
Learning binary warm starts for multiparametric
mixed-integer quadratic programming

Daniele Masti and Alberto Bemporad

Abstract— In this paper we propose a lightweight neural net-
work architecture that is able to learn the binary components of
the optimal solution of a class of multiparametric mixed-integer
quadratic programming (MIQP) problems, such as those that
arise from hybrid model predictive control formulations.

The predictor provides a binary warm-start to a specifically
designed branch and bound (B&B) algorithm to quickly dis-
cover an integer-feasible solution of the given MIQP, with the
aim of reducing the overall solution time required to find the
global optimal solution on line.

I. INTRODUCTION

In recent years model predictive control (MPC) has be-
come one of the leading advanced control techniques in
industry [1]–[3] due to its innate ability to easily handle
constraints on inputs and outputs. Contrarily to other control
methodologies, MPC requires solving a constrained opti-
mization problem on line at each sample step. For this reason,
most used MPC schemes are formulated using convex,
mostly quadratic, formulations of the control problem, due
to the large availability of good solvers that can successfully
and reliably run even on limited hardware (such as micro-
controllers) [4].

When MPC is used to control hybrid dynamical sys-
tems [5], the optimization problem to solve in real-time
becomes more challenging in embedded applications, due
to the presence of binary variables that make the problem
of mixed-integer nature, and therefore combinatorial [6].
Most mixed-integer programming (MIP) solvers rely on a
branch and bound (B&B) scheme to efficiently explore the
set of combinations of binary variables, usually represented
as a binary tree. Explicit MPC was proposed as a way to
avoid on-line mixed-integer programming [7], [8]. However,
the approach is limited in practice to simple hybrid MPC
problems, due to the possible explosion of memory and
CPU requirements as a function of the number of binary
variables and constraints. For a comparison of explicit MPC
with (implicit) MPC based on on-line optimization in the
case of linear MPC and quadratic programming the reader
is referred to [9], where it is highlighted that in many cases
the memory and computation requirements of implicit MPC
are less demanding than for explicit MPC, even in the worst
case.

A possible strategy to lighten computational requirements
is to resort to approximate solutions of the optimization
problem [10]. This is also justified theoretically, as closed-
loop stability of a hybrid MPC system is guaranteed as

The authors are with the IMT School for Advanced
Studies Lucca, Piazza San Francesco 19, 55100 Lucca
{daniele.masti,alberto.bemporad}@imtlucca.it

soon as the optimal cost decreases from one sample step
to the next [5]. An approximate explicit MPC solution can
be obtained in two ways: (i) by approximating/learning the
explicit control law [11], [12], or (ii) by using on-line
optimization algorithms that do not require to fully solve the
problem to optimality to get closed-loop control performance
of acceptable quality.

The former approach has the limitation of possibly re-
quiring the computation of many optimal solutions offline,
one per sample of the vector of parameters (such as states
and reference signals), to construct the approximation. In
both cases, however, approximating the control law and
renouncing to exact optima can bring unacceptable effects in
the closed-loop performance. For this reason, many research
efforts have instead focused on how to speed up the solution
of the MIP problem to optimality, for example by providing
a good initial guess to warm start the solver. A classical
example is to provide the shifted solution found at the
previous sample step and organize the B&B algorithm to
take that into account [13], or to limit the number of possible
switches of binary variables with respect to that solution [14].
Promising results have been also recently shown in [15] in
using binary warm starts in MIP. The main limitation of
such warm starting is that it does not perform well in case
of sudden set-point changes or disturbance steps.

In this paper, we propose a B&B solver for mixed-
integer quadratic programming (MIQP) problems that ex-
ploits binary warm starts. The key idea is to synthesize a
lightweight function using machine learning techniques that
acts as a suboptimal multiparametric solution of the binary
components of the optimizer as a function of the parameters
affecting the MIQP problem, and to use online the estimate
provided by the learned function as an initial guess for
the binary variables. When learning such a function, the
emphasis is set on aiming at providing an integer-feasible
initial guess, so that the MIQP solver is greatly advantaged
when both an exact solution is sought and in the case the
solver is stopped prematurely.

The paper is organized as follows. In Section II we intro-
duce the class of multiparametric MIQP problems we deal
with. In Section III we describe the structure of the proposed
binary warm-start predictor and develop a branch-and-bound
strategy in Section IV that is able to take advantage of the
specific structure of the prediction. Finally, in Section V
we report the numerical results obtained with the proposed
methodology.

II. MULTIPARAMETRIC MIXED INTEGER OPTIMIZATION
PROBLEM

In this paper we consider multiparametric mixed integer
quadratic optimization problems of the following form

minz,δ
1
2

[
z
δ

]′
Q

[
z
δ

]
+ x′F ′

[
z
δ

]
s.t. G

[
z
δ

]
≤W + Sx

δ ∈ {0, 1}q, z ∈ Rm, x ∈ Rn

(1)

where Q = Q′ � 0, Q ∈ R(m+q)×(m+q), F ∈ R(m+q)×n,
G ∈ Rp×(m+q), W ∈ Rp, S ∈ Rp×n. For example
in control applications a problem of the form (1) arises
when formulating MPC problems based on mixed-logical
dynamical (MLD) models of hybrid systems [5]. In this case,
vector x contains all the parameters upon which the result
of the optimization problem depends, such as current state
and current (and possibly future) reference and measured
disturbance signals. Problem (1) must be solved at each
sample time t, t = 0, 1, . . ., for the given value x(t).

Problem (1) is typically solved by branch and bound
(B&B) methods [16] together with different algorithms for
solving quadratic programming (QP) relaxations, in which
some of the variables δi are relaxed in the range [0, 1]
or fixed at 0 or 1. Possible QP solvers include active-
set (AS) methods [17], [18], such as AS methods based
on nonnegative least squares (NNLS) [19], [20] and dual
active-set methods [21]. In particular, some AS methods
benefit from warm-starting the active set, an information
that is available during B&B. Other methods for solving
QP relaxations within B&B include interior-point methods
[22], accelerated gradient projection methods [23], and the
alternating direction methods of multipliers [24].

The computational efficiency of an MIQP solver does
not only depend on the way QP relaxations are solved, but
also on the way B&B is performed. In particular, both the
branching strategy and the availability of good bounds on
the optimal solution influence the performance of the MIQP
solver, which ultimately depends on the number and sizes of
QP relaxations solved. In particular, during B&B a node of
the search tree is fathomed when the associated QP relaxation
leads to a cost that is not lower than the best currently
available cost of an integer feasible solution (i.e., a solution
that satisfies the constraints in (1). Therefore, knowing a
feasible configuration of the binary variable δ, that is a value
of δ ∈ {0, 1}q such that there exists a z ∈ Rm satisfying the
constraints in (1), is useful to get the corresponding bound
Vbest =

1
2 [zδ]

′
Q [+]x′F ′ [zδ].

III. BINARY PREDICTOR VIA COMPACT NEURAL
NETWORKS

An alternative to using online MIQP solvers is to resort to
explicit MPC ideas [7], [8] to find an optimizer function
z∗(x), δ∗(x) offline. This approach is usually limited to
problems with few binary variables and constraints.

Here we take a semi-explicit approach that consists of
determining an explicit function δ : Rn → {0, 1}q such that
δ(x) is a feasible configuration, for each given x ∈ Rn. Each
component function δi can be seen as a binary classifier that
we will determine using machine learning (ML) techniques.

Consider the MIQP problem (1) and, for each parameter
vector x ∈ Rn, let δ∗(x) be the binary components of a
corresponding optimizer. From a functional approximation
point of view, the prediction task can be formulated as the
problem of finding an approximator function f : Rn →
{0, 1}q such that f(x) is “as similar as possible to δ∗(x)”,
∀x. As we want to warm start a B&B solver, we are not
strictly aiming at predicting the closest solution (according
to some binary distance) to the optimal one, but also at
avoiding that a possible classification error leads to a guess
f(x) that is not a feasible configuration. Indeed, from a B&B
perspective, a feasible configuration is more useful than an
unfeasible one even if the latter is closer to the optimal one,
as it may provide a good bound. This poses some limits on
the choice of the employable machine learning techniques, as
most of them are linked to a rigid form of the loss function
used during the learning phase.

The recent contribution [25], discovered by the authors
while writing this paper, has been taken a similar perspective
for semi-explicit QP problems, by attempting at finding the
optimal active set as an explicit function of x. The method
we will present next is tailored instead to MIQP problems, by
trying to guess the value of binary variables. Our approach
can be immediately extended to predicting active sets in
multiparametric QPs too. In this case, the function to learn
is the optimal active set function f : Rn → {0, 1}p, defined
by

fi(x) =

{
0 if Giz

∗(x) < Wi + Six

1 if Giz
∗(x) =Wi + Six

(2)

where z∗(x) is a optimal solution of the QP problem (1)
(q = 0). In [26] it is shown that z∗ and f are, respectively,
a piecewise affine (PWA) and a piecewise constant function
of x.

Proposed learning architecture

For embedded applications, we need a learning archi-
tecture with a compact memory footprint, lightweight in
terms of CPU usage, and possibly running also in constant
time for throughput predictability. Among various options,
as noted in [27], a good choice is using a very compact
feedforward neural network (ANN) with a small number
of layers composed of neurons featuring ReLU (Rectified
Linear Units, [28]) activation functions

fReLU(x) = max{0, x} (3)

In fact, with the choice in (3) the memory footprint is
extremely compact, due to recent advancements in terms
of group sparsity regularization techniques [29], and the
simple structure of the ReLU map (3) results in a very small
computational burden on the CPU. Moreover, the number of
floating point operations (flops) involved in a evaluating an

ANN with ReLU activation functions is independent of the
number of samples used in the training phase, in contrast
for example to K nearest neighbors (KNN) classifiers [30],
and are constant, contrarily for example to decision trees.
In addition, ReLU functions are piecewise linear functions,
and therefore lead to ANNs that have a PWA shape. Finally,
they can be trained with arbitrary smooth loss functions. To
circumvent the fact that they are not differentiable in zero,
it is common practice to assume dmax{0,x}

dx

∣∣∣
x=0

= 0.
The network architecture used in this work is rather

classical. We employ a stack of densely interconnect ReLU
layers followed by an output layer of q sigmoidal neurons,
one for each binary variable we want to predict. Let us call
y : Rn → Rq the output of the network. No bias is used in
the hidden layers. As the sigmoid function can take any value
in the interval [0, 1], an extra step is necessary for quantizing
the learned function y(x) to a binary value.

Here for binary quantization we simply employ the fol-
lowing threshold function qt : Rq → Rq

qt(y) =
1

2
(1 + sign(y − 0.5)) (4)

The overall architecture is depicted in Figure 1. Note that
function (4) is not used during the training phase.

A. Choice of loss function

As mentioned above, we would like to predict δ as a
function of x by balancing feasibility and optimality. We
therefore pose the training process as a multi-objective
optimization problem, with one loss function for each one
of the two objectives.

For the objective of recovering optimal binary combina-
tions, we resort to the standard binary cross-entropy loss
function ferr : R2q → R

ferr(y, δ) = −
p∑
i=1

(1− δi) log(1− yi) + δi log(yi) (5)

commonly used for training most ANN classifiers.
Regarding the second objectiv (feasibility of δ), we simply

embed the inequalities appearing in (1) that only involve bi-
nary components in the loss functions, for example using bar-
rier functions that penalize the violation of the corresponding
inequality constraints. An example of such purely binary
inequality constraints are those deriving from the translation
of Boolean constraints into integer inequalities [31]. Let us
denote by I , I ⊆ {1, . . . , p}, the (possibly empty) set of
purely binary linear inequality constraints appearing in (1).
Then, we choose the loss associated due to the feasibility
objective as

ffeas(y) =
∑
i∈I

max{0, Gi
[

0
qs(y)

]
−Wi − Six}2 (6)

where qs : Rq → Rq is a sigmoidal smooth approximation
of (4),

[qs(y)]i =
1

1 + e−κ(yi−
1
2)

(7)

𝑦q 𝛿q

𝑥
𝑦1 𝛿1𝑦2 𝛿2

Fig. 1. ANN architecture: ReLU neurons (orange), sigmoidal neurons (light
blue).

and the subscript i denotes the ith row (component) of a
matrix (vector). In the following we choose κ = 100 in (7).
Given N training samples x1, . . . , xN and the corresponding
optimal binary solutions δ1, . . . , δN , δi = δ∗(xi), and by
letting w ∈ Rnw the vector of parameters defining the ANN
yw : Rn → {0, 1}q we want to train, we define the training
loss function

`(w) =
1

N

N∑
i=1

ferr(yw(xi), δ
i) + γffeas(yw(x

i)) (8)

where γ is a tuning weight used for balancing the two
components of the training loss. The predictor δ : Rn →
{0, 1}q , resulting from minimizing (8) with respect to w
given the N training samples, is δ(x) = qt(yw(x)).

IV. ANN-B&B ALGORITHM

We now focus on how to exploit the predicted δ(x(t)) on
line to solve the MIQP (1) for each given x(t).

A possibility is to use a standard depth-first B&B algo-
rithm and, independently of the heuristic used to decide the
variable δi to branch on during the search, explore first the
sub-problem in which the value taken by δi is set to the
predicted value δi(x). A possible drawback of this method is
that, due to feasibility of δ(x), most likely all QP relaxations
will be solved initially down to the leaf node in which
all binary variables are fixed at δ(x), unless infeasibility is
detected earlier.

We therefore take another approach of reversely traversing
the solution tree. We start by solving a QP problem in
which all the binary variables are set to their predicted value
δ(x). If the QP is feasible we have obtained a valid upper
bound V0 on the optimal cost. Otherwise, we start solving
a sequence of MIQPs, each one obtained by “unlocking”
one more binary variable from the predicted value δi(x) to
{0, 1}, as summarized in Algorithm 1.

A. A weighted unlocking strategy
The strategy for choosing the next variable to unlock is

crucial in Algorithm 1. Here we propose two criteria to select
the order in which we unlock binary variables:

Algorithm 1 Successive unlocking from binary warm start
1. Solve a QP problem as in (1) with δ locked at δ(x);
2. If the QP is feasible go to Step 5;
3. If no binary variable is locked go to Step 6;
4. Unlock a locked binary variable and solve a reduced

MIQP using a standard B&B algorithm;
4.1. If the reduced MIQP is feasible go to Step 5;
4.2. Go to Step 4;

5. A feasible solution has been found; Go to Step 7
6. MIQP problem is infeasible;
7. End.

1) Prediction quality: Based on results on a new valida-
tion dataset, we sort the binary variables by their average
prediction error. Then, in Algorithm 1 the variables with
larger errors are unlocked first.

2) Prediction sensitivity: A prediction that is highly sen-
sitive to variations of the input x is more prone to be
infeasible. For all locked variables we can therefore compute
the sensitivity ∥∥∥∥∂y(x)∂x

∥∥∥∥
∞

The two criteria are combined as follows. Let rfit :
{1, . . . , q} → {1, . . . , q} be the ranking associated with
prediction quality (the smaller rfit(i) the better the quality
of the predictor δi(·)), and similarly rsens : {1, . . . , q} →
{1, . . . , q} the one associated with prediction sensitivity.
Then the variable i with the lowest score

fscore(i) = rfit(i)rsens(i)
γ̂ (9)

is chosen, where γ̂ ≥ 0 is a tuning parameter.

B. B&B algorithm

Once an integer feasible solution has been found, a
standard B&B algorithm is solved from the root note to
determine the global optimum of problem (1). The B&B
phase takes advantage of (i) the upper-bound Vbest given
by the integer feasible solution found by Algorithm 1, (ii)
QP relaxations that have been already tested by Algorithm 1
are not solved, (iii) the subtree originating from the integer
feasible solution determined by Algorithm 1 is not explored.
In order to exploit (ii) and (iii) we keep a list of explored bi-
nary combinations, employing standard hash-maps (a Bloom
filter [32] could be used in alternative).

V. NUMERICAL EXPERIMENTS

We test the proposed semi-explicit MIQP solution strategy
on simple hybrid MPC problems, with a comparison with a
standard B&B approach. We use the QP solver of Mosek [33]
for solving QP relaxations and report results in terms of the
total number of iterations counted when solving the entire
MIQP, or of the best (possibly suboptimal) cost found when
we limit the number of iterations to a fixed amount N .

A. Benchmark problems
We consider two MPC problems that arise from corre-

sponding hybrid single-input single-output systems. The first
hybrid prediction model is described by

xk+1 = δk(A1xk +B1xk)+
(1− δk)(A2xk +B2xk)

δk =

{
1 if x1k ≥ 0
0 otherwise

yk = Cxk

(10)

where x1k denotes the first component of the state xk,
xk ∈ R2, x0 = x(t) is the current state at time t, and
A1, A2, B1, B2, C are defined as

A1 =

[
1 1
0 1

]
B1 =

[
−0.2
0

] A2 =

[
2 −0.9
1.3 0

]
B2 =

[
1
0

]
C =

[
0 1

]
Similarly, for the second problem we consider the predic-

tion model
xk+1 = Axk + δkB1xk+

+(1− δk)B2xk
yk = δkC1xk + (1− δk)C2xk

δk =

{
1 if x1k + x2k ≥ 0
0 otherwise

(11)

where

A =

[
2 −0.9
1.3 0

]
B1 =

[
−2
0

]
C1 =

[
0 0.3

] B2 =

[
1
0

]
C2 =

[
−0.3 −0.2

]
For system (10) we consider the following MPC problem

minu0,...,u6

∑6
k=0

[
(yk+1 − rk+1)

TQ(yk+1 − rk+1)
+(uk − uk−1)

TR(uk − uk−1)
s.t. −1 ≤ uk ≤ 1, k = 0, . . . , 6

−3 ≤ xk ≤ 3, k = 1, . . . , 7
dynamics (10)
x0 = x(t), u−1 = u(t− 1)

(12)
while for system (11) we consider

minu
∑6
k=0

[
(yk+1 − rk+1)

TQ(yk+1 − rk+1)
+(uk − uk−1)

TR(uk − uk−1)
]

s.t. −1 ≤ uk ≤ 1, k = 0, . . . , 6
−3 ≤ x1k ≤ 3, k = 1, . . . , 7
dynamics (11)
x0 = x(t), u−1 = u(t− 1)

(13)

In both cases the parameter vector x in (1) has 10 compo-
nents, due to 2 states (x0), one previous input (u−1) and 7
reference signals (r1, . . . , r7).

The corresponding multiparametric MIQPs (1) are gener-
ated using YALMIP [34] and consist of, respectively, q = 14
and q = 16 binary optimization variables, out of a total of
≈50 variables.

B. Training set and offline learning

In both problems we draw parameters x from a zero mean
unit variance Gaussian distribution and only retain a dataset
of 11000 samples for which the corresponding MIQP is
feasible. We use 9000 of such samples for training, 1000 for
validation/tuning of the proposed B&B strategy, and 1000
for testing.

The ANN is implemented in Keras [35] using Tensor-
flow [36]. The network consists of 4 layers of 25 ReLU
followed by an output layer of q sigmoidal neurons, one for
each variable δi to predict.

The network has been trained using the ADAM algo-
rithm [37], [38] using at most 100 epochs and using an early
stopping strategy, with γ = 0.01 in (8) for both Problem 1
and Problem 2. The training phase takes less than a minute
on a laptop equipped with an Intel Core i5 6200u (2.3GHz)
processor, with a negligible quantity of RAM required.

The MIQP solver warm-started by the predictor δ (ANN-
B&B) and a pure B&B solver were implemented in MAT-
LAB R2018b and based on a classical depth-first/max-
fractional part strategy, which typically performs well on the
class of MIQP problems considered here.

C. Computational cost of the predictor

The proposed ANN employs approximately 2500 weights,
represented in single precision. The corresponding memory
footprint is comparable with the one required to store the
MIQP matrices and could be further reduced by using
either group sparsity regularization or low precision encoding
techniques [39].

Evaluating the prediction y(x) and its Jacobian (via back-
propagation) for Problem 1 requires ≈90000 multiplications,
≈86000 sums, and ≈40 divisions, corresponding to exe-
cuting a matrix multiplication and evaluating the activation
functions for each layer of the ANN. Although employing
the predictor involves some computation effort, this is less
than 1/100 effort than solving the MIQP problem.

D. ANN-B&B results: reaching the global optimum

In this section we analyze the influence of the warm-start
δ(x) on the iterations needed by the proposed ANN-B&B
method to find the global optimum with respect to a standard
depth-first B&B algorithm with branching selection done
according to the binary variable with maximum fractional
part. Numerical results are reported in Table I.

Problem 1 Problem 2
average QP iterations (ANN-B&B) 1072 2936
average QP iterations (standard B&B) 1675 3867
average decrease of QP iterations 41.19% 34.21%
median decrease of QP iterations 43.62% 30.55%
cases of worse behavior 10/1000 17/1000

TABLE I
DECREASE OF QP ITERATIONS DURING B&B

It is clear that employing the warm start δ(x) provided by
the predictor indeed reduces the total number of QP iterations

required to solve the MIQP problem to optimality. Only in a
very small percentage of cases (10 out of 1000 and 17 out of
1000 for Problem 1 and 2, respectively) warm-starting with
δ(x) increases the number of QP iterations. In such cases,
the predictor is wrong on multiple binary values and, at the
same time, the standard B&B algorithm is able to quickly
find the solution in a small number of iterations.

E. ANN-B&B results: finding an integer-feasible solution

We now investigate the number of unlockings required to
find an integer-feasible solution. This is particularly relevant
in resource-constrained control applications, where the solver
may be stopped prematurely because of task preemption.
Results are reported in Table II.

Problem 1 Problem 2
first guess 942 943
1 unlocking 11 0
2 or more unlockings 47 57

TABLE II
NUMBER OF VARIABLE UNLOCKINGS REQUIRED BY ALGORITHM 1 TO

FIND A FEASIBLE SOLUTION.

One can expect improvements of the results if more flexi-
ble functions are employed to determine the δ approximator.

F. ANN-B&B results: quality of initial guess

We analyze the quality of the first integer-feasible solution
found by executing the ANN-B&B algorithm starting from
the initial guess provided by δ(x).

Problem 1 Problem 2
global optimum 725 310
suboptimal within 1% from optimum 79 130
between 1% and 5% from optimum 113 305
over 5% from optimum 83 255

TABLE III
SUBOPTIMALITY OF THE SOLUTION PROVIDED BY ALGORITHM 1.

The results reported in Table III are consistent with those
reported in Table II.

G. ANN-B&B results: solution quality after limited itera-
tions

We analyze the quality of the solution obtained when the
number of QP iterations used during B&B is bounded by
a fixed number N = 600, that is the smallest value for
which both ANN-B&B and pure B&B always manage to
find a feasible solution. We report the results for Problem 2
in Table IV

VI. CONCLUSIONS

In this paper we have proposed a neural network archi-
tecture aimed at predicting the value of the optimal binary
solution of a multiparametric MIQP problem. The approach
has been coupled with a B&B scheme specifically tailored to

average cost decrease 11.93%
median cost decrease 6.44%

TABLE IV
PROBLEM 2: PERCENTAGE DECREASE OF THE VALUE OF THE BEST

SOLUTION FOUND BY ANN-B&B WITH RESPECT TO PURE B&B, WHEN

BOTH ARE LIMITED TO N = 600 QP ITERATIONS.

exploit the binary warm start provided by the predictor. As
a result, we can reduce the computational power required to
find the global optimum, as well as improve the quality of the
solution obtained within a limited number of computations.
TRhe approach presented in this paper can be immediately
extended to learn optimal active sets in multiparametric QP
problems and to other type of MIP problems, such as mixed-
integer linear programs.

Future work will focus on coupling the proposed technique
with more advanced warm-starting strategies for MIQP, like
the one reported in [20], and on predicting also real variables.

REFERENCES

[1] T. Samad, “A survey on industry impact and challenges thereof,” IEEE
Control Systems Magazine, vol. 37, no. 1, pp. 17–18, 2017.

[2] D. Mayne, “Model predictive control: Recent developments and future
promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[3] A. Bemporad, “Model-based predictive control design: New trends
and tools,” in 45th IEEE Conf. on Decision and Control, (San Diego,
CA), pp. 6678–6683, 2006.

[4] D. Kouzoupis, G. Frison, A. Zanelli, and M. Diehl, “Recent advances
in quadratic programming algorithms for nonlinear model predictive
control,” Vietnam Journal of Mathematics, 2018.

[5] A. Bemporad and M. Morari, “Control of systems integrating logic,
dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427,
1999.

[6] G. Nemhauser and L. Wolsey, Integer and combinatorial optimization.
Wiley-Interscience series in discrete mathematics and optimization,
Wiley, 1988.

[7] F. Borrelli, M. Baotić, A. Bemporad, and M. Morari, “Dynamic
programming for constrained optimal control of discrete-time linear
hybrid systems,” Automatica, vol. 41, pp. 1709–1721, Oct. 2005.

[8] A. Alessio and A. Bemporad, “Feasible mode enumeration and cost
comparison for explicit quadratic model predictive control of hybrid
systems,” in 2nd IFAC Conf. on Analysis and Design of Hybrid
Systems, pp. 302–308, 2006.

[9] G. Cimini and A. Bemporad, “Exact complexity certification of active-
set methods for quadratic programming,” IEEE Trans. Automatic
Control, vol. 62, no. 12, pp. 6094–6109, 2017.

[10] T. Marcucci, R. Deits, M. Gabiccini, A. Bicchi, and R. Tedrake,
“Approximate hybrid model predictive control for multi-contact push
recovery in complex environments,” in IEEE-RAS Int. Conf. on Hu-
manoid Robotics (Humanoids), pp. 31–38, 2017.

[11] B. Karg and S. Lucia, “Deep learning-based embedded mixedinteger
model predictive control,” in European Control Conf., pp. 2075–2080,
2018.

[12] D. Axehill, T. Besselmann, D. M. Raimondo, and M. Morari, “A
parametric branch and bound approach to suboptimal explicit hybrid
MPC,” Automatica, vol. 50, no. 1, pp. 240–246, 2014.

[13] A. Bemporad, D. Mignone, and M. Morari, “An efficient branch and
bound algorithm for state estimation and control of hybrid systems,”
in European Control Conf., (Karlsruhe, Germany), Aug. 1999.

[14] A. Ingimundarson, C. Ocampo-Martinez, and A. Bemporad, “Model
predictive control of hybrid systems based on mode-switching con-
straints,” in 46th IEEE Conf. on Decision and Control, (New Orleans,
LA), pp. 5265–5269, 2007.

[15] A. Bemporad and V. V. Naik, “A numerically robust mixed-integer
quadratic programming solver for embedded hybrid model predictive
control,” in 6th IFAC Conf. on Nonlinear Model Predictive Control,
2018.

[16] C. A. Floudas, Nonlinear and Mixed-Integer Optimization. Oxford
University Press, 1995.

[17] J. Nocedal and S. Wright, Numerical Optimization. Springer Series in
Operations Research and Financial Engineering, Springer New York,
2006.

[18] H. Ferreau, H. Bock, and M. Diehl, “An online active set strategy to
overcome the limitations of explicit MPC,” Int. Journal of Robust and
Nonlinear Control, vol. 18, no. 8, pp. 816–830, 2008.

[19] A. Bemporad, “Solving mixed-integer quadratic programs via nonneg-
ative least squares,” in 5th IFAC Conf. on Nonlinear Model Predictive
Control, (Sevilla, Spain), pp. 73–79, 2015.

[20] A. Bemporad and V. Naik, “A numerically robust mixed-integer
quadratic programming solver for embedded hybrid model predictive
control,” in 6th IFAC Conf. on Nonlinear Model Predictive Control,
(Madison, WI), pp. 502–507, 2018.

[21] D. Axehill and A. Hansson, “A mixed integer dual quadratic pro-
gramming algorithm tailored for MPC,” in Proc. 45th IEEE Conf. on
Decision and Control, (San Diego, CA, USA), pp. 5693–5698, 2006.

[22] D. Frick, A. Domahidi, and M. Morari, “Embedded optimization for
mixed logical dynamical systems,” Computers & Chemical Engineer-
ing, vol. 72, pp. 21–33, 2015.

[23] V. Naik and A. Bemporad, “Embedded mixed-integer quadratic op-
timization using accelerated dual gradient projection,” in Proc. 20th
IFAC World Congress, (Toulouse, France), pp. 10723–10728, 2017.

[24] B. Stellato, V. Naik, A. Bemporad, P. Goulart, and S. Boyd, “Embed-
ded mixed-integer quadratic optimization using the OSQP solver,” in
European Control Conf., 2018.

[25] M. Klaučo, M. Kalúz, and M. Kvasnica, “Machine learning-based
warm starting of active set methods in embedded model predictive
control,” Engineering Applications of Artificial Intelligence, vol. 77,
pp. 1 – 8, 2019.

[26] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The ex-
plicit linear quadratic regulator for constrained systems,” Automatica,
vol. 38, no. 1, pp. 3 – 20, 2002.

[27] B. Karg and S. Lucia, “Efficient representation and approximation
of model predictive control laws via deep learning,” arXiv preprint
arXiv:1806.10644, 2018.

[28] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” in Int. Conf. on Machine Learning (ICML),
pp. 807–814, Omnipress, 2010.

[29] S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini, “Group
sparse regularization for deep neural networks,” Neurocomputing,
vol. 241, pp. 81 – 89, 2017.

[30] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. Springer Series in Statistics, New York, NY, USA: Springer
New York Inc., 2001.

[31] F. Torrisi and A. Bemporad, “HYSDEL — A tool for generating com-
putational hybrid models,” IEEE Trans. Contr. Systems Technology,
vol. 12, pp. 235–249, Mar. 2004.

[32] F. Putze, P. Sanders, and J. Singler, “Cache-, hash-, and space-efficient
Bloom filters,” J. Exp. Algorithmics, vol. 14, pp. 4:4.4–4:4.18, 2010.

[33] MOSEK ApS, The MOSEK optimization toolbox for MATLAB manual.
Version 8.1., 2017.

[34] J. Löfberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB,” in In CACSD Conf., (Taipei, Taiwan), 2004.

[35] F. Chollet et al., “Keras.” https://keras.io, 2015.
[36] M. Abadi, A. Agarwal, and P. B. et al, “TensorFlow: Large-scale

machine learning on heterogeneous systems,” 2015. Software available
from tensorflow.org.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[38] S. K. Sashank J. Reddi, Satyen Kale, “On the convergence of Adam
and beyond,” Int. Conf. on Learning Representations, 2018.

[39] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

