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Estimating topological properties of weighted networks from limited information
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A fundamental problem in studying and modeling economic and financial systems is represented
by privacy issues, which put severe limitations on the amount of accessible information. Here we
introduce a novel, highly nontrivial method to reconstruct the structural properties of complex
weighted networks of this kind using only partial information: the total number of nodes and links,
and the values of the strength for all nodes. The latter are used as fitness to estimate the un-
known node degrees through a standard configuration model. Then, these estimated degrees and
the strengths are used to calibrate an enhanced configuration model in order to generate ensembles
of networks intended to represent the real system. The method, which is tested on real economic
and financial networks, while drastically reducing the amount of information needed to infer net-
work properties, turns out to be remarkably effective—thus representing a valuable tool for gaining
insights on privacy-protected socioeconomic systems.

PACS numbers: 89.75.-k; 89.65.-s; 02.50.-r

Reconstructing the statistical properties of a network
when only partial information is available represents a
key unsolved problem in the field of statistical physics
of complex systems [1, 2]. Yet, addressing this issue can
bring to many concrete applications. A paramount ex-
ample is provided by financial networks, where nodes rep-
resent financial institutions and edges stand for the var-
ious types of financial ties—such as loans or derivative
contracts. These ties result in dependencies among in-
stitutions and constitute the ground for the propagation
of financial distress across the network. However, due
to confidentiality issues, the information that regulators
are able to collect on mutual exposures is very limited
[3], and this hinders the analysis of the system resilience
to the default or distress on one or more institutions—
which depends on the structure of the whole network
[4, 5]. Typically, the analysis of systemic risk has been
pursued by trying to reconstruct the unknown links of
the network using Maximum Entropy algorithms [6–8].
These approaches, also known as “dense reconstruction”
methods, assume that the network is fully connected and
estimate link weights via a maximum homogeneity prin-
ciple, looking for the weighted adjacency matrix with
minimal distance from the uniform matrix that also sat-
isfies the imposed constraints—represented for instance
by the budget of individual banks. The strongest limi-
tation of these algorithms lies in the hypothesis that the
network is fully connected. In fact, not only empirical
networks show a very heterogeneous distribution of the
connectivity, but such dense reconstruction was shown
to lead to systemic risk underestimation [2, 8]. More re-
fined methods like “sparse reconstruction” algorithms [2]
allow to obtain a matrix with an arbitrary level of hetero-
geneity, but still leave open the question of what value
of heterogeneity would be appropriate; moreover, even

when link density is correctly recovered, systemic risk is
again underestimated because of the homogeneity prin-
ciple used to build the network. A more recent approach
[9, 10] instead uses the limited topological information
available on the network to generate an ensemble of expo-
nential random graphs (ERG) through the configuration

model (CM) [11], where the Lagrange multipliers defin-
ing it are replaced by fitnesses [12], i.e., node-specific
properties assumed to be known—in a way similar to
fitness-dependent network models [13]. The estimation
of network properties is then carried out within such
fitness-induced ensemble. This method overcomes the
limitations of its predecessors, but it still suffers from the
drawback of being applicable only to binary networks—
whereas, the analysis of systemic risk is generally carried
out within the weighted representation of the networked
system.

Here we aim at overcoming all the limitations of these
methods and build an innovative and effective procedure
to reconstruct weighted networks, resorting on a min-
imal amount of available information: the total num-
ber of connections and the values of the strength for
each node—which will play the role of node fitness. In
a nutshell, our method consists in estimating the num-
ber of connections for each node via the standard CM
calibrated on the fitnesses, and then in using these val-
ues as well as node strengths to assess individual link
weights through an enhanced configuration model (ECM)
[14]. To validate our method, we use two real instances
of economic and financial systems. The first one is the
World Trade Web (WTW) [15], i.e., the network whose
N nodes represent countries and whose L links repre-
sent trade volumes—so that the weight wij of the link
between nodes i and j is the total monetary flux be-
tween these countries resulting from the import/export
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among them [16]. The second one is the (E-mid) inter-
bank money market [17], where now the nodes represent
banks and wij is the total amount of loans (i.e., of liq-
uidity exchanged) between banks i and j [18]. In both
cases, the strength of node i is defined as s∗i =

∑

j wij ,
while its degree or number of partners is k∗i =

∑

j aij
(where aij := limε→0[1 + ε/wij ]

−1). Since we have full
information on these networks, we will be able to assess
unambiguously the accuracy of our method in estimating
their topological properties.
Our network reconstruction procedure builds on two

complementary network generation models. The CM
[11], a particular class of ERG model [19], consists in
generating an ensemble ΩCM of networks which is max-
imally random—except for the ensemble average of the
node degrees {〈ki〉ΩCM

}Ni=1 that are constrained to the
observed values {k∗i }Ni=1. The probability distribution
over ΩCM is defined via a set of Lagrange multipliers
{xi}Ni=1 (one for each node), whose values can be set to
satisfy the equivalence 〈ki〉ΩCM

≡ k∗i ∀i [20]. The ensem-
ble probability that any two nodes i and j are connected
is given by:

pij =
xixj

1 + xixj

, (1)

so that xi quantifies the ability of node i to create links
with other nodes. The ECM [14] is instead obtained by
specifying both the mean degree and strength sequences
{k∗i }Ni=1 and {s∗i }Ni=1. In this case, two Lagrange multi-
pliers {ai, bi} are associated to each node i, so that the
ensemble probability qij that any two nodes i and j are
connected and the ensemble average 〈wij〉 for the weight
of such link become [21]:

qij =
aiajbibj

1 + aiajbibj − bibi
, 〈wij〉 =

qij
1− bibj

. (2)

On the other hand, the fitness model [12] assumes the
network topology to be determined by an intrinsic prop-
erty (fitness) associated with each node. This approach
has been successfully used in the past to model several
economic networks, including the network of equity in-
vestments in the stock market [22], the E-mid [17] and
the WTW [13]. Note that fitnesses are often used within
the ERG framework provided an assumed connection be-
tween them and the Lagrange multipliers. Our method
builds exactly on such assumption.
Given these ingredients, we now formulate the statis-

tical procedure at the basis of our method. We aim at
finding the most probable estimate for X(G0), i.e., the
value of a topological property X for the real network G0

that we want to reconstruct. Such estimate has to rely
on and be compatible with some constraints, given by the
incomplete information we have on G0: the total number
of nodes N and links L, and the whole strength sequence
{s∗i }Ni=1. We build on two important assumptions:
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FIG. 1. Relation between node strengths {s∗} and their
degree-induced Lagrange multipliers {x} from CM (obtained
by knowing the whole degree sequence). The linearity of such
relation is at the basis of assumption 2 of our method that
xi ∝ s

∗
i ∀i accurately describes the binary network topology.

Left panel refers to WTW, right panel to E-mid.

1. G0 can be seen as drawn from an appropriate ECM
ensemble ΩECM , so that X(G0) can be estimated
as 〈X〉ΩECM

;

2. The strengths {s∗i }Ni=1 represent degree-induced
node fitnesses, and are thus assumed to be propor-
tional to the Lagrange multipliers {xi}Ni=1 of the
CM via a universal parameter z: xi ≡

√
zs∗i ∀i.

The first assumption allows us to map the problem of
evaluating X(G0) into that of choosing the optimal ECM
ensemble ΩECM compatible with the known constraints
on G0. In other words, the question to address be-
comes: what ECM ensemble is the most appropriate to
extract the real network G0 from, given that we know
only partial information? Then, once ΩECM is deter-
mined, we can use the average 〈X〉ΩECM

as a good esti-
mation for X(G0). However, in order to build an appro-
priate ΩECM , we need to know not only the strengths
but also the degrees for all the nodes, and this is where
assumption 2 comes in handy: the unknown degrees can
be estimated within a CM ensemble ΩCM built using the
strengths as degree-induced fitnesses (Figure 1).

Technically, our method consists in the following op-
erative steps. I) We first find the unknown parameter z
that defines ΩCM (see assumption 2) by comparing the
average number of links of a network belonging to ΩCM

with the (known) total number L(G0) of links in G0:

〈L〉ΩCM
=

1

2

∑

i

∑

j( 6=i)

zs∗i s
∗
j

1 + zs∗i s
∗
j

≡ L(G0) (3)

(since {s∗i }Ni=1 are known, eq. (3) is an algebraic equation
in z). We then use this z to estimate the unknown degrees
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FIG. 2. Relation between k
∗ and 〈k〉ΩECM

for WTW (left
panel) and E-mid (right panel).

through eq. (1):

〈ki〉ΩCM
=

∑

j( 6=i)

pij =
∑

j( 6=i)

zs∗i s
∗
j

1 + zs∗i s
∗
j

∀i. (4)

II) We use the degrees estimated in this way in the system
of 2N nonlinear equations that define the ECM:























〈ki〉ΩCM
=

∑

j( 6=i)

aiajbibj
1 + aiajbibj − bibi

s∗i (G0) =
∑

j( 6=i)

aiajbibj
(1 + aiajbibj − bibi)(1− bibj)

∀i.

(5)
The solution is the set of Lagrange multipliers {ai, bi}Ni=1

that define the ECM ensemble—through the link-
ing probabilities {qij}Ni,j=1 and the average weights

{〈wij〉}Ni,j=1 as of eq. (2)—and allow to compute
〈X〉ΩECM

, either analytically or numerically.
In order to check whether ΩECM defined above is a

proper ensemble to draw the real network G0 from, we
first compare for each node i the degree k∗i (G0) of the real
network and 〈ki〉ΩECM

=
∑

j( 6=i) qij estimated through

our method [23]. As Figure 2 shows, this results in a scat-
tered cloud around the identity, whose behavior reflects
the noisy yet very high correlation between strengths and
degrees—as we are not using the real k∗(G0) in eq. (5)
but 〈ki〉ΩCM

obtained from the CM induced by node
strengths. We move further and focus on the topolog-
ical properties that are commonly regarded as the most
significant for describing a weighted network structure:
the average nearest neighbors strength

snni :=

∑

j( 6=i) aijsj

ki
=

∑

j( 6=i)

∑

k( 6=i,j) aijwjk
∑

j( 6=i) aij
(6)

and the weighted clustering coefficient

cwi :=

∑

j( 6=i)

∑

k( 6=i,j) wijwikwjk
∑

j( 6=i)

∑

k( 6=i,j) aijaik
, (7)

together with the binary version of these quantities: the
average nearest neighbors degree

knni :=

∑

j( 6=i) aijkj

ki
=

∑

j( 6=i)

∑

k( 6=i,j) aijajk
∑

j( 6=i) aij
(8)

and the binary clustering coefficient

cki :=

∑

j( 6=i)

∑

k( 6=i,j) aijaikajk
∑

j( 6=i)

∑

k( 6=i,j) aijaik
. (9)

The ECM ensemble averages for these quantities are ob-
tained from eqn. (6-9) by replacing the binary adjacency
matrix elements aij with the linking probabilities qij , and
the real link weights wij with their ensemble averages
〈wij〉. Figure 3 shows a remarkable agreement between
the values of these quantities computed on G0 and their
ECM ensemble averages—which can therefore be used as
good estimates for the real quantities X(G0). Such test
reveals the effectiveness of our method in reconstructing
the topological properties of the real network.
It is important to remark that the applicability of our

method strongly depends on the accuracy of assumption
2, i.e. on whether the CM induced by node strengths
is able to provide good estimates for the unknown de-
grees. This is indeed the case of the WTW [13] and
the E-mid [17], but also of other economic and financial
networks of different nature [22]. Another important re-
mark is that our method is based on a combination of CM
and ECM rather than directly on the Weighted Config-
uration Model (WCM) [20], because the latter not only
fails to reproduce the network topological properties (as
shown by Figure 3), but also predicts a far denser net-
work than observed. This happens not because strengths
carry a “lower level” information than that of degrees—
rather, they can be used to infer the degrees themselves,
and this is what our method points out: the informa-
tion on strength values should not be used to directly
reconstruct the network, but to estimate the degree first,
and only then to compute the quantities of interest. In
this respect, note that using directly the knowledge of
the strength sequence and number of links as fixed con-
straints to build a maximum-entropy ensemble would re-
sult in a different mathematical expressions. In particu-
lar, we would arrive at a variant of eq. (2) where ai = a
∀i. We have checked that, just like the WCM, this model
gives a bad prediction of the network, leading to the con-
clusion that inferring the expected degrees first through
eq. (4) is a crucial step of the approach we are using
here: the information on links presence is indispensable
to achieve a faithful network reconstruction.
Further work is needed to address several issues

that remain open, including testing the accuracy of
our method in estimating higher-order topological
properties. Possibly, for these cases the method could
require a larger initial information to obtain the same
effectiveness. Nevertheless, in its present version our
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FIG. 3. Scatter plots of s vs snn (a), k vs knn (b), s vs cw (c) and k vs ck (d) for the real quantities (X(G0)), those estimated
by our method (〈X〉ΩECM

), and those computed by a WCM-based reconstruction (〈X〉ΩWCM
). Insets: relations X(G0) vs

〈X〉ΩECM
and X(G0) vs 〈X〉ΩWCM

for the same quantities. Upper plots refer to WTW, lower plots to E-mid.

method exploits a very limited information, which is indeed minimal but also often available for economic and
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financial systems: besides global statistics (N and L),
the strengths (that can be the operating revenue of firms,
or the tier-1 capital of banks) are or should be accessible
public data. In conclusion, our method is particularly
useful to overcome the lack of topological information
that often hampers systemic risk estimation in financial
networks. More generally, our method can be applied to
any network representing a set of dependencies among
components in a complex system for which the available
information is limited, and it is thus of general interest
in the field of statistical physics of networks.
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