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Common spatiotemporal 
processing of visual features shapes 
object representation
Paolo Papale   1, Monica Betta1, Giacomo Handjaras   1, Giulia Malfatti2, Luca Cecchetti   1, 
Alessandra Rampinini   1, Pietro Pietrini1, Emiliano Ricciardi1, Luca Turella   2 & Andrea Leo   1

Biological vision relies on representations of the physical world at different levels of complexity. 
Relevant features span from simple low-level properties, as contrast and spatial frequencies, to object-
based attributes, as shape and category. However, how these features are integrated into coherent 
percepts is still debated. Moreover, these dimensions often share common biases: for instance, stimuli 
from the same category (e.g., tools) may have similar shapes. Here, using magnetoencephalography, 
we revealed the temporal dynamics of feature processing in human subjects attending to objects from 
six semantic categories. By employing Relative Weights Analysis, we mitigated collinearity between 
model-based descriptions of stimuli and showed that low-level properties (contrast and spatial 
frequencies), shape (medial-axis) and category are represented within the same spatial locations 
early in time: 100–150 ms after stimulus onset. This fast and overlapping processing may result from 
independent parallel computations, with categorical representation emerging later than the onset 
of low-level feature processing, yet before shape coding. Categorical information is represented both 
before and after shape, suggesting a role for this feature in the refinement of categorical matching.

To make sense of the surrounding environment, our visual system relies on different transformations of the 
retinal input1. Just consider Fig. 1A. As any natural scene, this image is defined by a specific content of edges and 
lines. However, biological vision evolved to disclose the layout of discrete objects, hence the two giraffes in the 
foreground emerge as salient against the background, and the distinct contents pertaining to edges, shape, tex-
ture, and category contribute together to object perception.

Actually, each feature of Fig. 1B–D is processed across the whole visual system. The primary visual cortex 
(V1) provides an optimal encoding of natural image statistics based on local contrast, orientation and spatial 
frequencies2,3, and these low-level features significantly correlate with brain activity in higher-level visual areas4,5. 
Nonetheless, occipital, temporal and parietal modules also process object shape6–9 and categorical knowledge10–12.

Although all these features are relevant to our brain, their relative contribution in producing discrete and 
coherent percepts has not yet been clarified. In general, these different dimensions are interrelated and share 
common biases (i.e., are collinear), thus limiting the capability to disentangle their specific role13. For instance, 
categorical discriminations can be driven either by object shape (e.g., tools have peculiar outlines) or spatial fre-
quencies (e.g., faces and places have specific spectral signatures14:). Consequently, object shape and category are 
processed by the same regions across the visual cortex, even when using a balanced set of stimuli15. Even so, the 
combination of multiple feature-based models describes brain object representations better than the same models 
tested in isolation. For instance, a magnetoencephalography (MEG) study found that combining low-level and 
semantic features improves the prediction accuracy of brain responses to viewed objects, suggesting that semantic 
information integrates with visual features during the temporal unfolding of object representations16.

To investigate the spatiotemporal dynamics of object processing, we combined model-based descriptions of 
pictures, MEG brain activity patterns and a statistical procedure (Relative Weights Analysis; RWA17,) that miti-
gate the effects of common biases across different dimensions. We ultimately determine the relative contribution 
across space and time of multiple feature-based representations – i.e., low-level, shape and categorical features 
- in producing the structure of what we perceive. First, a low-level description of the stimuli was grounded on 
features extracted by the early visual cortex (i.e., image contrast and spatial frequencies). Second, since shape is 
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critical to interact with the surrounding environment18, we relied on a well-assessed, physiologically-motivated 
description of shape, i.e., the medial axis19. Finally, objects were also distinctively represented according to their 
superordinate categories.

To anticipate, we observed fast (100–150 ms) and overlapping representations of low-level properties (contrast 
and spatial frequencies), shape (medial-axis) and category in posterior sensors. These results may be interpreted 
as macroscale dynamics resulting in independent parallel processing, and may also suggest a role for shape in the 
refinement of categorical matching.

Results
We employed the Relative Weights Analysis16 to reveal the proportional contribution of low-level, shape and cat-
egory feature models in predicting time resolved representational geometries derived from MEG data, recorded 
from subjects attending to pictures representing thirty different stimuli from six semantic categories (Fig. 2).

The possible transformations of retinal input were described at three canonical steps of the object processing 
hierarchy, grounded on previous neurophysiological investigations. A first low-level model was computed by 
filtering the stimuli with a bank of Gabor filters: this model captures the arrangement of spatial frequencies in 
a V1-like fashion2. Then, as in previous neuroimaging investigations on the same topic9,20, we described object 
shape as its medial-axis transform19, that roughly describes an object as its skeleton, with each object part cap-
tured by a different branch. And finally, objects were identified by the semantic category they belong to11.

First, we assessed the collinearity between the three models, expressed as the Spearman correlation between 
the model RDMs (Fig. 2B). The low-level and categorical models have a correlation of ρ = 0.16, the shape model 
has ρ = 0.09 correlation with the categorical model, and ρ = 0.08 correlation with the low-level one.

Then, RWA was performed within a sensor space searchlight, resulting for each subject in three maps that 
report the time courses of the metric ε for each sensor, i.e., the proportional contribution of each model across 
time. RWA controls for model multicollinearity in multiple regression: its metric (ε) does not identify the impact 
of each model to the prediction of a dependent variable in isolation (i.e., beta weight), as in common multiple 
linear regressions, but considers also how each model relates to (i.e., is correlated with) the others. Thus, it reflects 
in a suitable manner the proportional impact of each variable on the prediction of brain activity (Fig. 2C). The 
single-subject maps were aggregated in group-level z-maps for each model, corrected for multiple comparisons 
and divided in 50 ms-long time bins for displaying purposes. Only the sensors whose corrected z-values were sig-
nificant in the entire bin were retained, as displayed in Fig. 3 (black dots mark significant sensors: p < 0.05, rank 
test, 100,000 permutations, TFCE corrected).

Results show that the model based on low-level features (contrast and spatial frequencies) is significant at early 
stages after stimulus presentation (0–50 ms) in a cluster of posterior and medial sensors. This cluster expands in 
the lateral and anterior directions, reaching a maximum in the 100–150 ms interval, when most of the poste-
rior sensors are significant. Shape features are instead restricted to a right posterior location in the 100–150 ms 
interval, and do not reach significance in the remainder of sensors and time bins. The category-based model is 
significant in medial and posterior sensors starting at 50–100 ms. The cluster expands to most of the posterior 
and lateral sensors, with a maximum spatial extent between 100 and 200 ms, then restricting to the posterior and 
lateral sensors in the 200–250 ms time bin. A cluster of right posterior sensors shows significant weights for the 
three models in the 100–150 ms time bin only. None of the models was significant in the remaining parts of the 
time course (before stimulus onset and after 300 ms).

Even if the task was intended to orient subjects’ efforts specifically towards high-level semantic process-
ing, attention towards local features could account for the observed results. To this aim, we compared the 
responses between semantically similar and dissimilar stimuli and found no significant difference (p > 0.20; see 
Supplementary Fig. S1). Thus, results are likely not driven by task demand.

Figure 1.  Different representations of a natural image. A real-world scene (A), depicting two giraffes in the 
savannah, can be defined by its edges (B), by the shape of the giraffes (C) and also by the categorical information 
it conveys (D). Photo taken from http://pixabay.com, released under Creative Commons CC0 license.
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Figure 2.  Methodological pipeline. (A) Experimental design: subjects were asked to attend thirty object 
pictures during a semantic judgment task. (B) representational dissimilarity matrices (RDMs) of three models 
(low-level features, shape and category) were employed to predict the MEG representational geometry – in the 
central triangle, Spearman correlation values between models are reported. With Relative Weights Analysis (C), 
MEG RDMs were predicted using three orthogonal principal components (PCs 1–3) obtained from the models, 
and the resulting regression weights were back-transformed to determine the relative impact of each model on 
the overall prediction when controlling for the impact of model collinearity (see Methods). Photo taken and 
edited from http://pixabay.com, released under Creative Commons CC0 license.
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Discussion
The visual machinery is a general-purpose system, relying on different representations that often are collinear or 
interact to each other. Here, by taking into account model collinearity, we revealed the spatiotemporal dynam-
ics of joint feature processing within the human visual system, to assess the relative contribution of low-level, 
shape and category features in predicting MEG-based representations. We observed both a temporal and spa-
tial co-occurrence of low-level, shape and categorical processing, early in time (100–150 ms) in posterior sen-
sors. Specifically, we showed that (a) low-level features (i.e., contrast and spatial frequencies) are processed early 
(0–50 ms) after stimulus onset within posterior MEG sensors, spreading in time from medial to lateral loca-
tions; (b) shape coding is limited within a few right posterior sensors in a brief time window (100–150 ms) and 
co-occurs with low-level and categorical processing; (c) categorical representation emerges later than the onset of 
low-level processing and is more prolonged, but spreads within a similar pattern of sensors.

Our results demonstrate that within 100–150 ms after stimulus onset, these features are processed concur-
rently, suggesting that object discrimination may result from independent parallel processing (i.e., orthogonal 
feature-based descriptions processed with similar temporal dynamics), rather than from a strict feed-forward 
hierarchy. The observed spatiotemporal overlap is in line with previous neuroimaging evidence showing that 
category and shape are processed within the same visual regions15,21, and can be decoded in the 130–200 ms time 
window within the high-level visual cortex, as shown in a combined fMRI-MEG study, which focused on body 
parts and clothes22. Here we employed a model-based approach which also embedded low-level features, and 
sampled stimuli from a broader set of categorical classes. In addition, we introduced RWA to overcome multicol-
linearity, which was not explicitly addressed in previous studies.

Of note, our results raise questions concerning the role of shape in categorization. The synchronization 
between the three models in our data occurs in a time window (100–150 ms) that overlaps with those of per-
ceptual organization (70–130 ms) and categorical recognition of visual information (>130 ms), as indicated by 
previous neurophysiological and functional studies in both human and nonhuman primates23–28.

Whether shape processing is needed to recognize and classify objects in a scene has not been clarified yet. The 
classical view that considered shape essential to recognition29 has, however, being challenged by the success of 
several appearance-based computational models that could perform object recognition by relying on low-level 
features only30. Since object segmentation occurs during passive natural image viewing31 and controls scene 
reconstruction25, shape analysis can be similarly triggered by object viewing also in a task for which shape is not 
explicitly relevant. Thus, our observation has at least two possible explanations: (a) shape processing is to some 
extent necessary for categorization or, alternatively, (b) it is not, but it is an automatic process occurring even 
when not overtly required by the task. The former hypothesis may, however, not be consistent with our results that 
show categorical representations occurring earlier than shape-based representations. In addition, the latter case 
would be in line with evidence suggesting that the extraction of object affordances – i.e., shape-related features 
which are able to facilitate or even trigger actions – is a fast and automatic process32,33. However, a conclusion on 
this topic can be reached only by further studies involving task modulation34. Of note, task is able to influence the 
strength of object processing late in time (>150 ms35:).

Another interesting result is the early emergence (50–100 ms) of categorical processing within the same pat-
tern of sensors that also encode contrast and spatial frequencies. As mentioned before, object recognition has 
been described as occurring at 150 ms or later28. We observed category representations within posterior sensors 
well before (even accounting for the temporal smoothing potentially introduced by the searchlight procedure). 
Early occurrence of categorical processing has been observed also in previous MEG studies16,35.

In the past years, mounting evidence revealed a top-down control of neurons in the early visual cortex24,36–40. 
Moreover, in a series of elegant studies25,41,42, Neri found psychophysical evidence of a top-down predictive mech-
anism, comprising a progressive refinement of local image reconstruction driven by global saliency or semantic 
content. At the macroscale, the effects of this mechanism imply that both local (i.e., low-level features) and global 
(i.e., object-related) representations should be retrieved early in time (<150 ms) within the visual cortex. Our 
results, show early (from 50 to 200 ms), overlapping patterns for low-level and categorical processing in poste-
rior MEG sensors, in line with this view. However, further research is needed to directly test the causal role of 

Figure 3.  Results. Topographic plots of the group-level z-maps. Top-row reports the time bin. Black dots stand 
for significant channels within all the time-bin (p < 0.05, rank test, 100,000 permutations, TFCE corrected).
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top-down feedbacks in controlling low-level processing within the occipital cortex, which falls beyond the orig-
inal scope of this work.

A further general remark should be made. As mentioned before, multicollinearity is a pervasive property of 
our surrounding environment. Indeed, one of the most fascinating features of our visual system is the way it deals 
with correlated statistics within the natural domain, to optimally represent the retinal input43, and to make sense 
of the external world, through the mean of learning and generalization. Indeed, visual correspondences are the 
mechanism we used to evolve more abstract, categorical representations44. However, from the researcher perspec-
tive, this leads to an extreme effort in balancing dimensions of interest, or in developing orthogonal models. In 
addition, two further aspects should be considered: first, as shown empirically13, since different stimuli typically 
vary within multiple dimensions simultaneously, it is almost impossible to isolate a single dimension of interest; 
second, the effort in building orthogonal competing descriptions increases with the number of tested models.

Several methods have been proposed to overcome models collinearity (for a review, see45:). Within the field of 
neuroimaging, Lescroart, et al.46 employed a variance partitioning approach (the same method, in the domain of 
multiple linear regression, is known as commonality analysis – as also employed in the MEG field35), which aims 
at determining the explained variance for any possible subset of the models. While this analysis is able to estimate 
the variance unique to each partition, its main drawback is that partitions grow exponentially with the number of 
models: since there are −2 1p  subsets for p predictors, just exploring the impact of 5 models generates 31 differ-
ent subsets. In light of this, even comparing a low number of models would end up in a computationally intensive 
process and in the challenging task of interpreting and discussing a huge number of sub-models. Moreover, the 
partitions related to variance shared by different models can occasionally be negative, and the interpretation of 
these negative components is still matter of debate47. From this perspective, RWA is an attractive alternative, as it 
estimates the relative, non-negative weight of each model and does not imply to discuss more models or compo-
nents than those initially considered.

Indeed, relative weights reflect in a suitable manner the proportional impact of each variable on the prediction 
of brain activity and - if the predictors are standardized - sum up to the total explained variance17. However, some 
limitations also affect RWA: the most relevant is that estimated weights are not invariant to the orthogonalization 
procedure employed. Though, it has been proven that, the more the orthogonal variables approximate the original 
variables, the more reliable the estimated weights become (for a deeper treatment of the topic, see17:). Therefore, 
RWA may represent a fast and appealing recipe to deal with model multicollinearity within the neuroimaging 
field, especially when three or more models are compared.

In conclusion, this study reveals the spatiotemporal dynamics of object processing from a model-based per-
spective, providing evidence in favour of an integrated perceptual mechanism in object representation.

Methods
Participants.  Sixteen healthy right-handed volunteers (5F, age 27 ± 2) with normal or corrected to normal 
visual acuity participated in the study. All subjects gave informed consent to the experimental procedures and 
received a monetary reward for their participation. The study was approved by the Ethics Committee for research 
involving human participants at the University of Trento, and all the experimental procedures were conducted in 
accordance with the Declaration of Helsinki.

Stimuli.  Visual stimuli were colour pictures representing thirty different objects from six semantic categories 
(fruits, vegetables, animals, birds, tools, vehicles). The set of stimuli were used in two previous fMRI studies from 
our group9,12, and were controlled for psycholinguistic features and familiarity (for details, see12). Stimuli were 
presented using MATLAB and the Psychophysics Toolbox48, and were projected on a translucent screen placed 
at about 130 cm from the participant, using a Propixx DLP projector (VPixx technologies), with a refresh rate of 
60 Hz and a resolution of 1280 × 1024 pixels (21.7 × 13.16°).

Task and design.  The experiment was organized in eight runs, each consisting of three blocks (see Fig. 2A). 
In each block, the thirty images were presented in randomized order, and participants were engaged in a semantic 
judgment task to ensure that they focused the attention on the stimuli49. At the beginning of each block, a binary 
target question (e.g., “Is it a tool?”) was shown; once subjects read the questions, they prompted the start of the 
block by pressing a button on a keyboard. Within each block, subjects answered (yes/no) to the question pre-
sented at the beginning using the keyboard. All pictures were presented 24 times, with a different target question 
for each repetition. 5 s-long resting periods preceded and followed each block, and 1 s-long resting periods fol-
lowed the behavioural response to each stimulus within a block. During the resting periods, subjects had to fixate 
a black cross, displayed in the centre of the screen. The order of the questions was randomized across participants.

Models.  In order to predict MEG representational geometries, three different descriptions were built, rep-
resenting different physiologically relevant properties of the objects seen by the subjects (see Fig. 2B). First, a 
low-level model, which captures the arrangement of spatial frequencies in a V1-like fashion, was employed: a 
GIST30 descriptor for each stimulus was derived by sampling (in a 4 × 4 grid) the responses to a bank of isotropic 
Gabor filters (8 orientations and 4 scales). The descriptor (consisting of a vector with 512 elements) of each 
stimulus was then normalized and compared to each other stimulus using the pairwise correlation distance (1 
– Pearson’s r). Second, a shape model was computed. Similarly to previous neuroimaging investigations on the 
same topic9,20, the medial-axis transform19 was extracted from each manually segmented and binarised object 
silhouette. Then, shock-graphs skeletal representations were built, and their pairwise dissimilarity was computed 
using the ShapeMatcher algorithm (http://www.cs.toronto.edu/~dmac/ShapeMatcher/; Van Eede, et al.50), which 
estimates the minimum deformation needed in order to match two different shapes51. Finally, the thirty stimuli 
were described based on their semantic category, obtaining a binary categorical model.
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MEG data acquisition.  MEG data were recorded using an Elekta VectorView system with 306-channels, 
204 first order planar gradiometers and 102 magnetometers (Elekta-Neuromag Ltd., Helsinki, Finland), located 
in a magnetically shielded room (AK3B, Vakuumschmelze, Hanau, Germany). The sampling rate was 1 kHz. 
Head shapes were recorded from each participant immediately before the experiment, using a Polhemus Fastrak 
digitizer (Polhemus, Vermont, USA) recording the position of fiducial points (nasion, pre-auricular points) and 
around 500 additional points on the scalp. MEG data were synchronized with experiments timing by sending 
four different triggers at question presentation, first button press (after question), stimulus presentation and 
stimulus-related behavioural responses (button presses), respectively.

MEG data pre-processing.  MEG data pre-processing was performed using the Fieldtrip toolbox52. First, a 
bandpass (1–80 Hz) and a notch (50 Hz) 4th order Butterworth IIR filters were applied to the data53. Filtered sig-
nals were then cut in epochs from 500 ms before to 1 s after stimulus onset and resampled at 400 Hz. Subsequently, 
data were visually inspected according to a set of summary statistics (range, variance, maximum absolute ampli-
tude, maximum z-value) to search for trials and channels affected by artefacts, using the procedure for visual 
artefact identification implemented in Fieldtrip; trials marked as bad were rejected and noisy sensors were recon-
structed by interpolating their spatial neighbours. On average, 8% of the trials and 10% of the channels were 
rejected for each subject.

Searchlight analysis.  A searchlight analysis was performed using CoSMoMVPA54, retaining the MEG 
data from the gradiometers only. First, the time-locked patterns for the individual trials were reduced to thirty 
pseudo-trials (one for each stimulus)55. Searchlights were then defined for each time point of the pseudo-trials 
using a spatial and temporal neighbouring structure56. Each searchlight included 10 dipoles (pairs of combined 
gradiometers) in the spatial domain, and each time point plus the ten preceding and following it (i.e., 21 time 
points, 52.5 ms) in the temporal domain. Within each spatiotemporal searchlight, a time-varying representa-
tional dissimilarity matrix (RDM) was derived for the MEG data by computing the pairwise correlation distances 
between pattern of responses to the thirty stimuli57; prior to computing the RDM, stimulus-specific activity pat-
terns were normalized (z-scored).

Relative weights analysis (RWA).  In order to estimate how well each model RDM was related to MEG 
representational geometries, a multiple linear regression for each subject and each spatiotemporal searchlight 
was performed. Since some of the three models RDMs are significantly correlated the Relative Weights Analysis 
(RWA), introduced by Johnson17, was adopted. The metric on which RWA relies is called epsilon (ε) and reflects 
both the unique contribution of each model and its impact when all the other models are considered.

The RWA procedure is graphically synthetized in Fig. 2C. Basically, the models RDMs were first orthogonal-
ized, by performing a Principal Component Analysis (PCA), and the RDMs from each spatiotemporal searchlight 
were regressed on the so obtained orthogonal versions of the models RDMs. Then, the regression coefficients 
were related back to the original model RDMs by regressing the orthogonal RDMs also on the models RDMs. 
Finally, for the j-th model, epsilon was calculated as:

∑ε λ β=
=

j
k

p

jk k
1

2 2

where p is the number of models, βk
2 is the variance (i.e., the squared standardized regression coefficient) in each 

searchlight RDM accounted for by the k-th orthogonal RDM, and λ jk
2  is the variance in the j-th model accounted 

for by the k-th orthogonal RDM.

Statistical analyses.  The RWA analysis, performed within the spatiotemporal searchlights as described 
above, provided a time course of the metric (ε) for each sensor and time point. To estimate the group-level spati-
otemporal distribution of weights for each of the three models, a one sample non-parametric test was performed, 
using a null distribution generated with 100,000 permutations (rank test), as implemented in CoSMoMVPA. 
Correction for multiple comparisons was made at cluster-level using a threshold-free method (TFCE58,59:). 
Z-values corresponding to a corrected p-value of 0.05 (one-tailed) were considered significant.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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