
Identification of elasto-plastic and nonlinear fracture mechanics parameters
of silver-plated copper busbars for photovoltaics

V. Carolloa, D. Pigab, C. Borria, M. Paggia,∗

aIMT School for Advanced Studies Lucca, Piazza San Francesco 19, 55100 Lucca, Italy
bDalle Molle Institute for Artificial Intelligence - USI/SUPSI, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland

Abstract

Silver-plated copper busbars are screen printed onto silicon solar cells and have the key role to collect the

electric current produced by the solar cell. Busbars of two adjacent solar cells are then connected by a

soldered ribbon made of the same material. Due to mechanical and thermal loads, such a ribbon is subject

to axial deformation that, often, causes plasticity and, in some cases, its breakage due to crack growth. A

procedure based on the gradient-descent method and particle swarm optimization is herein proposed for the

identification of elasto-plastic and nonlinear (cohesive zone model, CZM) fracture mechanics parameters of

silver-plated copper busbars. The proposed method requires the experimental determination of the force-

displacement curves from uniaxial tensile tests on busbar samples with and without initial notches. The

inspection of in situ SEM images during the tests allows also the estimation of the crack opening, which

is found to be an important local quantity to assess the reliability of different CZMs in simulating a crack

growth process consistent with the real one.
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Nomenclature

a0: initial notch length;

E: Young modulus;

gc: critical crack opening for complete decohesion;

gmax: crack opening corresponding to the peak CZM traction;

gn: crack opening;

h: number defining a given far-field imposed displacement;

H: hardening coefficient;

K: initial stiffness of the ascending branch of the bilinear CZM;

N : total number of far-field imposed displacements;

p: vector of model parameters to the identified;

popt: identified (optimal) vector of model parameters;

qh: positive weights;

α, β: backtracking line search parameters;

Φ: objective (cost) function to be minimized;

σ: Mode I cohesive traction;

σmax: peak cohesive traction;

σy: yield stress;

CZM: cohesive zone model;

PSO: particle swarm optimization;

SEM: scanning electron microscope;

SEM: scanning electron microscope.

1. Introduction

Busbars are screen printed onto silicon solar cells and have the key role to collect the electric current

produced by the solar cell from the incoming photons, see Fig1(a). Busbars of two adjacent solar cells are

connected by a soldered ribbon, see Fig. 1(b), made of the same material and a tiny free space is left between

the solar cells, which are then encapsulated into a photovoltaic (PV) laminate [1]. Busbars and the electric

ribbon are made of copper coated by silver, in order to maximize their electric conductivity and reduce

resistance losses.

Due to mechanical and thermal loads, the connecting ribbon is subject to axial deformation. For instance,

the gap between two solar cells, usually 2 mm wide at room temperature, has been measured in [2, 3] to have

an increase of 60 µm at a temperature T = 80◦C, due to thermo-elastic deformation of the materials. As
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(a) Two solar cells connected by busbars (b) Busbar

Figure 1: (a) busbars used to electrically connect solar cells; (b) detail of the busbar.

experimentally found in [4], the strain level for the activation of plasticity in busbars is about 0.001, which

is about one order of magnitude smaller than the axial strain induced by thermo-elastic deformation in the

field. In some cases, due to tiny defects introduced by soldering of the ribbon onto the busbars, interconnect

breakage is a failure mechanism sometimes observed in PV operations [5], very important because it can

lead to hot spots and severe PV laminate damage. So far, research on the mechanical behavior of busbars

has mainly focused on the prediction of their deformation in the linear elastic regime, while there is a lack

of a complete characterization of their response in the presence of plasticity and fracture.

Based on these premises, we herein extend in this study the investigation in [4] by considering the

interplay of plasticity and nonlinear crack growth in busbar specimens under tension, examining also notched

specimens with crack growth in pure Mode I, in addition to unnotched specimens. We restrict the issue of

parameters identification for the two constitutive models herein used to depict the material nonlinearities to

monotonic loading conditions and pure Mode I crack growth. This is motivated by the fact that a reduced

number of material parameters can be identified as compared to a more general non-monotonic loading

history, or in the presence of a more complex Mixed-Mode crack propagation. To elucidate on these topics

left for further research, the complexities arising due to cyclic loading are finally addressed in the discussion

and conclusion section.

It has to be emphasized that the problem of nonlinear crack growth in elasto-plastic materials is a

complex research topic due to the simultaneous presence of two forms of mechanical nonlinearities, i.e.,

elasto-plasticity, which leads to energy dissipation in the bulk, and crack growth, which leads to energy

dissipation due to the formation of a stress-free surface. In order to provide a computational model able to

simulate the behaviour of busbars in realistic conditions and assess possible failure scenarios, useful for the

design of novel multi-busbar solar cell architectures, it is therefore necessary to identify all the constitutive

model parameters for elasto-plasticity and nonlinear fracture mechanics.
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In this work, we propose a combined experimental-computational procedure based on the gradient-

descent method and particle swarm optimization, two classical identification approaches available in the

literature, for the challenging identification of elasto-plastic and CZM fracture mechanics parameters of

silver-plated copper busbars. To this aim, the experimental determination of the force-displacement curves

from uniaxial tensile tests on busbar samples with and without initial notches is requested, as discussed in

Sec. 2. It will be also shown that the inspection of in situ images acquired with a scanning electron micro-

scope (SEM) during the tests, albeit not necessary for parameters identification, is however very important

to estimate local fracture quantities such as the crack opening, and judge about the reliability of different

identified CZMs in simulating crack growth. Section 3 provides a short overview of the nonlinear material

models for elasto-plasticity and nonlinear fracture mechanics herein considered. In particular, two different

CZMs are examined, to compare the complexities in their parameters’ identification and also assess the role

played by their shape in simulating the fracture process. Section 4 discusses the nonlinear optimization

algorithms proposed and presents the results of model parameters’ identification, with a discussion on the

convergence of each method. Other alternative idntification strategies available in the literature are also dis-

cussed in relation to their possible generalization and application to the present problem. Finally, discussion

and conclusion complete the article, illustrating also future perspectives of research.

2. Experimental tests on busbars

The experimental campaign described in this section has been conducted in the MUSAM-Lab of the IMT

School for Advanced Studied Lucca. In-situ uniaxial tensile tests on unnotched and notched speciments have

been performed by using the Deben Gatan MTEST5000S tensile stage (Fig. 2). The stage is located inside

the Zeiss EVO MA15 scanning electron microscope (SEM), capable of working with variable pressure to

avoid metallization or graphitization of the sample surface. For each level of the imposed axial displacement,

controlled by the tensile stage, the reaction force is measured by the loading cell. Displacement control can

also allow for cyclic axial tests. In addition to force-displacement diagrams, microscopy images of the

deformed specimen surface can be acquired using the SEM. This allows the observation of the evolution

of crack propagation, the assessment of the amount of crack opening along the crack flanks, providing

micromechanical information on the local deformation process near the crack-tip.

Busbar specimens have a free span of 17 mm, a width of 2.6 mm, and a thickness of 0.2 mm. They

are clamped on both sides, by introducing a thin layer of teflon to avoid local failure modes near the steel

platens. The acquisition of SEM images showed that all the recorded displacements were compatible with

material deformation only, without any component associated to rigid body motion, thus excluding slippage

of the specimens from clamps. In addition to unnotched specimens (Fig. 3(a)) notched specimens with a

notch size a0 = 0.45 and 0.80 mm have been considered, see Figs.3(b) and 3(c). Notches have been made
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(a) Tensile stage (b) Detail of the clamped specimen

Figure 2: Tensile stage: (a) experimental setup; (b) detail of the clamped specimen.

using scissors under an optical microscope. SEM measurements have shown that this manual method was

leading to cuts whose lengths were equal to 0.45±0.01 mm and 0.80±0.01 mm for the two notch sizes,

respectively. Tests have been performed by applying a monotonically increasing uniaxial displacement ∆ up

to failure, with a constant rate of 0.033 mm/min to achieve quasi-static conditions. To assess the amount

of scattering in the experimental data, 10 specimens for each geometry have been tested under the same

conditions.

(a) Unnotched (b) Notched (a0 = 0.45 mm) (c) Notched (a0 = 0.80 mm)

Figure 3: Geometry of the different unnotched and notched busbar specimens tested under uniaxial tension.

Fig. 4 shows the typical results of the unaxial tensile tests in terms of force-displacement curves. The
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small drops in the force levels are caused by material relaxation every time the imposed displacement is hold

for a short period required to record surface images with SEM. The curve corresponding to the unnotched

specimen suggests a typical behaviour of an elasto-plastic material characterized by a linear regime followed

by hardening. The curves corresponding to notched specimens have very different trends due to the coupled

action of plasticity and crack growth. The first part of the curves is linear with a slope that is a decreasing

function of the initial notch size. Afterwards, by increasing the applied displacement, SEM images show

blunting of the notch as a typical consequence of plasticity (see e.g. Figs. 5(a) and 5(b) corresponding to

the 0.45 notched specimen). A further increase in the tensile displacement leads to the propagation of a

sharp crack from the notch tip (see Figs. 5(c)-(f)), which is responsible for the progressive softening in the

force-displacement curve. The crack path at failure is shown in Fig. 6. Therefore, for notched specimens, we

can distinguish between a linear elastic regime (1), a plastic-dominant regime (2), and a plastic & fracture

regime (3), see, as an example, the labels in blue in Fig. 4 for the notched specimen with a0 = 0.80 mm.

Figure 4: Force-displacement curves of the tested specimens: unnotched specimen, 0.45-mm notched specimen, and 0.80-mm

notched specimen. Red labels refer to the sequence of SEM images in Fig. 5.
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Figure 5: Evolution of the notch tip deformation during the tensile test of the 0.45 mm notched specimen. For each image, the

value of the far-field imposed displacement is: (a) 0.163 mm; (b) 0.340 mm; (c) 0.415 mm; (d) 0.445 mm; (e) 0.490 mm; (f)

0.500 mm.

Figure 6: Crack path at failure of the specimen with a0 = 0.45 mm notch size.

3. Material models

Different material models have to be considered for the simulation of the nonlinear behaviour of busbars.

Plasticity in the bulk can be mathematically described by a von Mises elasto-plastic constitutive material

model with linear hardening. The corresponding material parameters to be identified are the Young’s

modulus E, the yield stress σy, and the hardening coefficient H.

To model surface energy dissipation associated to crack propagation, on the other hand, cohesive zone

fracture models (CZMs) have to be introduced to predict the nonlinear process of crack growth. Here, we

examine two options for the relation between the Mode I cohesive traction and its energetically associated

crack opening displacement gn. The former is a polynomial CZM proposed in [6] and graphically shown in
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Fig. 7(a). Its mathematical expression reads:

σ =


σmax

gn
gc

27

4

[
1− 2

gn
gc

+

(
gn
gc

)2
]
, if 0 <

gn
gc

< 1,

0, if
gn
gc
≥ 1,

(1)

where we recognize that the shape of the CZM is determined by only two parameters, namely the peak

cohesive traction, σmax, and the critical crack opening corresponding to complete decohesion, gc.

The latter is a bilinear CZM proposed in [7], see also Fig. 7(b) for its graphical visualization. Its

mathematical expression reads:

σ =


Kgn, if 0 < gn ≤

σmax

K
,

σmax −
(
gn −

σmax

K

) σmax

gc − σmax/K
, if

σmax

K
< gn ≤ gc,

0 if gn > gc,

(2)

where we note that, in this case, we need to identify three model parameters: the peak stress σmax, the

initial stiffness, K, and the critical opening, gc.

(a) Polynomial CZM (b) Bilinear CZM

Figure 7: The cohesive zone models herein considered for the mathematical description of nonlinear crack growth.

4. Parameters’ identification procedure

Parameters’ identification of nonlinear fracture mechanics models is a research topic that has received

a great attention from the scientific community. In the case of linear elastic material behaviour for the

bulk, the CZM parameters have been derived from experimental stress-strain data under the assumption

of a general shape for the CZM and a predefined Mode I crack path in [8]. Later, the same approach has

been explored in [9] for dynamic fracture events. Other attempts to indentify CZM parameters for adhesive

interfaces embedded between linear-elastic materials have been proposed in [10, 11, 12]. In particular, it

is remarkable to recall that a gradient-based optimization procedure was applied in [11, 12] to local and

global experimental data obtained by digital image correlation. The issue of CZM parameters’ identification
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from local experimental measurements acquired by digital image correlation in the case of a simultaneous

occurrence of nonlinear fracture and plasticity has been discussed in [13, 14].

Overall, the majority of those studies suggest that the shape of the CZM can play a substantial role in

the accurate reproduction of the fracture process, which is an observation in line with theoretical arguments

in [15]. In this regard, a direct identification of the CZM including its shape based on experimental data

could be made according to the method proposed in [16] and relying on information gathered from the

application of the digital image correlation technique to assess crack mouth opening displacements, and the

fibre Bragg grating sensors to identify the fracture process zone development phase. For the application of

that technique to the present problem, according to the authors’ experience, digital image correlation could

be applied in remote to SEM images acquired during loading, even without the need of painting a speckle

pattern onto the specimen surface. This is because, at that observation scale, the surface specimen naturally

presents a random grey-scale pattern, see Fig. 5, that can be used to statistically identify the displacements

associated to each pixel. On the other hand, the application of fibre Bragg sensors could present some issues

in terms of size and connection inside the SEM. Standard fibre Bragg sensors have also a diameter of about

100 µm, which is too big to achieve a sufficiently fine spatial resolution in the present application, see the

scalebar in Fig. 5 to appreciate the length scales involved in the fracture process. Therefore, special fibre

Bragg sensors should be used.

Another alternative approach could be based on the identification of the CZM relation based on full-field

displacements only, an information that can be experimentally determined using digital image correlation.

This very promising approach proposed in [17] was also adopting a spline curve with up to 8 knot points

to mathematically describe the CZM law to be identified, in order to avoid restrictive assumptions on its

shape. Regarding the bulk material response, on the other hand, they considered a homogeneous, isotropic

and linear elastic constitutive relation. To apply the method in [17] to the present problem, it has to be

remarked that the introduction of an elastoplastic material response with hardening for the bulk would

introduce another nonlinearity in the identification procedure, in addition to cohesive fracture. Therefore,

the corresponding identification procedure in [17] is not straightforward to be generalized. Its ability to

converge to a unique set of material parameters should also be carefully investigated, due to nonconvexity

issues. Comparisons with these alternative techniques are therefore left for further investigation.

In the present case, due to the presence of two forms of material nonlinearity, i.e., elasto-plasticity and

cohesive fracture, the model parameters to be identified are three for the elasto-plastic model with hardening,

plus two (for the polynomial CZM) or three (for the bilinear CZM).

The simultaneous identification of five or six model parameters is computationally demanding and,

whenever is possible, it would be preferable to consider loading scenarios which lead to the occurrence

of just one of the two nonlinearities, so that identification can be made on a reduced number of model

parameters. In the present case, the uniaxial tensile test on unnotched specimens leads to the activation of
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elasto-plasticity as the primary form of material nonlinearity, and therefore this problem can be analyzed

first, to identify E, σy, and H. Once the elasto-plastic model parameters are identified, the CZM parameters

(σmax and gc for the polynomial CZM, or σmax, gc and K for the bilinear CZM) can be identified in relation

to tensile test data on a notched specimen.

Formally, in both cases, it is convenient to introduce a vector p of model parameters (for elasto-plasticity

or for nonlinear fracture mechanics) which takes values in the parameter space P, containing all the admis-

sible values for p. We claim that the parameter vector p is not admissible if the simulation leads to results

with no physical meaning. Therefore, the feasible set P takes also into account physical or mathematical

restrictions onto the model parameters. For each value of p, the objective function Φ that measures the

mismatch between experimental (taken as reference) and the simulated (based on a discretized finite ele-

ment model) force-displacement curves is computed. More specifically, let us define the residual error in the

force level as ∆Fh(p) = F exp
h − F sim

h (p), where F exp
h and F sim

h (p) denote the measured (experimental) and

numerical (simulated) force, respectively, obtained for a given far-field imposed displacement indexed by h

(h = 1, . . . , N), where N is the number of imposed displacements. The objective cost Φ to be minimized is

thus defined as

Φ(p) =

√√√√ N∑
h=1

(∆Fh(p))2qh (3)

where qh (h = 1, . . . , N) are positive weights which can be set to give a priority for some selected force-

displacement points. If the weights qh are all equal to each other, then all the points in the force-displacement

curve contribute with the same importance to the construction of the cost function Φ.

In the next subsections, the computation of the minimum of Φ over the feasible parameter set P is

performed using two numerical algorithms for nonconvex optimization. For elasto-plasticity, the gradient

descent algorithm with backtracking line search [18] is proposed. For fracture mechanics’ model identifica-

tion, on the other hand, particle swarm optimization (PSO) [19] is exploited.

4.1. Identification of elasto-plastic parameters

As discussed in Sec. 4, elasto-plastic material parameters are collected in the vector p = (E, σy, H)

which can be identified separately from CZM parameters in relation to the uniaxial tensile test on an

unnotched specimen. The feasible domain for the parameters E, σy, H is defined based on the following

physical constraints:

P = {E, σy, H | E > 0, σy > 0, H > 0}. (4)

The discretized finite element model of the specimen requires considering standard elasto-plastic plane

stress Q4-finite elements available in the finite element analysis programme FEAP [20]. The gradient descent

method outlined in Algorithm 1 searches iteratively the minimum of the cost function Φ following, at each

iteration, the negative gradient direction.
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The algorithm is initialized with a guess set of parameters used as starting point, p(0) ∈ P. For this case,

since the test leads to a uniform stress state in the specimen, we can simply compute the stress-strain curve

from the experimental force-displacement data (the average ones over 10 realization of the test) and use it to

provide an initial estimate for p(0). Alternatively, totally arbitrary initial values can be considered. In the

sequel, to show the capability of the identification algorithm to work also with initial values quite far from

the optimal ones, we estimate the initial value for the Young’s modulus E = 1000 MPa and for the yield

stress σy = 2.5 MPa from experimental data, as the slope of the stress-strain curve in the elastic regime

and the stress level corresponding to the departure from linearity, respectively. On the other hand, the

hardening modulus is set equal to H = 100 MPa, which is far from an initial guess based on the slope of the

experimental stress-strain curve in the plastic regime, which would suggest a value one order of magnitude

lower.

At each iteration k, an approximation of the gradient ∇Φ
(k)
i of Φ with respect to p is computed (see

Algorithm 1, line 2) using the central finite difference formula:

∇Φ
(k)
i =

∂Φ

∂pi
w

1

2∆pi
[Φ(p

(k−1)
i + ∆pi)− Φ(p

(k−1)
i −∆pi)] (5)

where p
(k−1)
i is the i-th component of the vector p(k−1), with p(k−1) denoting the value of the vector p at

the (previous) (k−1)-th iteration of the algorithm, and ∆pi is a small variation of the i-th component of

p around p
(k−1)
i . For a fixed value of p, the cost function is computed through Eq. (3), where the vector

F sim
h (p) contains the predicted value of the force for each imposed displacement step.

Then, the parameter vector p(k) is updated (Algorithm 1, line 4), moving p(k−1) in the direction of the

negative gradient ∇Φ
(k)
i scaled by a positive constant t, which determinates the maximum amount to move

along the direction of the negative gradient. The scaling factor t is chosen according to the backtracking

line search criterion (Algorithm 1, line 3) [18, Chapter 3] sketched in Algorithm 2. The main idea of any

line search criterion is to try different values of t ∈ (0, 1], which correspond to different possible updates

ptrial of p (Algorithm 2, line 4) until a stopping criterion is reached (Algorithm 2, line 3). Note that the

parameter under test, ptrial, is considered only if it belongs to the feasible parameter set P (Algorithm 2,

lines 5 - 7). In this work, the parameters α and β characterizing the backtracking line search algorithm are

both set equal to 0.5.

Table 1 shows the optimal value of the parameters entering the vector p obtained by running the

Algorithm 1, along with the initial guess p(0). The CPU time required to run Algorithm 1 is around 40

minutes. Convergence is reached after 110 iterations.

The cost function is calculated with or without using different weights qh. These weights are used to

improve the interpolation of the linear part, which contains less experimental points than the other part.

Thus, a higher weight is given to the points in the linear regime by computing qh as the ratio between the

number of experimental points in the nonlinear plastic branch and the number of data points in the linear-
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Algorithm 1: Gradient descent method

Inputs: initial guess p(0) ∈ P; maximum number of iterations kmax; tolerance ε.

Output: parameter vector popt minimizing Φ.

1: for k = 1, 2, . . . do

2: compute gradient ∇Φ(k) (Eq. (5));

3: choose scaling factor t via backtracking line search (Algorithm 2);

4: set p(k) ← p(k−1) − t∇Φ(k);

5: until:
∥∥∇Φ(k)

∥∥2
2
≥ ε and k < kmax;

6: end for

7: set popt ← p(k).

Algorithm 2: Backtracking line search

Input: gradient ∇Φ(k) at p(k−1); parameters α ∈ (0, 12 ] and β ∈ (0, 1)

Output: scaling parameter t

1: t = 1;

2: p̄ = p(k−1);

3: while Φ(p̄) > Φ(p(k−1))− αt
∥∥∇Φ(k)

∥∥2
2

do

4: set ptrial ← p(k−1) − t∇Φ(k);

5: if ptrial ∈ P then

6: set p̄← ptrial;

7: end if

8: update t← βt;

9: end while

elastic branch. The evolution of the predictions provided by the gradient descent method as a function of

the number of iterations, with or without uniform weights, is shown in Fig. 8. The use of higher weights

for the data points in the linear regime (thus increasing the influence of these data in the evaluation of the

cost function Φ) leads to a better approximation of the linear-elastic part of the stress-strain curve with an

identified Young’s modulus higher than the initial one. We also notice a much faster convergence of H and

σy to the optimal values after just about 30 iterations.

Based on the identified optimal elasto-plastic parameters, the numerically predicted stress-strain curve

matches very closely the average experimental one, see Fig. 9. Information on the experimental scatter can
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(a)

(b)

(c)

Figure 8: Elasto-plastic parameters’ identification vs. number of iteration steps: (a) Young modulus, E; (b) yield stress, σy;

(c) hardening coefficient, H. Results of the gradient-descent method using non-uniform weights are shown in purple; using

homogenous weights in blue. Optimal identified parameters are shown in black.
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p
Initial

guess

Gradient descent

method results

with nonuniform

weights

E 1000 MPa 1367 MPa

σy 2.5 MPa 4.05 MPa

H 100 MPa 17.70 MPa

Table 1: Gradient descent method: initial and identified elasto-plastic model parameters.

also be appreciated from the grey region which corresponds to the envelope of all the 10 repetitions of the

test. The reproducibility of experimental response is very high. At much smaller scales than that of the

present tests, as for MEMS or NEMS, the geometrical and material imperfections have a much higher effect

on the reproducibility of the mechanical results and on the experimental scatter [21].

Figure 9: Comparison between the average experimental stress-strain curve (over 10 realizations) of the unnotched specimen

and the simulated one using the optimally identified elasto-plastic model parameters. The envelope of the experimental curves

is shown in grey.

4.2. Identification of nonlinear fracture mechanics parameters

The identification of CZM parameters has to be performed by taking the experimental results on a

notched specimen as a reference response to match.In this case, we consider the average experimental data

over 10 realization of the uniaxial tensile test on the notched specimen with a0 = 0.45 mm notch size.

The finite element model requires plane stress Q4 elasto-plastic finite elements for the continuum and

zero-thickness interface finite elements to simulate the growth of the material discontinuity caused by cohesive

crack propagation. Since the geometry of the problem and the boundary conditions promote a Mode I

crack growth along a pre-defined straight path, it is possible to take advantage from this information and
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insert interface finite elements along the mid-span cross-section of the specimen from the beginning of the

simulation, avoiding remeshing operations at each loading step (see Fig. 10).

Figure 10: Geometry of a notched specimen and detail of the FE mesh at the notch-tip.

To formulate the CZM parameters’ identification as an optimization problem, it is convenient to stack

the CZM parameters to be identified in a vector p defined as:

p = [σmax, gc] for the polynomial CZM, see Eq. (1),

p = [σmax, gc,K] for the bilinear CZM, see Eq. (2).

Due to the fact that the presence of a notch leads to a non homogenous stress-field throughout the spec-

imen, the simulated global force-displacement curve that should match the experimental one is a nonlinear

implicit function of the CZM and of the elasto-plastic material model parameters. Therefore, identification

requires the exploration of a large set of admissible values, solve the corresponding nonlinear FE problem

to compute the simulated force-displacement curve, and finally identify the optimal set leading to the best

match with the experimental results (global minimum of the cost function). An automatized robust and

efficient identification procedure is therefore required.

In this regard, it has been found that the application of the gradient descent algorithm, successfully

used for the elasto-plastic material model identification, presents some drawbacks when applied to CZM

parameters identification. Specifically, two main issues have been reported from the tests:

� For many different initial guesses p(0), the solution of Algorithm 1 remains in the neighbourhood of
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p(0). This is due to the non convexity of the cost function Φ, which causes the algorithm to trap in a

local minimum.

� The convergence speed is in general very slow. This is a well known problem of gradient-based

optimization algorithms, and it is due to the fact that the gradient tends to zero when the parameter

vector p(k) approaches a (local) minimum. This makes the update of the parameter p small (see

Algorithm 1, line 4).

In order to overcome these drawbacks, particle swarm optimization (PSO), which is a derivative-free

algorithm, is herein proposed to minimize the cost function Φ. The PSO is based on swarm of particles

which explore the parameters domain P, seeking for the minimum of Φ. This method, along with simulated

annealing, are widely applied to structural and material optimization problems, see e.g. [22, 23, 24, 25]

among many others. The PSO approach is outlined in Algorithm 3. The components of the optimization

vector p define the coordinates of the particle. The algorithm is initialized by randomly generating M

particles in the domain P (Algorithm 3, line 2). A randomly generated velocity vector vi is associated to

each particle (Algorithm 3, line 5). At each iteration k of the PSO algorithm, each particle updates its

position in the space P (Algorithm 3, lines 10 and 11) based on: (i) its previous velocity v
(k−1)
i (inertia);

(ii) its own best known position popti in the search-space P (local knowledge); (iii) the swarm’s best known

position popt
G (global knowledge). The algorithm’s parameters W , CL and CG weight the influence of these

three contributions in the update of the particle’s velocity v
(k)
i . The local popti and global popt

G best positions

are updated at each iteration (Algorithm 3, lines 15 - 21). The algorithm terminates when the maximum

number of iterations kmax is reached.

The application of PSO to the identification of the polynomial CZM parameters requires the definition

of the feasible set P, based on preliminary information that can be gained from experimental data gathered

from the tensile stage and from SEM images:

P = {σmax, gc | 3 MPa < σmax < 15 MPa , 0.01 mm < gc < 0.5 mm }.

Algorithm 3 is run for kmax = 300 iterations and M = 30 particles, with parameters W = 0.5, CL = 0.2

and CG = 0.1. The optimally identified polynomial CZM parameters are σmax = 8.60 MPa and gc =

0.19 mm. The algorithm terminates after just 18 iterations, when all the particles are concentrated in a

small area. Fig. 11 shows the evolution of the estimated parameters for some representative iterations.

Circles depict the particles’ position and their radii are proportional to the value of the cost function Φ

computed at the particles’ position. For each particle, its velocity is also displayed as a black vector. The

red filled circle represents the swarm’s best position, which provides the current global optimum. The

identified optimal set of parameters leads to a very good agreement between the average experimental force-

displacement curve and the numerically simulated one for the specimen with a notch size of 0.45 mm, see
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Algorithm 3: Particle swarm optimization algorithm.

Input: number of particles M , number of iterations kmax, algorithm’s parameters W , CL and CG.

Output: parameter vector popt
G minimizing Φ.

—— Initialization ———————————

1: for all i = 1 : M do

2: generate random particle p
(0)
i in P;

3: compute the cost Φ(p
(0)
i );

4: set local optimizer popt
i ← p

(0)
i ;

5: generate random particle’s velocity vector v
(0)
i ;

6: end for

7: set global optimizer popt
G ← arg min

p
(0)
i

Φ(p
(0)
i );

—— Iterations ———————————-

8: for k = 1, 2, . . . , kmax do

9: for all i = 1 : M do

10: update particle’s velocity v
(k)
i ←Wv

(k−1)
i + CL(popt

i − p
(k−1)
i ) + CG(popt

G − p
(k−1)
i );

11: update particle’s position p
(k)
i ← p

(k−1)
i + v

(k)
i ;

12: if p
(k)
i /∈ P then

13: relocate randomly p
(k)
i in P;

14: end if

15: compute the cost Φ(p
(k)
i );

16: if Φ(p
(k)
i ) < Φ(popt

i ) then

17: update local optimizer popt
i ← p

(k)
i ;

18: if Φ(p
(k)
i ) < Φ(popt

G ) then

19: update global optimizer popt
G ← p

(k)
i ;

20: end if

21: end if

22: end for

23: end for

Fig. 12(a).

When those CZM parameters are used to simulate the experimental force-displacement curve for the

specimen with a notch size of 0.80 mm, such a validation step shows that the simulated curve is still very
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close to the experimental one up to the peak force, see Fig. 12(b), thus capturing the lower maximum

force level that can be withstand by that specimen. Moreover, it also predicts a smaller displacement at

failure, consistently with the experimental evidence. On the other hand, the numerical simulation is slightly

underestimating the force level in the post-peak regime.

The PSO algorithm is also used to estimate the parameters of the bilinear three-parameter CZM in

Eq. (2). This CZM allows the control of the initial stiffness of the traction-separation relation by varying

the ratio σmax/K, while this was not modifiable in the polynomial CZM. Again, the parameters σmax, gc,

and K of the bilinear CZM can be estimated based on experimental data gathered from tests on the 0.45

mm notched specimen. The feasible set for the bilinear CZM parameters is:

P ={σmax, gc, K |

8 MPa < σmax < 20 MPa; 0.001 mm < gc < 0.1 mm; 103MPa/mm < K < 104 MPa/mm; K > σmax/gc}.

The feasibility condition K > σmax/gc is enforced to avoid a shape of the CZM which is physically not

admissible, i.e., to guarantee a critical opening for complete decohesion, gc, larger than the crack opening

corresponding to the peak cohesive traction.

Algorithm 3 is run for kmax = 300 iterations and M = 30 particles, with parameters W = 0.5, CL = 0.2

and CG = 0.1. The optimally identified bilinear CZM parameters are σmax = 13.3 MPa, gc = 0.07 mm, K =

6610 MPa/mm. The algorithm terminates after just 17 iterations, when all the particles are concentrated

in a small area. Fig. 13 shows the evolution of the identified parameters for some representative iterations

of the algorithm. As for the polynomial CZM, circles depict the particles’ positions and their radii are

proportional to the value of the cost function Φ computed at the particles’ position. For each particle, its

velocity is also displayed as a black vector. The red filled circle represents the swarm’s best position, which

provides the current global optimum. These three diagrams superimposed to each other are shown in Fig. 14,

to highlight the ability of the algorithm in exploring the values of the cost function in the surroundings of

the current global optimum.

The force-displacement curve related to the optimal identified bilinear CZM for the 0.45 mm notch size

specimen is shown in Fig. 12(a). It is worth noticing that, although the bilinear CZM is described by three

parameters, its accuracy in reproducing the global experimental response is similar to that of the polynomial

CZM. A similar agreement is noticed for the verification case on the 0.80 mm notch-size specimen, Fig. 12(b).

The evolution of the cost function Φ predicted from PSO for the two CZMs is comparetively shown in

Fig. 15, which is a steady decreasing function of the number of PSO iterations.

In addition to the analysis of the goodness of fit of the global force-displacement curve, it is worth

examining SEM images to the inspection the accuracy of the two identified CZMs in reproducing local

qualities associated to crack growth, such as the critical crack opening, gc. In this regard, the value of

the critical crack opening identified by the bilinear CZM is more physically sound than that related to the
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(a) Initial configuration (b) Iteration 2

(c) Iteration 5 (d) Iteration 6

(e) Iteration 10 (f) Iteration 18

Figure 11: Most representative iterations of the PSO evolution applied to the identification of the polynomial CZM parameters.
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(a) Identification: 0.45 mm notched specimen (b) Validation: 0.80 mm notched specimen

Figure 12: PSO optimization: comparison betweeen the simulated and the average experimental force-displacement curves,

depending on the CZM and the notched specimen. Experimental data for the 0.45 mm notch size have been used to identify

the model parameters, while the data for the 0.80 mm notch size have been considered for validation. The grey regions denote

the envelope of the experimental results over 10 repetitions of the test.

identified polynomial CZM. SEM images reported in Sec. 2 (Fig. 5) suggest in fact a value for the critical

crack opening of the order of about few tens of micrometers, not hundreds of micrometers as obtained from

the polynomial CZM.
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(a) Initial values

(b) Iteration 6

(c) Iteration 17

Figure 13: 3D representation of the identified bilinear CZM parameters based on PSO: (a) iteration 0 (initial configuration);

(b) iteration 6; (c) iteration 17.
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Figure 14: Summary of the PSO iterations for the identification of the bilinear CZM parameters.

Figure 15: Evolution of the cost function Φ during PSO iterations for the two CZMs herein considered.
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5. Discussion and conclusion

A robust optimization procedure for the identification of elasto-plastic and cohesive zone model (CZM)

parameters has been proposed in relation to silver-plated copper material used for busbars and wires in

photovoltaic modules. The procedure requires the experimental determination of global force-displacement

curves from uniaxial tensile tests on unnotched and notched busbars. In addition to global measures, we

have also recommended to acquire local measurements such as the crack-tip deformation using in situ SEM

imaging. The elasto-plastic material parameters based on von Mises plasticity with isotropic hardening have

been identified using experimental data on unnotched specimens by a gradient descent method with back-

tracking line search. For its best performance, the use of non-uniform weights has been suggested, especially

to better reproduce the linear-elastic branch of the force-displacement curve where less experimental data

points are available as compared to those recorded in the hardening phase.

Once elasto-plastic material parameters are identified, force-displacement curves on notched specimens

can be used to identify the remaining CZM parameters. In such a case, the simultaneous occurrence of

plasticity and cohesive fracture renders the problem highly nonlinear and nonconvex. Hence, to overcome the

drawbacks of gradient-based optimization algorithms, we exploited the use of particle swarm optimization.

Its application allows a fast convergence to the procedure and the identification of two model parameters (for

the polynomial CZM) or three model parameters (for the bilinear CZM), replicating with good accuracy the

experimental global force-displacement curves of notched samples. However, a closer look at the identified

parameters of the two CZMs shows that the identified Mode I critical crack opening for the polynomial

CZM is much larger than what expected from local measurement from SEM images. The same value for

the bilinear CZM, on the other hand, is much smaller and more consistent with SEM images. This confirms

that the shape of the CZM matters in reproducing not only global quantities, but also local features of

crack growth. Therefore, for the present material, a bilinear CZM where the initial stiffness of the traction-

separation relation can be selected intependently from the critical crack opening is recommended to be used

in numerical simulations.

Further research on this topic could require the extension of the optimization algorithms to Mixed Mode

crack growth scenarios and cyclic loading. At present, since the busbar is predominatly subjected to axial

deformation with crack growth under a predominant Mode I deformation, this issue has been left for further

investigation.

Regarding cyclic loading, it has been shown in [4] that the unloading path of the stress-strain curve

for unnotched specimens is affected by material damage, with reloading paths not coincident with the

unloading ones for repeated cycles. This issue increases the complexity and the number of elastoplastic

material parameters to be introduced and then identified, in addition to the need of considering a damage

evolution law to describe cyclic degradation effects. Therefore, the complexity of the material parameters
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identification procedure significantly increases in its turn. Moreover, in the case of notched specimens, the

description of unloading and reloading paths during the post-peak branch affected by crack growth and

plasticity is expected to be even more complex to be described. A preliminary experimental test to show

the cyclic material response for the notched specimen with 0.80 mm notch size is shown in Fig.16. The

shape of the hysteretic curves is changing depending on the initial point of unloading. Moreover, repeated

cycles do not lead to completely overlapping hysteretic curves, implying material degradation effects due to

repeated cycles as for unnotched specimens. To model such a behavior, the unloading and reloading paths

of the cohesive zone models should also be introduced, including an assumption on the cohesive zone model

parameters degradation law, see e.g. [26, 27] for possible modelling strategies. This would dramatically

increase the number of parameters to be identified by the optimization procedure and therefore this task

has also been left for future research.

Figure 16: Force-displacement curve for a specimen with a0 = 80µm. In the post-peak branch, repeated cyclic loading paths

under displacement control have been imposed to show the complexity of the hysteretic loops and also their change over cycles

due to material damage.
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