing points to the reconstructed curves
(no slopes are used in Step 2 since they are not yet available
at that stage). As an example, for 𝑁 = 2, 𝑙 = 1, and 𝑆 = 10,
Figure 3 compares, for a possible situation, (a) the portions
of the reconstructed curves (𝐶(1) and 𝐶(2)) provided by the
proposed algorithm up to the stage 𝑠 = 4 and (b) the ones
(𝐶(1) and𝐶(2)) obtained by swapping the two labels associated
with that stage. The figure shows clearly that a much larger
smoothness is obtained in the first case.

Remark 1. If the curves do not intersect in 𝑥 = 0 and
sampling is sufficiently fast, then Steps 1 and 2 provide a
correct identification of the curves at 𝑥 = 0, 1/(𝑆 − 1) and
also of their initial slopes. In this way, at its first iteration (i.e.,
for 𝑠 = 2), Step 3 receives correct estimates of the feasible
directions 𝑖(𝑛)𝑠 = 𝑦

(𝑛)

𝑠−1
− 𝑦(𝑛)
𝑠−2

, for 𝑛 = 1, . . . ,𝑁.

Remark 2. Step 2 of the algorithm could be replaced by
the optimal solution to an instance of the minimum cost
Euclidean bipartite matching problem [10], since such a
solution assigns, in a one-to-one way, each point in 𝐹0 to
a point in 𝐹1 in such a way to minimize the sum of the
Euclidean distances of the pairs of matched points. However,
no difference between such attribution and the one produced
by Step 2 is obtained if, for each point 𝑦̂

0
in 𝐹0, there is a point

𝑦̂
1
in 𝐹1 (a different 𝑦̂1 for each 𝑦̂0) whose distance from 𝑦̂0

is significantly smaller than the distance from 𝑦̂
0
of any other

point in 𝐹1 (this situation occurs, e.g., in the case reported
in Figure 1). Similarly, also Step 3 of the algorithm could be
replaced, for 𝑠 = 2, . . . , 𝑆 − 1, by the optimal solution to an
instance of the minimum cost Euclidean bipartite matching
problem, substituting 𝐹0 and 𝐹1 with 𝐺𝑠 and 𝐹𝑠, respectively.
However, also in this case, no difference in the attribution is
obtained, under a condition analogous to the one reported
above for Step 2 (again, this situation occurs, e.g., in the
case reported in Figure 2). The advantage of Steps 2 and 3
is that they are less computationally demanding than solving
the corresponding instances of the minimum cost Euclidean
bipartite matching problem (indeed, the algorithm proposed
in [10] to solve the minimum cost Euclidean bipartite match-
ing problem requires 𝑂(𝑛2.5 log 𝑛) time (it is worth recalling
that theminimum cost Euclidean bipartitematching problem
can be formulated as an integer linear programming problem,
but also as the associated relaxed continuous linear program-
ming problem, whose domain has the form {𝑥 ∈ R𝑛

2

: 𝐴𝑥 ≤
𝑏 and 𝑥 ≥ 0}, where𝐴 is a suitable constraint matrix; indeed,
since A is totally unimodular and 𝑏 has integer components,
the vertices of such domain have integer coordinates [11])).

3. Numerical Tests and Results

To evaluate the effectiveness of the algorithm, we consider the
four following numerical tests, which have been implemented
in MATLAB 8.2 (R2017a) [12].

In the first test, we generate 𝑁 scalar-valued functions
(i.e., 𝑙 = 1) of the form 𝑓(𝑛)(𝑥) = ∑3𝑘=0 𝑐

(𝑛)

𝑘
𝑥𝑘, where the

coefficients 𝑐(𝑛)
𝑘

are chosen as realizations of independent
randomvariables uniformly distributed on [−1/2, 1/2]. In the
following, we choose 𝑁 = 10 and 𝑆 = 100. The obtained
samples are plotted in Figure 4(a). In the figure, they are plot-
ted using the same color, because the identity of each curve
is not provided a priori to the algorithm, but the algorithm
has to find it. In Figure 4(b), the curves reconstructed by the
algorithm are reported, using a different color for each curve.
It is clear from the figure that the reconstructed curves are
smooth. Incidentally, in this case, each reconstructed curve
coincides with one of the original curves (so, no separate
figure is presented to show the ground truth).

In the second test, we consider a similar setting as before.
In this case, however, the number of samples per curve is only
𝑆 = 10. The samples provided as inputs to the algorithm are
represented as circles in Figure 5(a). As shown by Figure 5(b),
also in this case the proposed algorithm is able to produce
smooth curves. Moreover, its preliminary identification of
smooth curves makes the successive linear interpolation step
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Figure 3: (a) An example of portions of reconstructed curves (𝐶(1) and 𝐶(2)) provided by the proposed algorithm. (b) Portions of the
reconstructed curves (C̃(1) and 𝐶(2)) obtained by swapping the fifth labels in the portions of reconstructed curves shown in (a).

y

0.2 0.4 0.6 0.8 10
x

−1.5

−1

−0.5

0

0.5

1

(a)

y

0.2 0.4 0.6 0.8 10
x

−1.5

−1

−0.5

0

0.5

1

(b)

Figure 4: (a) Samples used for the first numerical test. (b) Curves reconstructed by the proposed algorithm in the first numerical test.

(also presented in Figure 5(b)) particularly effective for an
improved visualization of the curves reconstructed by the
algorithm.

The third test refers to the case 𝑙 = 2, i.e., to curves in R3.
For this test,𝑁 = 7 curves have been considered, with 𝑆 = 100
samples for each curve. The two components 𝑓(𝑛)1 and 𝑓(𝑛)2
of the vector-valued functions 𝑓(𝑛) have been generated in a
similar way to the functions 𝑓(𝑛) in the first numerical test.
For the third test, Figure 6 shows (a) the samples used, and (b)
the curves reconstructed by the algorithm (a different color is
used for each reconstructed curve). Again, also in this case,
each reconstructed curve coincides with one of the original
curves.

In the last test, we illustrate a particular situation in which
the algorithm adopted in this work has better performance

than the one proposed in [6], considering a simple case with
𝑙 = 1 and only two intersecting curves, and 𝑆 = 100 samples
for each curve. We also assume their wrong preliminary
identification by the algorithm proposed in [9] (consistently
with an analogous case of erroneous identification reported
in [8, Figure 2.3]). More precisely, we assume that, for each
value of 𝑥 = 𝑠/(𝑆 − 1), 𝑠 = 0, . . . , 𝑆 − 1, that algorithm
associates the first curve with the smallest element of 𝐹𝑠,
and the second curve with the largest value of 𝐹𝑠. Since the
two intersecting curves have very small slope changes, no
correction step is performed by the algorithm proposed in
[6] (see also Section 1). So, in this particular case, the two
algorithms from [6, 9] produce the same output (more exten-
sive numerical comparisons in which the correction step of
[6] is actually performed are among the possible subjects
of further research, together with real-world applications of
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Figure 5: (a) Samples used for the second numerical test. (b) Curves reconstructed by the proposed algorithm in the second numerical test,
then interpolated linearly.
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Figure 6: (a) Samples used for the third numerical test. (b) Curves reconstructed by the proposed algorithm in the third numerical test.

the proposed algorithm). Figure 7 shows that, in contrast,
the proposed algorithm is able to identify correctly the two
intersecting curves.

4. Application to the Identification of
Smooth Eigenvalue Curves

In the following, we illustrate how the algorithm proposed
in this paper can be applied to the identification of smooth
eigenvalue curves, considering a last numerical test, whose
description is detailed as follows. At first, we generate three
real matrices 𝐴, 𝐵, 𝐶 ∈ R𝑁×𝑁 (whose elements are obtained,
for simplicity, as realizations of independent random vari-
ables, uniformly distributed on [0, 1]). Then, for 𝑥 ∈ [0, 1],
we construct the real matrix 𝐷(𝑥) = 𝐴 + 𝐵𝑥 + 𝐶𝑥2 and the
symmetric real matrix 𝐻(𝑥) = 𝐷𝑇(𝑥)𝐷(𝑥), where 𝐷𝑇(𝑥) is
the transpose of𝐷(𝑥). For each 𝑥, 𝑓(𝑛)(𝑥) is defined to be one
of the (real) eigenvalues of the matrix 𝐻(𝑥). The functions
𝑓(𝑛) are unknown to the algorithm, which has at its disposal
only the sets 𝐹𝑠 (i.e., the collections of eigenvalues, for each

𝑥 = 𝑠/(𝑆 − 1), 𝑠 = 0, . . . , 𝑆 − 1). Nevertheless, the algorithm
attributes the eigenvalues to the functions not sequentially
according to their increasing values, but in such a way to
make the resulting functions smooth. It is worth noting that,
since by construction the matrix 𝐻(𝑥) is symmetric and
depends analytically on the parameter 𝑥, its eigenvalues are
analytic functions of 𝑥, due to [13, Theorem 6.1 in Chapter
II]. Interestingly, this holds for both simple and multiple
eigenvalues. Finally, the applicability of the algorithm (more
precisely, of its Steps 1 and 2) derives from the fact that, with
probability 1 with respect to the random construction of the
matrix 𝐴, the matrix 𝐻(0) = 𝐴𝑇𝐴 has distinct eigenvalues
(which is assumed in the following).

Figure 8 shows (a) the samples obtained according to the
construction above (with 𝑁 = 9 curves (the simulation
has been actually performed with 𝑁 = 10 curves; however,
since by running the simulation several times, one curve
is typically well-separated from the other ones, in order to
improve the visualization, Figure 8 refers only to the other 9
curves) and 𝑆 = 20 sets of samples 𝐹𝑠), and (b) the curves
reconstructed by the proposed algorithm (a different color
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Figure 7: (a) Samples used for the fourth numerical test. (b) Curves reconstructed by the algorithm proposed in [6] in the fourth numerical
test, assuming a sufficiently large threshold for slope changes. (c) Curves reconstructed by the proposed algorithm in the fourth numerical
test.
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Figure 8: (a) Samples used for the identification of smooth eigenvalue curves. (b) Curves reconstructed by the proposed algorithm.

is used for each reconstructed curve). The figure shows that,
indeed, the algorithm is able to identify quite smooth curves.

5. Conclusions

An algorithm has been proposed for the identification of pos-
sibly intersecting curves. Despite its simplicity, the algorithm
has been demonstrated to be very effective and applicable to
problems such as the automatic identification of eigenvalue
curves. Although artificially generated eigenvalue curves
have been considered in the numerical example presented in
the paper, the algorithm could be applied also to dispersion
curves arising in wave-propagation problems, since these are
also eigenvalue (or, more generally, generalized eigenvalue)
curves [1]. As remarked in the Introduction, the algorithm is
also potentially applicable to the analysis of motion-capture
data [4]. Other possible applications are in medical image
analysis [14] and in handwritten character recognition [15].

The numerical results presented in the paper refer to
curves embedded in the plane and in the space. However,
similar results can be obtained for curves embedded in
higher-dimensional spaces. As a possible future research

direction, the algorithm could be extended to the case of
possibly intersecting surfaces, which would be potentially
applicable to the identification of dispersion surfaces (instead
of curves), still in wave-propagation problems [16]. Another
research direction concerns the formulation of a suitable opti-
mization problem modeling curve identification, for which
the proposed algorithm (or its suitable variation) would
provide a good approximation of the optimal solution value.
Finally, in the paper, the proposed algorithm has been applied
to noiseless data. This is justified by the fact that, in several
applications, the data are not corrupted by noise, but still
one has only a few such data (because their generation could
be computationally expensive, as in the case of data coming
from dispersion curves associated with complex physical-
mathematical models). However, the algorithm could be also
applied (possibly with some variations, such as the use of
regularization techniques typical of machine learning [17–
21]) in the case of noisy data and compared, on such problems,
with existing multitarget tracking algorithms [7, 22]. In this
particular case, the final interpolation step, implemented in
the second test presented in Section 3, could be replaced by a
more appropriate approximation step.
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generation of Figures 5 a) and b); it uses workspace2.mat.
test3.m:MATLAB code for the generation of Figures 6 a) and
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