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ABSTRACT

In this paper, we analyze the performance a model predictive controller for coordi-
nation of connected, automated vehicles at intersections. The problem has combi-
natorial complexity and we propose to solve it approximately by using a two stage
procedure where 1) the vehicle crossing order in which the vehicles cross the inter-
section is found by solving a mixed integer quadratic program and 2) the control
commands are subsequently found by solving a nonlinear program. We show that
the controller is perpetually safe and compare its performance to that of traffic lights
and two simpler coordination controllers that share central characteristics with most
existing work on the topic. The results show that our approach by far outperforms
the considered alternatives in terms of both energy consumption and travel-time
delay, especially for medium to high traffic loads.
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1. Introduction

By combining Autonomous Driving (AD) technologies with communication [1,2], co-
operative strategies can be implemented to augment the capabilities of automated
vehicles, allowing them to both perform better and increase safety. The potential of
such strategies in these respects was recognized over a decade ago, in the discussion
following the 2007 DARPA Urban Challenge [3].

In this paper, we discuss the problem of coordinating connected and automated
vehicles at intersections. Such problem is traditionally motivated by safety [4] and
traffic efficiency [5] issues. In fact, with the introduction of connected automated vehi-
cles the intersections could be managed completely by coordination algorithms rather
than relying on traffic lights, road signs and right-of-way rules. However, the design of
such coordination algorithms is challenging for several reasons [6]. Uncertainties in the
perception of the surroundings, as well as impairments of the wireless communication
channel 7], must be handled. Moreover, even in presence of perfect communication and
sensing, the search of a solution to the coordination problem is in itself hard [8], where
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one particular difficulty is finding the order in which the vehicles should cross the in-
tersection. Finally, to compensate for uncertainties a coordination algorithm must be
executed in closed-loop. That is, the coordination should be repeatedly updated with
the most up-to-date information from the vehicles. Establishing that such closed-loop
systems are stable and persistently safe is in general a difficult task.

Solving the intersection coordination problem

The problem of coordinating connected automated vehicles at intersections has been
surveyed in [9,10]. Most existing contributions are focused on scenarios where all ve-
hicles are automated, and disregards non-cooperative entities such as legacy vehicles
or pedestrians. A large part of this work has been performed outside the control com-
munity, and has relied heavily on tailored heuristics [11-13]. However, the problem of
coordinating vehicles at an intersection is fundamentally a constrained optimal control
problem (OCP), as it involves the optimization of trajectories generated by dynamical
systems, subject to (at least) collision avoidance constraints. A number of contribu-
tions have therefore been proposed by the control community [14-35]. However, due
to its combinatorial complexity, the problem is rarely solved exactly in its full form,
and most existing approaches are based on a mix of heuristics and optimal control
formulations of smaller sub-problems. These heuristic schemes can roughly be catego-
rized as Sequential/Parallel or Simultaneous, depending on what type of OCPs they
involve.

In Sequential/Parallel schemes, a priority ranking of the vehicles is first decided.
The solution is thereafter obtained by solving a number of smaller OCPs, commonly
one per vehicle, where constraints are imposed to avoid collisions with higher priority
vehicles. The ranking itself is typically the result of a heuristic, where common choices
are variations of first-come-first-served (FCFS) policies.

In purely Sequential schemes such as [14,15] or the so-called “M PC*” alternative of
[16], the vehicles compute their solution in sequence based on a decision order, which
implicitly reflects the priority. That is, each vehicle solves an OCP, constrained to
avoid collisions with respect to the (already decided and available) solutions from the
OCPs of vehicles preceding it in the decision order.

In Parallel schemes, the vehicle OCPs instead use predictions of the actually planned
trajectories of higher priority vehicles. Along these lines, [17] proposes to use conser-
vative estimates, based on predicted trajectories resulting from maximum braking ma-
neuvers. With the so-called “M PC\” solution, [16] instead suggests constant velocity
predictions, whereas constant acceleration predictions are considered in [18]. Another
alternative, suitable for receding horizon implementations, is to use the predicted tra-
jectories of the higher priority vehicles from the previous time instant (see e.g. [19-22]
and the so-called “M PC}” alternative in [16]). If the priority ordering is constant
between two time instants, this corresponds to a sequential solution with delayed in-
formation exchange. A scheme which uses both sequential and parallel components
was suggested in [23]. There, a crossing time schedule is first constructed sequentially
based on a FCFS policy, followed by the parallel solution of the vehicle OCPs for the
state and control trajectories.

While they differ in aspects such as the considered objective function, the motion
models and the formulation of collision avoidance conditions, the contributions in
the Sequential/Parallel category are all “greedy”. In particular, no vehicle ever takes
decisions that are beneficial to the performance of the intersection as a whole, if that
decision is detrimental to the vehicle itself. As a consequence, the effort required to



resolve difficult conflicts is pushed “downwards” to lower priority vehicles. Although
sub-optimal by design, these schemes can often be easily implemented in an almost
completely decentralized fashion with low and accurately predictable requirements on
both computation and information exchange.

In Simultaneous methods on the other hand, the solution is found through joint op-
timization of several vehicles’ trajectories. However, to avoid the combinatorial com-
plexity of the full coordination OCP, parts of the solution are typically still found using
heuristics. In most schemes, this is done by first selecting the crossing order using a
heuristic (often variations of FCFS policies), and thereafter jointly optimizing the tra-
jectories of the vehicles for the given crossing order. Such fixed-order joint optimization
was considered in [24-31]. Alternative approaches, e.g. [32,33] apply local continuous
optimization methods to the full coordination OCP directly. The crossing order is thus
selected by the optimizer, but dependent on the initial-guess provided to the solver. A
few contributions propose to solve the full coordination OCP directly, and simultane-
ously optimize all aspects of the problem. For instance, both [34] and the benchmark
discussed in [35] consider mixed integer quadratic programming (MIQP) formulations
of the problem, returning both the optimal trajectories and crossing order. While such
approaches are able to find globally optimal solutions, they typically scale poorly with
the problem size (i.e., number fo vehicles) and are therefore practically limited to small
problem instances.

While Simultaneous approaches in general optimize over a larger set of solutions
than their Sequential/Parallel counterparts, their application is significantly more in-
volved. In particular, since the joint problems must be solved iteratively, the solution
is either computed with standard tools in a completely centralized fashion [24-26],
or with iterative, distributed optimization algorithms [27-31] which rely on repeated
communication between the vehicles and a central network node. As a result, the com-
putational and communication requirements of Simultaneous approaches are in general
higher and harder to predict accurately than those of Sequential/Parallel approaches.

Contribution

In this paper we evaluate the performance of a closed-loop algorithm directly derived
from the full OCP formulation of the intersection problem, where the optimal solution
is obtained by joint optimization of all parts of the problem, but performed in two
stages. Similar to most other Simultaneous schemes, we first find the crossing order
and thereafter solve a fixed-order OCP for the vehicle trajectories. However, contrary
to the methods described above, the crossing order is found by solving an approximate,
lower-dimensional representation of the full problem in the form of an MIQP, which
approximately accounts the constraints and objective of the full problem. In order
to be able to use this scheme, we extend the work of [27,36-39], by introducing the
possibility to add and remove vehicles from the intersection scenario, thus simulating
the arrival of new vehicles and the departures of vehicles which have already crossed
the intersection.

We evaluate the closed-loop performance of the receding horizon application of
the controller on a simulated scenario and compare it with the performance of 1) an
overpass solution where the roads are physically separated, 2) a traffic light controller,
3) a controller based on the sequential solution of OCPs, and 4) a controller where the
crossing order is obtained through a first-come-first-serve heuristic and the trajectories
are jointly optimized. The purpose of the comparisons is to establish 1) the loss induced
by the proposed controller with respect to the overpass solution, 2) the gain with



respect to the traffic light controller, and 3) the performance difference between the
cases where nothing is optimized jointly, where only the trajectories are optimized
jointly or where both the trajectories and the crossing order are optimized jointly.

The remainder of the paper is organized as follows: In Section 2, we introduce the
proposed coordination algorithm. In Section 3, we introduce the scenario on which
we evaluate the performance, and detail the benchmarks considered. We discuss the
results in Section 4, and conclude the paper in Section 5.

2. Optimal Coordination at Intersections

In this section we model the intersection scenario and state both a general optimal
control formulation of the coordination problem and a discrete-time, finite horizon
formulation, suitable for receding horizon control. Both the scenario modeling and the
problem formulation is based on the following fundamental assumption

Assumption 1. There are no non-cooperative entities present in the scenario.

That is, we do not consider scenarios with, e.g., legacy vehicles, pedestrians or
bicyclists. This assumption, though standard in the literature on vehicle coordination
problems [13,14,23,40,41], is restrictive and limits the applicability to traffic scenarios
in a distant future. We stress that our approach can be straightforwardly extended to
accommodate for non-cooperative entities. This will be the subject of future research.

In this paper we consider the nominal situation, i.e., we assume that the model is
prefectly describing the real system. While this is clearly not possible, we have observed
in experiments that, even when relatively large measurement errors are introduced,
the real system has relatively small deviations form the nominal prediction [38]. A
thorough discussion on robustness is therefore avoided for simplicity in this paper and
the interested reader is referred to [38].

2.1. Introduction to the optimal coordination problem

We consider cross-intersection scenarios, such as the one shown in Figure 1, consisting
of four incoming lanes with continuously arriving vehicles. The problem of finding the
control commands that optimize a given performance metric, reads conceptually as

Conpe B Performance (1a)
subject to Vehicle Dynamics initialized at Initial State (1b)
Physical and Design Constraints (1c)

Collision Avoidance. (1d)

The formal mathematical definition of (1) is provided in [38]. Problem (1) gives the
control commands for all vehicles which satisfy all physical and design constraints
(1c) (e.g., actuator limitations, comfort bounds, speed limits), result in collision free
trajectories (1b),(1d), consistent with the vehicle dynamics and maximize the perfor-
mance (la) which can be, e.g., minimization of energy consumption, minimization of
travel-time and maximization of intersection throughput.

Note that (1) provides the open-loop optimal solution for a static scenario. A closed-
loop, model predictive controller (MPC) can be obtained by solving a discrete-time,



finite horizon approximation to (1) in a receding horizon fashion [42]. In this setting,
the approximate problem is solved periodically, based on the measured current state
of all vehicles in the scenario, whereafter the first part of the optimal control is applied
[42].

2.2. Scenario Modeling

In this subsection a model of the intersection scenario is presented, which is used in
the formulation of the coordination problem. While one can model the motion of the
vehicles in the intersection with arbitrary accuracy, the following assumption, widely
accepted in literature [14,16,19,20,23,32], is convenient for our problem formulation
and does not limit the generality of our approach.

Assumption 2. The vehicles move along fixed and known paths along the road.

Assumption 2 is not restrictive, as vehicles at intersections move along predefined
lanes, and enables models which only describe the one-dimensional motion of a vehicle
along its path. In particular, we consider models

0 > gi(wi(t), wi(t)), (2b)

where i € {1, 2,...,N(t)} C N is the vehicle index, z;(t) € R™ and w;(t) € R™ are
the vehicle state and control and both f;(-) and g;(-) are continuously differentiable.
In particular, the models are such that z;(t) = (p;(t),vi(t), Z;(t)), where p;(t) is the
position of the vehicle’s geometrical center on its path, v;(t) is the velocity along the
path and, if applicable, Z;(t) collects all remaining states, e.g., acceleration and/or
internal states of the power-train.

For convenience, we assume that no vehicle makes a turn inside the intersection,
but remark that such problems can be tackled as detailed in [39]. Additionally, we
consider single-lane roads, but the formalism can handle more general layouts.

Side Collision Avoidance (SICA) Conditions. As illustrated in Figure la, side-
collisions can occur between vehicles on different lanes when they are inside an area
around the intersection of the vehicle paths, which we denote Conflict Zone (CZ).
Collisions between vehicles ¢, and j in CZ r are avoided at all time ¢ if

(@i(t), 2(t)) € Brij = {(zi, ;) | Gi(pe) N Gj(p;) # 0}, Vt, 3)

where G;(p;) is the area occupied by vehicle ¢ in the horizontal plane when the path
coordinate is p;. As illustrated in Figure 1b, a slightly conservative but much simpler
condition can be obtained using rectangular outer approximations Qz(pl) D Gi(pi),
such that (3) is formulated as

(i), 2;(1)) & Braj = {(zi,25) | pi € % 024", w5 € o, 0251} (4)

where plrnl and pﬁ};t are the first and last position on the path of vehicle ¢ for G (pi) N
Qj (pj) # 0 for all p; at CZ r. The conservative distance introduced is very small (see

Figure 1c) and is likely much smaller than the safety margins used in a real-world
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Figure 1.: Illustrations of collision avoidance conditions.

setting. This approach is adopted in several works on intersection coordination (e.g.
[14,20,23]), but is often formulated using auxiliary variables that describe the time of
n

entry I and departure t;?}}t of CZ r, which are defined implicitly through

J
pi(ts) = Py, and  pi(ty") = prit! (5)

Since by assumption v;(t) > 0, we have p; < pPi* = #I; < 24" and SICA (4) reads as

T8
(0" < t75) v (15 <t%) (6)
i.e., either vehicle j must leave CZ r before vehicle ¢ enters or vice-versa.

Rear-End Collision Avoidance (RECA) Conditions. Under Assumption 2,
rear-end collisions can only occur between two adjacent vehicles on the same path.
By denoting the length of vehicle i as L; and ;; = L;/2+ L;/2, RECA is enforced by

pi(t) + i < p;(t), (7)

when vehicle 7 is behind vehicle j. Condition (7) could be extended to include conser-
vative (and more practical) distance keeping policies, e.g., fixed spacing policies with
dij = €ij + Li/2+ L;/2, for some €;; > 0, either fixed or velocity dependent.

2.3. Closed-loop optimal coordination

We consider a scenario with N vehicles as in Figure la. The optimal coordination
problem obtained by enforcing the system dynamics (2) and the SICA and RECA
conditions (5)-(7), respectively, in problem (1) is a constrained finite-time optimal
control problem in continuous time. The derivation of a discrete-time equivalent prob-
lem, that is necessary in order to be solved by a numerical solver, is detailed in [38].

1In case vi(tiif‘r) = 0, tif‘T is not uniquely defined by pi(tii‘jr) = pin‘i, but rather by definition t‘;}l =
mint s.t. p;(t%.) = p;. Alternatively, one can modify (2) so that p > ¢, for some small € > 0. Since v;(t}.) =0

will be rarely encountered in practice, we assume v; (t‘Z“T) # 0 for ease of presentation.



The cost function in (la) can be chosen as the sum of local costs

K-1

Ji(wz‘) = Vif(xi,N) + /tk“ Ei(xi(t), ui’k)dt. (8)
k=0 " "k

If Problem (1) is to be solved in a receding-horizon fashion [42], the terminal cost
V(i ) should be selected as suggested in [38] to enforce closed-loop stability. While
solving the mixed-integer and nonconvex Problem (1) can be prohibitive, approximated
solutions can be sought by resorting the two-stage procedure:

(1) The crossing order is found using an optimization-based heuristic [37],
(2) The state and control trajectories w that are optimal under that crossing order
are found by solving a nonlinear program (NLP) [38,43].

We employ an optimization-based heuristic in Stage 1, which approximately accounts
for the objective and constraints in Problem (1) when the order is selected [37]. We
stress that, as highlighted in [37,38], this approach is not more computationally de-
manding than computing the schedule by some MIQP heuristic and controlling each
vehicle to abide by the schedule.

2.4. Persistent Safety

Due to the safety-critical nature of the application, it is paramount that the closed-
loop is persistently safe, i.e., the controller does not bring the vehicles to configurations
where collisions are unavoidable. However, we note that the two-stage procedure can
fail when a) the procedure to find a crossing order [37] fails, or b) when although
a crossing order § can be computed, no solution exists to the fixed-order problem
for S. Although neither of those cases has been observed in simulations, a safe-guard
mechanism handling such cases can be implemented. Denote by C the set of vehicles to
be coordinated. Persistent safety when C is constant was established in [Proposition 5,
[38]]. In order to extend such result to a time-varying set C, the following assumption
is needed.

Assumption 3.

(1) When a vehicle i is added to C at time ty, its state z; , is such that the vehicle
can stop before the intersection or, alternatively, that the zone in which the co-
ordination controller is applied is large enough for a given vehicle velocity and
control authority.

(2) The vehicles that have not yet been included in the coordination do not collide
with the vehicle ahead. Since this is a general requirement for all (automated)
vehicles, it is not restrictive.

We can now state the following result.

Proposition 2.1 (“Nominal” Perpetual Safety). If Assumption 3 holds and the ap-
proximate timeslot allocation problem and the fized order problem are feasible at all
times, such that the system is perpetually safe.

Proof. If a vehicle is removed from C, the set of feasible solutions for the remaining
vehicles cannot be smaller than in the case of constant C, and does therefore not
jeopardize perpetual safety. When a vehicle is added to C, Assumption 3 ensures
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Figure 2.: Scenario for the performance evaluation.

that it can execute at least one collision free trajectory. Therefore, the closed-loop
application of the two-staged controller is perpetually safe. O

Due to Proposition 2.1 we can conclude that if the fixed-order problem is feasible
for an order S at time ¢, it will be feasible at 41 for: a) the same crossing order
used at ty if C is constant or a vehicle is removed; b) the order C is updated by adding
a vehicle so that it crosses the intersection after all other vehicles in §. The latter
option is always feasible since the added vehicle can stop before the intersection due
to Assumption 3. Therefore, if at ¢5; either the calculation of a new crossing order
fails or the crossing order is updated such that fixed-order problem is infeasible, a
safe-guard mechanism can be implemented where the fixed-order problem is re-solved
using the crossing order from t;. This entails the following theorem.

Theorem 2.2 (Perpetual Safety). If Assumption 3 holds and the safe-guard mecha-
nism is employed, the system is perpetually safe.

A note on stability Conditions for stability for problems where C is constant was
established in [Theorem 6, [38]]. While we haven’t observed any issues, the extension
to problems with changing C is the subject of current research.

3. Evaluation Scenario and Compared Controllers

In this section, we describe the scenario in which the proposed controller is evaluated,
and introduce the alternative coordination controllers used in the comparisons.

The scenario consists of the two-road intersection shown in Figure 2, with one lane in
each direction (East-West (EW), West-East (WE), North-South (NS) and South-North
(SN)). There are consequently 4 Collision Zones in the problem, where side-collisions
can occur between vehicles on crossing paths, and rear-end collisions can occur between
neighboring vehicles on each lane. We divide the area around the intersection in two
zones: the Scenario Zone (SZ), where vehicles are added and removed from the scenario;
and the Intersection Zone (IZ), where coordination is performed as follows. All vehicles
travel between their initial position and the border of the IZ without performing any
coordinating action, and the different coordination controllers are applied once the
vehicles enter the 1Z. We consider symmetric SZ and 1Z, where we denote the entry
and departure positions of the SZ as pg,, and p% 4, respectively, and similarly denote the
counterparts for the IZ as pf, and p?z = pg z- Note that the SZ is introduced to allow



us to generate vehicles in configurations which are safe, i.e., such that Assumption 3
is satisfied. Moreover, vehicles which have left the IZ can still influence the solution,
since they might force preceding vehicles to slow down to avoid collisions.

Vehicle Arrival and Removal The arrival of new vehicles to the scenario is roughly
modeled as a Poisson Point Process (PPP) and we let the time interval d between the
arrivals of two consecutive vehicles on a lane be drawn from the exponential distribu-
tion d ~ Ae™?, with rate parameter A € [0,d™*]. Vehicle i is added to the scenario
at a time ¢ with initial velocity v® at position p;(t$) = min(psz, p;(t$) — Ip***), where
p;(t9) is the position of the vehicle directly in front of vehicle ¢ on the same lane, and
dp*e is the smallest distance such that a rear-end collision can be avoided if vehicle
J brakes to its fullest capacity when at v°. Finally, the scenario includes both passen-
ger Cars and Trucks, where the vehicle type is drawn randomly on generation with
probabilities p©a*, p™uck respectively. A vehicle is removed from the scenario when
it leaves the SZ. We denote the time of generation, type, and position of generation
for all vehicles introduced in the scenario over a simulation length S as the genera-
tion pattern. To enable a fair comparison, the same generation pattern is used on all
controllers when the performance is evaluated for a given A.

Simulation Termination. The simulation is terminated when the simulation end
time is reached or the scenario is considered congested. The latter is the case when
a new vehicle cannot be added to the scenario. This is the case when the velocity in
the IZ has dropped due to the action of the coordination controller, and significant
velocity reductions have propagated to the start of the SZ.

3.1. FEvaluated Controllers

We denote the two-stage procedure introduced in Section 2.3 as the MIQP /Fized Order
(MIQP/FO) controller and compare it to the following four strategies.

Overpass. This scheme corresponds to a physical separation of the roads, and it is
used to remove any cost of the coordination. Hence, the Overpass “controller” does not
issue any coordinating action when the vehicles are inside the IZ (and side collisions
can occur). All vehicles travel with the initial velocity v©, which is generated at a safe
inter-vehicle distance, until the end of the SZ.

Traffic Light. In this scheme, the red and green phases of the two directions (NS/SN
and EW/WE) alternate with cycle time C, without an intermediate yellow phase. The
vehicles are assumed to know both times for all phase-shifts and the intended trajectory
of the preceding vehicle. As a consequence, all vehicles move synchronously from stand
still after a red-light phase has passed, but in a manner which minimizes J;(w;) and
satisfies g;(x;k, u; ). However, no vehicle takes any action to favor other vehicles.

Sequential Controller. In the Sequential controller, the vehicles decide how to cross
the intersection in sequence based on a priority ranking. The controller is executed as
follows: when a single vehicle enters the IZ at time t, it forms its decision by finding the
dynamically feasible state trajectory which minimizes the objective function, satisfies
the path constraints and avoids collisions w.r.t. the (already formed) decisions of higher



priority vehicles. If more than one vehicle enters the 1Z at t;, the decisions are formed
in sequence based on the estimated time of arrival to the intersection when all SICA
constraints are ignored. Note that as in the Traffic Light controller case, the vehicles
do not perform any action for the benefit of other vehicles.

FCFS/FO Controller. In the First-Come-First-Served/Fized-Order (FCFS/FO)
coordination controller, the Fixed Order (FO) Problem is solved in a receding hori-
zon fashion for all vehicles in the IZ, using a crossing order selected through a FCFS
heuristic. In particular, if a single vehicle enters the 1Z at time t; it is required to
yield to all vehicles already in the IZ. If more than one vehicle enters the IZ at time
ti, they are sorted based on their expected arrival to the intersection when the SICA
constraints are ignored, and added to the crossing order accordingly. Similar ordering
policies are used in the FCFS/FO controller and the Sequential controller. However,
as opposed to the latter and similarly to the MIQP/FO case, the control commands
by the FCFS/FO are found through simultaneous optimization of all vehicles trajec-
tories. As a result, some vehicles might take actions that increase their own objective
functions, but yields a decrease for the scenario as a whole.

3.2. Motion Models and Control Objectives

All controllers use the double integrator longitudinal dynamics with input bounds as
prediction model, such that

1 At 1A#2 ;
Fi(2i g, wi g, At) = [O 1 } T+ [QAt Us o a™ < g < a™. (9)

Moreover, the vehicles are assumed to follow the control command perfectly, i.e., there
is no model-plant mismatch. The control objective are

K
Jl(wl) = 1m; (Qﬁ(U%K — vr)2 + Z Qi(vi,k — UT)Z + Rz“ik) s (10)

k=0

where K is the prediction horizon length, sz-, Qi, R; are objective weights, v" = v° is a
reference velocity and m; is the vehicle mass. Although the prediction model is simple,
experimental results indicate that it is sufficiently accurate for the application [38].

3.3. Secondary Performance Objectives

Two often cited reason for using coordination controllers is the reduction of energy
consumption and travel time [14,20,23]. While not explicitly optimized through the
control objective (10), we also assess the performance of the coordination controllers
w.r.t. these quantities.

Note that even though the quadratic objective (10) does not explicitly describe
secondary objectives, the velocity deviation term (Ui,k—vr)z penalizes low velocities and
will indirectly force the travel time delay dt; to be small. Furthermore, the acceleration
term u? i is proportional to the forces applied to the vehicles which relates to the
energy éupplied by the propulsion system. Keeping the acceleration term small will
consequently yield an energy consumption close to E?P.

10



Travel Time Delay: evaluated by comparing the time required for a vehicle to leave
the SZ using a solution resulting from the coordination controllers, to the time required
to cover the same distance by keeping the initial velocity v® (the Overpass Case), i.e.,

pi(t) — pi(t)

oty = td — 8 — —

(11)
where t4 is the time of departure from the SZ.

Energy Consumption: the energy cost of the coordination is assessed by introduc-
ing an Electric Vehicle (EV) modeled as

1 (G

. ]' T
i \Tj

where M;(t) is the electric motor torque and b;(t) the friction-brake force. The model
parameters are: the fixed gear-ratio G;, the wheel radius r}’, the air density p, the
projected frontal surface area a;, the acceleration due to gravity ¢ and the air-drag
and rolling resistance coefficients ¢, ¢*. The energy consumption associated with the

i Ci
state trajectory z; is calculated as

K1
Ei(x;) =

/(k-‘rl)At w; (t)Ml,k
k=ke 7 *

Rk gy (13)
At ni(wi(t), Mix)

where M, j, is the electric motor torque applied between kAt and (k+1)At, n;(-) is the
electric motor’s efficiency map and w;(t) = G;/r)v;(t) is the electric motor speed. We
define the cost of coordination (CoC) for vehicle i as the energy consumption increase
with respect to the energy EPF (;) consumed by the Overpass controller, i.e.,

E7°%(z;) = Ei(w:) — BPP (). (14)

4. Results

In this section, we present the results from the performance evaluation of the different
controllers. We have considered the simulation of 15 minutes of traffic for rate param-
eters A corresponding to average arrival rates ranging from R = 4000 to R = 10000
vehicles/hour (1000 to 2500 vehicles/hour/lane). The parameters used in the simula-
tions are summarized in Tables 1 and 2.

For all controllers, the interior-point solver fmincon is used in MATLAB® to solve
the NLPs involved, and for the MIQP/FO controller, the CPLEX® MIQP solver is
employed in the first stage of the approximation procedure. We emphasize that a
fully centralized solution is not a necessity, and that one could employ the distributed
methods of [27-30] to solve the fixed order problem. Animations showing the results
can be found at [44]. Videos showing how the proposed coordination scheme works with
real vehicles can also be found at [45], containing the material from the experimental
validation presented in [38].
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Type Symbol Value Unit Type Symbol Value Unit

Car Truck
SZ Start p%,; 350 m Mass m; 1.7 20 10%kg
SZ Stop pdy 250 m Length L; 48 165 m
1Z Start Py, 2000 m Width Wi 1.77 255 m
1Z Stop pfz 250 m Speed Dev. Weight Qi 1
Car Gen. Prob. pLar 0.9 Control Use Weight R; 1
Truck Gen. Prob. pruck 0.1 Acceleration L.B. qmin -3 m/s?
Initial/Set Speed v® 70  km/h Acceleration U.B. anax 3 m/s?
Discretization size At 0.2 S Gear ratio G 7.94 15
Prediction Horizon K 100 ‘Wheel radius ry 0.35 m
RECA Safety distance € 1.5 m Projected Front Area a; 2.3 4 m?
T.L. Cycle time c 20 s ) Air drag coef. c? 0.32 0.7
Air density p 1.225 kg/ m® Rolling resistance coef. cr 0.015
Acc. due to gravity g 9.81 m/ s Max Power prax 80 400 kW
Max Torque M# 250 2000 kNm
Max Motor Speed w;"x 10 15 kRPM
Table 1.: General Parameters. Table 2.: Vehicle Parameters.

4.1. Performance metrics

The performance scores for all controllers are computed as the average over all vehicles
that have both entered and left the scenario during the simulation time.

For the objective (10) we define the average closed-loop cost associated to velocity
and acceleration

|Nc‘ Z Z miQi(vik — v")?, ’Nc| Z Z miRiu (15)

iEN© k=k; iEN© k=kS

where N¢ contains the indices of all vehicles that cross the SZ within S, and we recall
that kf,kf denotes the time instants of entry and departure of the SZ for vehicle .

Similarly, for the secondary objectives, we define the average total cost of coordi-
nation and travel time delay induced

;7CoC C C S4_
E W"! > EFC(),  ot= INC > oti, (16)
iENe ieNe

with EC°C(x;) and 6t; given by (14) and (11). For comparison, we also consider the
percentage change in energy consumption, with respect to the Overpass solution:

) o Eilx
= e Bilm)
Diene B ()

(17)

The efficiency map 7(-) used to determine the energy consumption is obtained from
[46], and consists of a polynomial fit to experimental data. The map is scaled for the
Car and Truck types using the parameters M, w** and P;"** reported in Table 2
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Figure 3.: Components of the quadratic objective. T.L. denotes the traffic light controller.
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4.2. Performance results

Figures 3, 4 and 5 summarize the main results of the performance evaluation. The
simulation termination discussed further in Section 4.3 results in the lack of data-
points for the Traffic Light, and FCFS/FO controller for R > 9000 vehicle/h, and the
lack of data-points for the Sequential scheme for R > 6500 vehicles/h.

Traffic Light vs Automated Controllers: The difference is rather large for average
arrival rates low enough to not cause congestion. For low arrival rates, all automated
controllers give small increases in energy consumption compared to the overpass so-
lution, induce a small travel time delay and are orders of magnitude better than the
Traffic Light in terms of the quadratic objective. We highlight in particular the per-
formance of the proposed MIQP /FO controller in terms of energy consumption: it can
handle very high traffic intensities (R = 10000) with an energy increase not exceeding
40% of the Overpass controller energy.

Effect of joint optimization: the performance of the different automated controllers
increases with added complexity. FCFS/FO outperforms the sequential controller in
all performance metrics. Additionally, MIQP/FO outperforms FCFS/FO in all per-
formance metrics except the travel-time delay, where the FCFS/FO and MIQP/FO
perform closely for R < 8000 vehicles/h, with close to zero average delay. This is a
consequence of the joint optimization of the trajectories, which increases the veloc-
ity of some vehicles (resulting in “negative” delays), and decreases velocities of other

13
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vehicles (resulting in positive delays), with an average close to zero. This is further
illustrated in Figure 6, which shows estimates of the distribution of travel time delays
under the three automated controllers.

A closer look at the vehicle velocities: The results in Figures 4, 5 are explained
by the velocity profiles in Figure 7. In particular, smaller velocity variations (deceler-
ations) lead to more efficient coordination policies.

A small detail in Figure Figure 9 helps understanding the potential of MIQP /FO-
like techniques. The maximum and minimum velocity profiles of the MIQP/FO are
smoother than the ones of the FCFS/FO scheme (see e.g., around the 5-minute mark).
A closer look at one spike is provided in Figure 9, which shows the position-velocity
profiles from the same vehicle for the different controllers. As the figure illustrates,
the spikes occur when the optimal solution to the fixed, FCFS-crossing order problem
strongly accelerates some vehicles through the intersection. While such manuver is
costly, it allows other vehicles to use the intersection more efficiently. Even though a
slight velocity increase also results from the MIQP/FO controller, the magnitude is
significantly lower and is performed well before the intersection starts. This reveals
the MIQP’s ability to select crossing orders that are convenient for the underlying
fixed-order coordination problem.

4.8. Failure of the FCFS/FO and Sequential controllers

In the simulation with R = 7000 vehicles per hour, the Sequential controller caused
some vehicles inside the IZ to reduce their velocity significantly. In turn, this caused
vehicles outside the IZ to slow down in order to avoid collisions, i.e., such that Assump-
tion 3 holds. Eventually, a significant velocity decrease propagated to the beginning of
the SZ, such that the scenario was considered congested and the simulation stopped.
For the FCFS/FO controller, the simulation was stopped after it performed worse than
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whereas the gray line demarcates the beginning of the IZ.

the Traffic Light (c.f. Figure 4).

4.3.1. Causes of the FCFS/FO failure

We first note that the fixed-order problem is expected to assign a relatively higher
control effort and result in larger velocity deviations for Cars than Trucks due the
objective weighting (c.f. objective (10) and Table 2). Regardless of how the crossing
order is selected, the vehicles of the Car type are therefore expected to perform more
aggressive maneuvers in general, and be responsible for the maximum and minimum
velocities (c.f. the velocity intervals of Figure 7).

However, the magnitude of both control effort and velocity deviations depend on
the selected crossing order: a Car which crosses after a Truck under the FCFS policy
could be commanded to slow down significantly to decrease the total cost, whereas an
alternative order inducing the Car to cross before the Truck would result in a velocity
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increase. When the traffic load increases, such accelerations occur farther from the
intersection with lower minimum values, and the lower velocities are kept for longer
periods of time.

This effect is illustrated in Figure 8, which presents the velocity as a function of
distance for all vehicles resulting from the FCFS/FO controller for average arrival
rates R = 8000, R = 8500 and R = 9000 vehicles/h, and from the MIQP/FO con-
troller for R = 9000. As the figure shows, for increasing R, the FCFS/FO controller
indeed results in harsher accelerations and both lower minimum velocities at greater
distances from the intersection and longer periods of low velocities. Note in particu-
lar the almost triangular velocity profiles of many Cars as the intersection is crossed,
which corresponds to periods of (constant) maximum acceleration and deceleration.
This behavior is primarily seen in Cars: the optimal solution is often to first slow down
to favor Trucks (due to the weighting of their objectives with m;), and thereafter to
cross the intersection as fast as possible to not block access for others. Moreover, we
note that the velocity decreases closer to the SZ start with increasing R since safety
must be enforced and the FCFS/FO is brought closer to causing congestion.

Finally, we note that while both the FCFS/FO and MIQP/FO controllers actuate
Cars more than Trucks, the effect is much more pronounced in the former. In particu-
lar, the two bottom plots in Figure 8 illustrate the difference for the same generation
pattern, and show that both vehicle types are actuated less under the MIQP /FO con-
troller. This results in smoother trajectories and almost no velocity reduction outside
the IZ, thus demonstrating the benefit of selecting a crossing order which takes the
objective function and constraints into account at least approximately.

4.8.2. Causes of the Sequential Controller Failure

In the Sequential controller case, no vehicle increases its velocity to favor another, and
collisions are avoided solely through velocity reductions. This propagates backwards
on each lane, and can even be amplified depending on the distance between the vehicles
involved. The velocity profiles from the congested R = 7000 vehicles/h scenario with
the Sequential controller are shown in Figure 10, where significant velocity reductions
are present in the entire IZ, and propagate further backwards until they reach pg,
and the simulation is terminated.

Sequential, R = 7000
T 1Z T

80 [ YA

1 1 1 1
250 200 4150 -100 -50 0 50 100
Position p m

-350 -300

)
S

Figure 10.: Velocity profiles for vehicles in the scenario with R = 7000, where the sequential
controller failed. Coloring as in Figure 8.
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5. Conclusion

In this paper we introduced a closed-loop controller for coordination of automated ve-
hicles at intersections, based on a simultaneous yet approximate solution of an optimal
control problem. We presented simulation results where the controller was compared
against two simpler approaches for automated coordination, a traffic light coordination
mechanism and a physical separation of the roads. The results demonstrate that all
automated controllers out-perform the traffic light system under low to medium traffic
intensities and that significant gains are achieved with increasing controller complex-
ity. In particular, we showed that by jointly optimizing both the crossing order and the
vehicle trajectories, large improvements are obtained compared to all other considered
methods, both in terms of performance and capacity. This serves as a motivation for
considering the more sophisticated controllers.

We also emphasize that even though the proposed MIQP/FO controller relies on
approximations and likely is sub-optimal, the price paid for coordination is remarkably
small, even for high traffic intensities. At the same time, the improvement over both
traffic lights and the simpler coordination mechanisms is still large, in particular for
higher traffic intensities. The obtained improvement is obtained at the price of a higher
computational demand, which, however, remains within reasonable limits, since we
were able to run all simulations on a standard laptop.
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