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Hierarchical organization of 
functional connectivity in the 
mouse brain: a complex network 
approach
Giampiero Bardella1, Angelo Bifone2, Andrea Gabrielli1,3, Alessandro Gozzi2 & 
Tiziano Squartini1,3

This paper represents a contribution to the study of the brain functional connectivity from the 
perspective of complex networks theory. More specifically, we apply graph theoretical analyses to 
provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical 
organization. We propose a novel percolation analysis and we apply our approach to the analysis of a 
resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure 
of modules persistent across different subjects. Importantly, we test this approach against a statistical 
benchmark (or null model) which constrains only the distributions of empirical correlations. Our results 
unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially 
encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse 
brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized 
by the strongest internal correlations. This approach represents a faster alternative to other community 
detection methods and provides a means to rank modules on the basis of the strength of their internal 
edges.

The brain can be represented as a network of connected elements at different spatial scales, from individual neu-
rons to macroscopic, functionally specialized structures1–9. Interestingly, neuroimaging data, like those obtained 
with functional Magnetic Resonance Imaging (fMRI) techniques, naturally lend themselves to a network rep-
resentation, thus attracting the interest of both graph-theorists and network scientists towards a study of the 
topological properties of brain connectivity structures10. Indeed, correlations between fMRI signals arising from 
responses to stimuli or from spontaneous fluctuations in the brain resting-state can be interpreted as a measure 
of functional connectivity between remote brain regions and represented as edges in a graph. Moreover, altera-
tions in the strength and structure of functional connectivity networks have been observed in groups of patients 
suffering from several brain diseases, including Alzheimer, Autism and Schizophrenia, thus providing potential 
markers of neuropsychiatric illness1,11–15.

Of particular interest is the study of the modular structure of these networks, i.e. the presence of clusters of 
nodes that are more tightly connected among themselves than with nodes in other network substructures1,2,16–18. 
A modular structure has been observed for different types of brain networks (functional and structural) and in 
different species, including humans, primates and rodents11,17–19. Functional connectivity networks derived from 
fMRI experiments in human subjects exhibit a hierarchical structure of modules-within-modules3,4. It has been 
suggested that hierarchical modularity may confer important evolutionary and adaptive advantages to the human 
brain by providing intermediate modules that can respond to the evolutionary or environmental pressure without 
jeopardizing the function of the entire system20. A similar hierarchical organization has been observed in other 
species, e.g. non-human primates. Whether a hierarchical modular structure is also present in simpler networks, 
like those derived from lower species (as the worm C. Elegans), is a subject under investigation21,22. Here, we 
investigate the modular structure of the mouse brain and its hierarchical organization using a graph theoretical 
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approach. To the best of our knowledge, our paper shows the results of this kind of approach to the mouse brain 
for the first time.

Percolation analysis, a tool derived from statistical physics, provides a powerful means to investigate the hier-
archical organization of networks23,24. This approach is based on the assessment of the fragmentation of a network 
as weaker edges are gradually removed from the graph. A striking demonstration of this hierarchical organiza-
tion is the presence of multiple percolation thresholds18, whereby disaggregation of modules occurs abruptly for 
critical values of the control parameter, pc. On the contrary, application of this analysis to Erdös-Renyi random 
graphs23–25 shows a single threshold value, separating two phases characterized by different topological features. 
Below the threshold (i.e. for p <  pc) several tree-like components are observed whose size is of the order of lnN - 
with N the total number of nodes. Above the threshold (i.e. for p >  pc), instead, a single giant component appears, 
whose structure admits cycles and from which tree-like structures (whose size is again of the order of lnN) are 
excluded23,25.

Here we have analyzed functional connectivity networks constructed from a large resting state fMRI dataset 
from mice. In particular, a set of anatomical regions of interest is individuated (see SI for the complete list) and 
the corresponding activity (whence the name “functional”) is recorded, in order to obtain the related set of time 
series; afterwards, the (temporal) correlation for each pair of areas is calculated through the Pearson coefficient 
(see SI for the analytical details). The mouse brain is thus mapped into a correlation matrix: such a representa-
tion provides information on the brain activity irrespectively from the physical connections potentially present 
between the considered areas. Specifically, in order to assess the presence of multiple percolation thresholds 
(i.e. the structural signature of a hierarchical modular structure in the mouse brain), we have applied standard 
percolation analysis and variations thereof. Importantly, we have applied novel approaches to avoid some of the 
pitfalls that may affect more conventional analysis of functional connectivity networks. Indeed, it will be shown 
that traditional percolation detects a modular structure even in random networks, thus making it necessary to 
introduce a null model in order to correctly asses the statistical significance of the percolation analysis. Here we 
introduce a novel null model, independent of the choice of a particular threshold and resting exclusively on the 
information encoded into the correlation matrix. Moreover, we propose the use of an algorithm to calculate the 
closest correlation matrix to a given symmetric matrix, thus ensuring that the proposed null model has the pecu-
liar features of a proper correlation matrix.

We have complemented our percolation analysis by computing the Minimal Spanning Forest (MSF). 
Althought the MSF is not, by itself, a community detection technique, it represents a faster alternative for the 
identification of modules, defined by the strength of the functional relations between nodes. The modules iden-
tified by the MSF can be, in turn, linked to obtain the Minimal Spanning Tree (MST), which provides the “back-
bone” of the mouse brain functional connectivity.

Although the literature provides many examples of algorithms for detecting communities in networks (as the 
one based on modularity maximization26 or on the removal of edges characterized by high betweenneess27), we 
have adopted a different approach since existing procedures, beside being tailored on binary - and not fully con-
nected - networks, suffer from a number of limitations, as discussed in ref. 5. Our case-study, on the other hand, 
lies at the opposite extreme, since we deal with correlation matrices, which are weighted and fully connected. 
For this reason, we have adopted the approach presented in the paper, based on the combination of percolation 
and spanning forest techniques. We explicitly point out that an algorithm for community detection on correla-
tion matrices has been recently proposed28: the comparison with the latter has confirmed the consistency of our 
results, which appear to reveal the details of the modules recognized by the former.

These methodological developments make it possible to assess the presence of a hierarchically-organized 
modular structure in the mouse brain, both at the level of population and of individual subjects.

Results
Average correlation matrix. We first focus on the average correlation matrix, defined by the sample mean 
(i.e. over all individuals) of each back-transformed pair-specific correlation coefficient. More specifically, we pro-
ceeded by steps: we first calculated, for each mouse in our sample, the Pearson coefficient Cij between the time 
series Xi and Xj of each pair of ROI i and j. This quantity represents the simplest choice to detect pairwise simi-
larities between signals: it ranges between − 1 and 1, with − 1 describing perfectly anti-correlated signals and 1 
describing perfectly correlated signals. A value of 0 would indicate that no (linear) correlation has been detected.

However, the expected variance of Pearson coefficient is smaller as the correlation coefficient increases. Thus, 
a data transformation ensuring that the variance of Cij is disassociated from its mean would be desirable29. For this 
reason, we Fisher-transformed each coefficient by considering the matrix whose generic entry reads zij =  arctanh 
(Cij) and averaged them over all subjects, in order to obtain a unique matrix zij. As a last step, we back-transformed 
the latter: =C ztanh ( )ij ij . Figure 1 shows the average correlation matrix whose rows and columns have been 
reordered according to the dissimilarity measure

= − ∀ .D C i j1 , , (1)ij ij

The algorithm we have adopted proceeds by computing, at each step, the minimum dissimilarity between 
pairs of areas and clustering them together. In other words, clusters are grouped according to the minimum inter-
cluster dissimilarity, a linkage rule also known as “single-linkage” clustering30. The same algorithm can be used to 
generate the corresponding dendrogram.

While negative correlations are pronounced in subject-wise matrices (see SI file) they tend to be averaged-out 
in the population-wise matrix, whose terms are all positive. This is due to two main reasons: 1) negative corre-
lations always represent a minority within the set of individual Pearson coefficients, 2) such values span a range 
which markedly varies across single subjects. As a consequence of the larger inter-subject variability of negative 
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correlations with respect to the positive ones, the nested structure of the average matrix is far less pronounced 
than for the single individuals: nonetheless, nested red square-shaped patterns along the diagonal are still clearly 
visible.

The distribution of edge values of the average matrix Cij (calculated as stated above) is shown in Fig. 2, along-
side with the normal distribution whose mean and variance have been estimated through the 
maximum-of-the-likelihood procedure. The deviation of the distribution of experimentally-determined correla-
tions from the normal distribution is larger for this matrix than for the individual ones (as evident from the 
comparison with individual matrices - see SI file).

Percolation analysis. The results of the classical and modified percolation analyses are shown in Fig. 3.
Our method identifies multiple steps for increasing threshold, corresponding to the stable partitions of the 

network1,18 highlighted in Fig. 4. The plateaus indicate the presence of connections whose removal does not affect 
the number of connected components, indicating that these links are not critical in determining the structure of 
functional correlations.

Figure 4, shows that each connected group of areas detected in correspondence of a given correlation value is 
composed by many nested modules, whose hierarchical organization emerges from the application of higher 
thresholds. Two main groups of areas can be clearly identified (colored in blue and green in Fig. 5 and detected for 

.r 0 45th ). The first group (colored in green) regions include the cingulate cortex, the motor cortex, the medial 
prefrontal cortex and the primary somatosensory cortex1,11,13. The second group (colored in blue) is constituted 
by areas 3, 4, 19, 20, 35 and 36 (i.e. anterio-dorsal hippocampus, the right dentate gyrus and the right posterior 
gyrus), all parts of the hippocampal formation.

Upon raising the threshold to rth =  0.52, sub-areas appear: for example, the hippocampus splits into right and 
left part - i.e. 3, 19, 35 and 4, 20, 36 (evidenced in blue and purple); further raising the threshold to rth =  0.6, the 
two latter subgroups reveal a core structure defined by the pairs 19, 35 and 20, 36. An analogous result is found for 
the sensory system, confirming the hierarchical character of the mouse brain modular structure.

Figure 1. Dendrogram and correlation matrix for the average brain, induced by the dissimilarity measure 
∀= −D C i j1 , ,ij ij , with Cij representing the correlation matrix averaged over the single subjects entries 

constituting our sample.
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Figure 2. Empirical cumulative density function (CDF) of the correlations 
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Interestingly, the percolation curve for the null model shows a remarkably different trend. Indeed, drawing 
a matrix (whose distribution of correlations coincides with the observed one for the average mouse) from our 
ensemble and repeating our percolation analysis leads to a single, sharper transition, with basically no plateaus. 
This indicates that raising the threshold value leads to the sequential disconnection of individual nodes, which 
are removed one after the other. This supports the idea that the hierarchical structure observed for the brain con-
nectivity network is genuine, as the stepwise behavior does not emerge in a null model with similar distribution 
of correlations (the same conclusion holds true for the individual-wise matrices as well).

While this is reassuring, a statistical test is needed to quantify the significance of the experimental trend with 
respect to the null hypothesis. Our choice of such test moves from the observation that the experimental trend is 
less steep than the one obtained by running the null model. For this reason, the test statistics we have computed 
is the steepness of the experimental trend, measured between two points: the pairs ′r( , 2)th  and ′′r( , 53)th , with ′rth 
and ′′rth  indicating the values of correlations in correspondence of which we detect 2 and 53 communities respec-
tively (we have deliberately excluded the trivial communities represented by the whole brain and the single areas/
nodes). As we expect that each randomized version of our network is characterized by a different value of the 
steepness of the percolation curve, we generated many randomized configurations of the original matrix Cij and 
calculated the ensemble distribution of the steepness values. As shown in Fig. 5, the observed value of our test 
statistics (i.e. the actual steepness) is not compatible with our null model, lying well outside the 95% confidence 
intervals.

On the other hand, as evident upon inspecting Fig. 3, classical percolation, in which only the size of the larg-
est component is monitored, detects multiple thresholds in both the experimental network and in the network 
generated according to our null model. Although this finding provides a significant evidence of the structural 
differences between the observed average brain and an Erdös-Renyi-like graph, for example, it also implies that 
the claim according to which, in this “classical” version of percolation, revealing multiple thresholds is, by itself, 
a proof of the hierarchical modular structure of a network is arguable. Indeed, recovering the presence of steps 
also in the null model seems to suggest that the dynamics of the giant component is (at least) partially encoded 
into the correlations distributions, while this is no longer true when considering also the remaining components, 
implying that one of the genuine signatures of the brain self-organization lies in their dynamics.

Minimal Spanning Forest. The MSF algorithm is defined by two simple steps: a) the observed correlations are 
sorted in reverse order; b) starting from the largest observed correlation, a link is drawn between the correspond-
ing brain areas. This is done sequentially, with the limitation that any new connection must link at least one 
previously completely disconnected area.
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Figure 3. Comparison between the usual percolation analysis (upper panel) and our modified percolation 
analysis (bottom panel) run on the average brain (red trend), on a randomized version of it, retaining the 
same empirical distribution of correlations (brown trend) and on the ensemble-averaged matrix (green 
trend). While the usual percolation analysis detects a hierarchical modular structure even on the null model, 
thus making it difficult to asses the statistical significance of the observed patterns, our modified percolation 
analysis enables discrimination between the real and the random cases.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:32060 | DOI: 10.1038/srep32060

Figure 4. Each group of areas detected by our percolation analysis in correspondence of a given correlation 
value is composed by many sub-modules, whose presence is evidenced by raising the threshold value. A 
clear example is provided by the blue area detected for rth =  0.51, comprising the anterio-dorsal hippocampus, 
the dentate gyrus and the posterior dentate gyrus - i.e. areas 3, 4, 19, 20, 35, 36. Upon raising the threshold to 
rth =  0.52, two subgroups appear, composed respectively by the right and left parts - i.e. 3, 19, 35 and 4, 20, 36 - 
of the aforementioned areas (evidenced in blue and purple). Further raising the threshold to rth =  0.6, the two 
subgroups reveal a core structure defined by the pairs 19, 35 and 20, 36. This finding confirms the hierarchical 
character of the mouse brain modular structure. See also the map of the neuroanatomical ROI in the SI.
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At each step of the MSF algorithm, either a previously isolated area is assigned to an existing group or two 
previously isolated areas are linked together. In this way, “communities” remain naturally defined by the strength 
of their internal correlations, while redundant connections are discarded. In particular two different communi-
ties are eventually connected by edges whose correlation value is smaller than all the links of both communities. 
Althought the MSF is not, by itself, a community detetction technique, it provides a means to hierarchically order 
modules based on the strength of their internal edges. Such modules are tree-shaped and provide information on 
the structural importance of each area (e.g. its betweeness centrality).

The MSF of average brain is shown in Fig. 6. Our analysis reveals that presence of both inter- and 
intra-hemispheric modules. The module with the strongest internal connectivity is the medial-prefrontal cor-
tex, consistent with the finding that this bilateral structure persists in the percolation analysis at high values of 
the threshold. The second and third modules in the MSF rank are the right and left hippocampal formation. 
Interestingly, larger, inter-hemisferic modules, like the one comprising frontal and orbitofrontal cortices, caudate 
putamen and the amygdala, are characterized by more numerous, but weaker links. Altogether, the MSF structure 
reflects the hierarchical organization of connectivity modules revealed by our percolation analysis.

Remarkably, the insular cortex and the secondary somatosensory cortices are found within the same tree, 
thus showing that the reciprocal structural connectivity among these areas results in a consistent pattern of func-
tional connectivity which has been recently described also using voxelwise community detection approaches11. 
Similarly, the thalamus is found to be strongly linked to the bed nucleus of stria terminals, consistent with the 
reciprocal neuroanatomical links connecting these regions31. Interestingly, our MSF reveals a strong functional 
connection between the visual cortex and the retrosplenial cortex (i.e. between areas 43, 44, 53 and 54), an area 
that has been recognized as fundamental in tasks like orientation, head movement and processing of visual cues32. 
As a last example, the MSF suggests a role for the temporal association cortex (i.e. 49, 50) in the coordination of 
the sensori stimuli33, receiving inputs from the auditory and the rhinal corteces (i.e. 7, 8 and 41, 42).

Once the MSF has been built, we can use the remaining correlations in the list to build the Minimal Spanning 
Tree (MST), showin in Fig. 7. As for the forest, only one limitation exists: any new added link must connect a pair 
of previously-disconnected trees (which become part of the same tree afterwards). Naturally, the links between 
trees are weaker than the links within trees and the MSF can be recovered upon removing the weakest links.

The information provided by the MSF can be thus complemented by the information provided by the MST, 
which gives a clear picture of the mouse brain connectivity skeleton. In particular, the structural role of each area 
becomes evident and a classification of connector areas VS provincial areas becomes now possible. Among the 
most prominent examples of the former are the posterio-ventral hippocampus (i.e. 38) whose physical central-
ity is recovered as a functional centrality, the parietal association cortex (i.e. 33) which connects all the sensory 
areas (i.e. the rhinal, auditory and visual ones) and the orbitofrontal cortex (i.e. 31) whose physical connections 
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Figure 5. In order to assess the statistical significance of the results of our modified percolation analysis, a 
test is needed. Left panel represents the test statistics we have chosen: the slope of the percolation plot of both 
the average brain (red trend) and of a randomized version of it, retaining the same empirical distribution of 
correlations (brown trend). Right panel: ensemble distribution of our test statistics; the red point represents the 
(statistically significant) observed value of the latter.
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are mirrored by a high degree of functional (inter)-connectivity (e.g. it connects the thalamus and the frontal 
association cortex).

Discussion
In this paper we have presented the results of a network theory-based analysis of a large mouse fMRI dataset, 
aimed at assessing the hierarchical modular structure of resting state functional connectivity networks in this 
species. In order to overcome the limitations of currently available techniques, we propose a modified percolation 
analysis that retains the information on all the connected components of a given network. Our variation of the 
percolation analysis takes into account negative correlations, and does not require the application of a threshold 
to binarize the connectivity networks.

Our technique, straightforwardly applicable to experimental correlation matrices, reveals a hierarchically 
organized modular structure that does not appear in a null model defined by constraining the distribution of 
the observed correlations. Notably, conventional percolation analysis shows the presence of multiple percolation 
thresholds also in the null model, thus suggesting that results based on the giant connected component alone 
maybe misleading.

Figure 6. Result of the MSF algorithm mapped into the average mouse brain areas. The algorithm works by 
first sorting the observed correlations in decreasing order and then linking pairs of areas sequentially, with the 
only limitation that each new link must connect at least one previously disconnected area. Colors correspond 
to the average correlation value of the links defining each tree composing the forest. See also the map of the 
neuroanatomical ROI in the SI.
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Our percolation analysis represents a generalization of the classical one. Indeed, while each step of the classical 
percolation analysis is always mappable into a step of our method, the reverse is not true, since the detection of a 
newly disconnected module from a secondary component would be completely missed.

We have also computed the Minimal Spanning Forest (MSF) and the Minimal Spanning Tree (MST) for our 
population-wise mouse brain. The latter represents a faster alternative to the usual community detection tech-
niques, since it identifies modules on the basis of the strengths of their internal correlations. The MSF reveals 
both intra- and inter-hemispherical modules, and the presence of small, tightly coupled modules alongside with 
larger subnetworks characterized by weaker internal links. The MST, on the other hand, enables the classification 
of connector and provincial areas.

Our results indicate that the tools provided by network theory indeed provide additional, non-trivial infor-
mation on the topology of functional connectivity networks from the mouse brain. This work can be straightfor-
wardly extended to the study of the human brain.

Both methods hereby proposed show a hierarchy of modules in the organization of functional connectivity net-
works in the mouse brain. While this is strictly speaking topological modularity, i.e. organization resulting from the 
topological distribution of edges, it is remarkable that it reflects functional and anatomical features. By way of exam-
ple, bilateral homotopic correspondence of modules, as detected by percolation analysis and MST, is not a given, 
since there is no symmetry constraint imposed in these analyses. Interestingly, descending the hierarchical ladder 
we found that frontal modules, like the medial prefrontal cortex, the orbitofrontal cortex and the frontal associative 
cortices, are always part of a symmetrical module comprising both left and right counterparts. On the other hand, 
structures like more posterior cortices hippocampus appear to have a weaker interhemispherical connectivity, and 
are split into two separate left and right modules at lower levels in the modular hierarchy. Hence, the hierarchical 
modularity shows a distribution in the relative strength of inter- and intrahemispheric connectivity across the brain.

Figure 7. MST of our average mouse brain. The MST has been built by connecting the trees of the MSF, 
with the only limitation that any newly-added link must connect a pair of previously-disconnected trees: a 
consequence of the MST algorithm is that the correlations within the trees are, on average, higher than the 
correlations between the trees. The MST also allows us to distinguish between connector and provincial areas. 
See also the map of the neuroanatomical ROI in the SI.
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A hierarchically modular architecture, as we demonstrated in the mouse brain, is thought to be advantageous 
from a functional and neuro computational point of view. Indeed, hierarchically modular architectures exhibit 
more stable and diverse computational dynamics34. Moreover, hierarchical networks have been shown to be stable 
under large scale reconnection of substructure35, and efficient in terms of wiring costs36. While similar findings 
have been reported for the human brain, our results demonstrate that a hierarchical organization is also found 
in the functional connectivity architecture of the mouse brain. Hence, a hierarchical organization appears to be a 
feature of the mammalian brain that is conserved across different species.

Finally, our results may have important implications for the study of models of brain disease. Indeed, the 
mouse genome can be manipulated using modern transgenic technology to generate models of human brain 
disease, a potentially precious tool to understand the neurobiological and genetic basis of human brain disorders. 
By way of example, alterations in the modular organization of brain functional connectivity have been observed 
in schizophrenia patients37 but the etiology of this complex disorder is still largely unknown. The demonstration 
that a hierarchically modular organization is present in the mouse paves the way to translational investigations in 
transgenic models that may help unveil the biological basis of aberrant functional connectivity.

Methods
All experiments were conducted in accordance with the Italian law (DL 116, 1992 Ministero della Sanità, Roma) 
and the recommendations in the “Guide for the Care and Use of Laboratory Animals” of the National Institutes of 
Health. Animal research protocols were also reviewed and approved by the animal care committee of the Istituto 
Italiano di Tecnologia (permit 07-2012). All surgical procedures were performed under anesthesia.

Data acquisition and data pre-processing. The data-set used for this analysis has been reported in a 
recent paper11,38, where experimental details are extensively described. In short, MRI experiments were per-
formed on male 20–24 week old C57BL/6J (B6) mice (n =  41, Charles River, Como, Italy). Mice were anaes-
thetised with isoflurane (5% induction), intubated and artificially ventilated under 2% isoflurane maintenance 
anesthesia. All experiments were performed with a 7.0 T MRI scanner (Bruker Biospin, Milan) using an echo 
planar imaging (EPI) sequence with the following parameters: TR/TE 1200/15 ms, flip angle 30 degrees, matrix 
100 ×  100, field of view 2 ×  2 cm2, 24 coronal slices, slice thickness 0.50 mm, 300 volumes and a total rsfMRI 
acquisition time of 6 minutes.

The mouse brain was parcellated into 54 macro-regions (27 per hemisphere) described in the SI. Resting 
state fMRI signals from individual image voxels were averaged across each region of interest (ROI) to generate 
54 time-series of approximately 300 s duration. The 54 collected time-series were pairwise correlated calculating 
the Pearson coefficient and organized in a 54 ×  54 symmetric matrix describing the resting-state connectivity 
network for each mouse.

Image preprocessing was carried out using tools from FMRIB Software Library (FSL, v5.0.639,40) and 
AFNI (v2011_12_21_101441). RsfMRI time series were despiked (AFNI/3dDespike), corrected for motion 
(AFNI/3dvolreg) and spatially normalised to an in-house C57Bl/6J mouse brain template42 (FSL/FLIRT, 12 
degrees of freedom). The normalised data had a spatial resolution of 0.2 ×  0.2 ×  0.5 mm3 (99 ×  99 ×  24 matrix). 
Head motion traces and mean ventricular signal (averaged fMRI time course within a manually-drawn ventricle 
mask) were regressed out of each of the timeseries (AFNI/3dDeconvolve). To assess theeffectof global signal 
removal, separate rsfMRI time series with the whole-brain average time course regressed out were also generated. 
All rsfMRI time series were spatially smoothed (AFNI/3dmerge, Gaussian kernel of full width at half maximum 
of 0.5 mm) and band-pass filtered to a frequency window of 0.01–0.08 Hz (AFNI/3dBandpass)42.

In order to create an average adjacency matrix describing brain functional connectivity at the population level, 
subject-wise matrices were first Fisher-transformed, averaged across subjects and then back-transformed (see the 
SI file for the analytical details).

Percolation analysis. The percolation analysis proposed by Makse et al.18 includes the following steps:  
a) a threshold parameter p, ranging between 0 and 1 (and thus interpretable as a probability), is chosen; b) the 
links corresponding to the correlations below the threshold are removed and the size of the giant component C 
(i.e. the largest connected component) is computed; c) the parameter p is varied and C is evaluated for different 
thresholds.

This procedure ignores the complex evolution of the structure of the whole network, which is not captured 
by the giant component only. This becomes a relevant issue when the classical percolation is applied to small net-
works, i.e. to networks for which no giant component is clearly distinguishable: in this case the signal provided 
by this kind of analysis may be rather noisy, thus misrepresenting the modular structure of the brain at the global 
level.

In order to overcome this drawback, we propose a variation of the percolation analysis along the following 
lines: a) all experimentally determined correlation coefficients are listed in increasing order; b) starting from the 
lowest value, each entry in the list is chosen as a threshold; c) all the links corresponding to the correlations below 
the threshold are removed; d) the number of connected components characterizing the remaining part of the 
network is computed.

Beside providing a much more precise picture of the dynamics of the brain at the global level, our variation 
of the percolation analysis is also more robust, since our signal results from the fragmentation of many different 
components at the same time and is thus less prone to the statistical noise which, instead, accompanies the frag-
mentation of the giant component only.
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Moreover, while each step of the classical percolation analysis is always mappable into a step of our method, 
the reverse is not true: the detection of a newly disconnected module from a secondary component would be 
missed by the classical percolation analysis (which focuses on the giant component only).

A statistical benchmark for mice brains. In order to define to what extent the stepwise structure 
highlighted by the percolation analysis is significant, we need to compare the results with a proper statistical 
benchmark. In other words, in order to understand whether the “stepwise behavior” is a mere consequence of 
lower-order constraints or a genuine sign of self-organization we need to define a proper null model.

As a first step, we have calculated the empirical probability distributions of the entries of the correlation matrix 
characterizing each subject in our sample and fitted them to normal distributions, whose means and standard 
deviations were estimated through the maximum-of-the-likelihood procedure. We have also repeated this analy-
sis for the average mouse, i.e. the brain functional connectivity at the population level. In this specific case, the 
mean and the standard deviation are precisely the sample mean and the sample standard deviation of the set of 
values 

=
{ }Cij i j, 1

54 . In all cases, the distributions of the elements of the correlation matrices appear to be well behaved, 
with nearly Gaussian distributions (see Figs 2 and 3 in the SI file).

Secondly, we have generated an ensemble of “null brains”, by drawing correlations from the corresponding 
normal distributions. In particular, we have compared the observed percolation trend (red trace in Fig. 3) with 
the result of the percolation analysis run on both the ensemble-averaged matrix (green trace in Fig. 3) and on a 
specific brain (brown trace in Fig. 3). In particular, the null model for the average brain is defined by the normal 
distribution shown in Fig. 2, defined by the aforementioned parameters.

However, this procedure does not guarantee that true correlation matrices, which should be positive-definite, 
are obtained: in fact, although the synthetic matrices can be chosen to be symmetric and with unitary elements 
on the main diagonal, they may still have negative eigenvalues. This problem can be solved by implementing the 
procedure illustrated in ref. 43 where a fast algorithm for computing the nearest correlation matrix to a given, 
symmetric, one is described. The last step of our method consists in the implementation of this procedure.
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