
Measuring security in IoT communications

Chiara Bodeia, Stefano Chessaa, Letterio Gallettab

aDepartment of Computer Science. Università di Pisa, Pisa, Italy
bIMT School for Advances Studies, Lucca, Italy

Abstract

More smart objects and more applications on the Internet of Things (IoT) mean
more security challenges. In IoT security is crucial but difficult to obtain. On
the one hand the usual trade-off between highly secure and usable systems is
more impelling than ever; on the other hand security is considered a feature
that has a cost often unaffordable. Therefore, IoT designers not only need tools
to assess possible risks and to study countermeasures, but also methodologies
to estimate their costs. Here, we present a methodology, based on the process
calculus IoT-LySa, to infer quantitative measures on evolution of systems. The
derived quantitative evaluation is exploited to establish the cost of the possible
security countermeasures, in terms of time and energy.

Keywords: Internet of Things, Security, Cost evaluation

1. Introduction

We are living the Internet of Things (IoT) revolution, where the things we
use every day have computational capabilities and are always connected to the
Internet. These “smart” devices, which are equipped with sensors, automatically
collect a huge amount of data, store them on the cloud or use them to affect the
surrounding environment through actuators. This emerging technology provides
the momentum for the creation of new societal and economical opportunities,
since it is becoming the enabling technology of the future houses, cities, industrial
plants, farms, as well as critical infrastructures, i.e. the assets underpinning
the functioning of an economy and of a society [1]. As an example of an IoT
system, consider a smart street light control system [2] in a smart city scenario.
There lamp posts are equipped with sensors to acquire data about the physical
environment and regulate the level of illumination according to the hour of
day and the detected events in the street like the presence of a walking person.
Similarly, a smart lighted pedestrian crossing system is based on warning lights
placed ahead of the crosswalk lines that start blinking as pedestrians approach the

Email addresses: chiara.bodei@unipi.it (Chiara Bodei), stefano.chessa@unipi.it
(Stefano Chessa), letterio.galletta@imtlucca.it (Letterio Galletta)

Preprint submitted to Theoretical Computer Science October 21, 2018

zone. Although the benefits of the IoT are undeniable, this paradigm introduces
new pressing security challenges, because “important processes that once were
performed manually (and thus enjoyed a measure of immunity against malicious
cyber activity) are now vulnerable to cyber threats” [3]. Although the precise
security guarantees depend on the application, basic security mechanisms are
anyway needed to ensure the functionality of the network and to protect the
privacy and integrity of the processed and exchanged sensitive data.

However, security in this setting is easy to go wrong, as shown by many
examples in news, see [4, 5, 6] to cite only a few. On the one hand, it is ex-
tremely hard to guarantee correctness properties of those systems: indeed they
are highly distributed and their overall correctness is the resultant of that of
its components and their interactions. On the other hand, smart objects have
limited computational capabilities and are battery powered. Hence, this shortage
of resources heavily constraints the choice of security mechanisms that can be
implemented. In particular, in this setting energy can be a precious resource
since its lack can affect the whole system lifetime: indeed, it is sufficient a single
node that runs out of charge to disconnect all the network. Consequently, the
usual trade-off between highly secure and usable systems is more critical than
ever. Indeed, IoT designers have to be selective in choosing which security mech-
anisms adopt in order to optimise computational capabilities and battery power.
For this reason, designers not only need tools to assess possible risks and to
study countermeasures, but also methodologies and tools to estimate their costs.
These costs can be computed in terms of time overhead, energy consumption,
bandwidth, and so on. All these factors must be carefully evaluated for achieving
an acceptable balance among security, cost and usability.

Contribution. Usually, formal methods provide designers with tools to support
the development of systems and to reason about their properties, both qualita-
tive and quantitative. In this paper we advocate formal methods as an enabling
technology to support a security by design development model. In particular, we
present a formal methodology to model an IoT system and to analyse the cost
of the adopted security mechanisms. We aim at providing a general framework
with a mechanisable procedure (with a small amount of manual tuning), where
quantitative aspects are symbolically represented by parameters. Their instan-
tiation is delayed until hardware architectures and cryptographic algorithms
are fixed. By only changing these parameters designers could compare different
implementations of an IoT system and could choose the better trade-off between
security and costs. Carefully evaluating the costs and opting for prudent choices
can impact on the overall performance of the network but also on the throughput
of the network lifetime.

Technically, our starting point is the formal specification language IoT-LySa, a
process calculus recently proposed for describing IoT systems [7, 8, 9, 10, 11, 12].
Designers can model the architecture of a system, the algorithmic behaviour of
its smart objects and their interactions through the IoT-LySa primitives. Further-
more, IoT-LySa enables them to reason about qualitative properties as system
correctness and robustness by using a static analysis, namely Control Flow

2

Analysis (CFA). This analysis safely carries out a behavioural forecast, i.e. over-
approximation of the system behaviour, at static time, without actually running
the system. In practice, it predicts how data from sensors may spread across the
system and how objects may interact with each other. To this aim, it “mimics”
the evolution of the system, by using abstract values in place of concrete ones
and by modelling the consequences of each possible action. From this static
“simulation” designers can detect possible flaws and intervene as early as possible
during the design phase. In [9] the CFA was used to check both functional and
non-functional properties, in particular whether a system complies with some
standard security policies as confidentiality, no read-up/no write-down, etc.

In this paper, we define an enhanced semantics for IoT-LySa, following the
methodology of [13, 14, 15, 16, 17], where each transition is associated with a
label recording the actions performed during the transition. These annotations
offer the basis for the performance evaluation. In fact, we introduce functions
over the enhanced labels to associate costs with transitions. Here, costs are
first given in the form of rates: they are specified in terms of the time spent
for transitions, and depend on the performed action as well as on the involved
nodes. In particular, we associate costs with the actions of sensing, storing a
value, sending and receiving messages, encryption and decryption, and with the
application of aggregation functions. Costs are assigned by using parameters
that can be instantiated according to some design choices, e.g. depending on
the adopted encryption schema. The accuracy of cost measures depends on
the precision of this instantiation. Intuitively, cost functions define exponential
distributions, from which we compute the rates at which a system evolves. From
rates, we mechanically derive a Continuous-Time Markov Chain (CTMC), which
can be analysed using standard techniques and tools [18, 19]. Indeed, to evaluate
the performance of the system we calculate the stationary distribution of the
derived CTMC and its transition rewards. Furthermore, we define a bisimulation-
based equivalence as a further tool for comparing program performances, by
combining qualitative and quantitative aspects.

Another critical resource to preserve and carefully use in an IoT system is
the energy, since very often smart objects are battery powered. On the one hand,
replacing or recharging the battery is usually a costly operation, which may not
even be feasible in systems deployed in remote and unreachable areas [20]. On
the other hand, the lifetime of the network can be affected by only one single
node that stops working by lack of energy. Still starting from the evaluation of
the time, we analyse energy consumption. We assume that the energy consumed
by a node is proportional to the time spent on carrying its computational and
communication activities out. In particular, we introduce a notion of energy
budget representing how much energy a node owns and/or may spend. We
also define an energy-sensitive semantics, on top of the enhanced one, to deal
with these budgets. An energy budget can be seen as the initial quantity of
energy available for each node and it is consumed during the execution. Thus, a
designer can understand if, given a bound on the resources available in terms of
an initial quantity of charge (the initial budget), the system is able to complete
a certain task. Alternatively, the energy budget can be defined as the energy

3

a node requires in order to complete a certain sequence of computation and
communication tasks. In this second case, a designer can compute the minimal
budget required to complete a single duty cycle.

More in general, designers can exploit a cost analysis to tune the trade-
off between security and resource usage in order to have a robust system at an
affordable price. Furthermore, they can compare different approaches or solutions
to implements a system and choose the more convenient or cheaper. Note that
our goal is providing a suitable methodology for analysing the cost of the chosen
security mechanisms in IoT system. We are not interested here in explicitly
modelling possible attacks. Their existence is implicitly assumed and motivates
the performance analysis of different designs of the same network, each adopting
different countermeasures to prevent or to mitigate the attacks.

Structure of the paper. In Section 2, we introduce and motivate our methodol-
ogy by using an illustrative, even though realistic, scenario based on a smart
storehouse. We briefly recall the process calculus IoT-LySa in Section 3, and
we show its enhanced semantics. Section 4 defines the stochastic semantics, by
introducing cost functions that assign rates to transitions; we also describe how
to obtain the CTMC associated with a given system of nodes and how to extract
performance measures from it. In Section 5, we describe our energy-sensitive
semantics and show how to use it to reason on the required energy for a system.
Our methodology is applied to the simplified version of the systems describing
our smart storehouse scenario in Sections 4 and 5. Section 6 discusses related
work, while some conclusions are drawn in Section 7.

This article is the full and revised version of the conference paper published
in [21], where a subset of the IoT-LySa language was considered with no actuators,
no shared store and no asynchronous communications. Here we propose an
enhanced semantics for the whole IoT-LySa language as presented in [9], extended
with a guarded choice construct. Consequently, we reworked and extended the
section concerning the assignment and computation of the costs of transitions.
Moreover, we introduce a bisimulation-based equivalence and an energy-sensitive
semantics, not present in [21]. Finally, we apply our methodology to a more
involved scenario.

2. A storehouse with perishable food

In this section we intuitively present our methodology and the language
IoT-LySa (formally introduced in Section 3) by using, as running example, an
elaboration of the one presented in [21, 10]. IoT-LySa is a specification language,
based on the process algebra theory, that provides designers with linguistic
constructs to design and specify a network of smart objects.

2.1. The design of IoT-LySa
IoT-LySa describes systems of nodes that represent smart objects. Intuitively,

the definition of a node consists of two interacting parts.

4

Figure 1: The organisation of nodes in the IoT system of a storehouse with perishable food.

∙ The first part concerns the logical behaviour of nodes (the software). It
is modelled in IoT-LySa as a set of interacting control processes. These
processes coordinate communications with the other nodes, manage data
gathered from sensors and trigger commands to actuators.

∙ The second part is cyber-physical and deals with the physical world. It
is mainly made of (small pieces of hardware) sensors and actuators that
interact with the environment, by collecting data and performing some
mechanical actions.

In IoT-LySa, each node is uniquely identified by a label ℓ. The label may
abstractly represent information characterising the node (e.g. network address,
serial number, and so on). As anticipated, a node is made of control processes,
possibly sensors and actuators, and a shared store working as a memory that
records the data collected by sensors and the data computed and exchanged by
processes.

Since we are mainly interested in modelling the logical behaviour of the system
and the way it affects the physical world, sensors and actuators are implemented
by abstracting all the low level details of their execution. In particular, we will
consider sensors as simple data providers and actuators as passive entities that
execute the requested actions when processes ask them.

These two parts are linked together and communicate through the shared
store that is assumed to be accessed atomically by sensors and control processes.

We assume indeed that each sensor, identified by an index 𝑖, is provided with
a reserved location (like a register) in the store where it can record data read
from the environment by making them available to the other node components.

5

Similarly, actuators are provided with a unique index 𝑗 which identifies them.
Finally, in IoT-LySa inter-node communications are based on a message passing
mechanism representing the wireless multicast transmission of packets through
explicit send/receive constructs.

2.2. A smart storehouse
Consider a smart storehouse, call it SmartStore, storing perishable food,

the structure of which is illustrated in Figure 1. To correctly preserve the stocks,
the temperature inside the room must be kept under control and regulated
depending on the quantity and the kind of food. The system also monitors how
long the food is stored inside the storehouse, allowing managers to schedule the
order in which the food leaves the warehouse. For instance, they can give priority
to food approaching to the expiry-date, to minimise economic loss.

The corresponding network of smart objects is made of eight nodes 𝑁𝑖 and
𝑁𝑠𝑖 with 𝑖 ∈ [0, 3]. The four nodes 𝑁𝑠𝑖 are located in the corners of the storehouse
and play the role of data collectors. In particular, each node 𝑁𝑠𝑖 is equipped
with a sensor 𝑆𝑠𝑖 , which senses the temperature in the area nearby and records
it in the shared store. The sensed values are elaborated by the control process
of 𝑁𝑠𝑖 and sent to the node 𝑁1.

The node 𝑁1 works as data aggregator and temperature regulator. It is
equipped with an actuator that allows activating the cooling system of the store-
house. When 𝑁1 receives the temperature data from each node 𝑁𝑠𝑖 , computes
their average, and sends it to the node 𝑁3. Then, it waits for instructions from
𝑁3, the system controller, on how regulate the temperature in the storehouse.

The node 𝑁2 monitors the stored food and takes care of doing the stocktaking.
It is equipped with a RFID reader, located nearby the entrance. We assume that
each wood box containing food is equipped with an RFID, read when it is stored.
When a wood box enters the storehouse the node 𝑁2 uses its RFID reader to
read the box identifier, updates the stocktaking database and sends the updated
value to the node 𝑁3.

The node 𝑁3 works as the system controller and as gateway towards the
Cloud (i.e. the node 𝑁4). It receives the data on the temperature from 𝑁1, and
the data on the stocktaking by 𝑁2. Then, it sends a message to 𝑁4 to log the
temperature. Afterwards, it checks whether the temperature is acceptable for
the quantity and the kind of the stored food. Depending on this check, it sends
a message to 𝑁1 containing information about the proper actions to take on the
cooling system.

Finally, the 𝑁4 implements an Internet service that waits for messages from
𝑁3 and handles them.

2.3. Reasoning on the design
Here, we are interested in reasoning on the security of our system. If all

communications are in clear then they are not robust: an attacker can easily
intercept and manipulate data, especially those sent by nodes 𝑁𝑠𝑖 . This means
that an attacker may easily violate the confidentiality and integrity of data.

6

A possible (and very naive) solution consists in using cryptography to protect
all communications. Although this approach clearly makes our storehouse system
more robust, it may heavily impact on the cost, in terms of speed and of power
consumption, as well as, in terms the overall performance and lifetime of the
network, critical when e.g. the hardware platforms have limited computational
capabilities or when the battery must be preserved. Thus, a good trade-off
between the level of security and the resource consumption is required.

A good balance can be obtained by mixing data redundancy and cryptography.
Concerning data redundancy, we can exploit the fact that thermometers on the
same side of the storehouse should sense the same temperature, with a difference
that can be at most a given threshold value 𝜖. Thus, the system can easily
detect anomalies and discard data tailored by an attacker, by comparing values
coming from the nodes that are on the same side of the room. This approach
could be sufficient when the attacker can falsify data coming from at most one
thermometer. Adding cryptography can help us in making the approach more
robust, even when an attacker can intercept and falsify data sent by more than
one sensor. However, the designer has to find the right trade-off between the
advantages given by redundancy and cryptography and the drawbacks due to
their underlying costs. For example, a high redundant network may require
more nodes, more messages exchanged or more storage; using cryptography may
require powerful processors or non-trivial hardware capabilities.

We would like to formally reason on these possible solutions and understand
which one ensures a good level of security but at a reasonable cost in terms
of required resources, e.g. battery energy. Once used IoT-LySa to model the
architecture of a system, the algorithmic behaviour of its smart objects and
their interactions, our methodology consists in associating a cost with each
action of the specification representing the time and the energy spent by a node
performing that action. Thus, taking the semantics of the specification, we can
associate a global cost with each node denoting the time required for running all
its activities. As we will see, these costs can help designers to answer questions
about the feasibility of their design on a given platform and guide them to modify
it, when it does not meet their requirements. Furthermore, they can compare the
relative costs of two solutions both in terms of time and of energy and choose
the more appropriate one. In practice, the goal of our methodology is to support
the automatic selection of a suitable allocation strategy of the security functions
that can preserve a certain security level. Thus, a designer can compare different
allocation strategies of these functions and select the one that is less expensive
in terms of costs, e.g. in terms of energy, but that meets the needed security
requirements.

As the example shows, we assume the existence of possible attacks, but we
are not interested in explicitly modelling them. We focus on the performance
analysis of the different countermeasures that can be adopted to prevent or to
mitigate the attacks.

7

3. IoT-LySa and its Enhanced Semantics

IoT-LySa is an adaption of LySa [22, 23], a process algebra introduced to
specify and analyse cryptographic protocols and checking their security proper-
ties [24, 25, 26]. Here we introduce the syntax and the semantics of IoT-LySa,
by slightly improving the version of [9]. In particular, we introduce an external
choice construct and enrich each transition in the semantics with a label 𝜃 carry-
ing information about the actions performed during that transition. In the next
section, these labels will be associated with a cost and will provide the basis to
generate a CTMC to perform our quantitative analysis.

3.1. Syntax
IoT-LySa has a two-level syntax describing the behaviour of nodes and of node

components, respectively. An IoT-LySa system 𝑁 ∈ 𝒩 consists of a fixed number
of nodes, each identified by a label ℓ ∈ ℒ, that communicate through message-
passing. The label ℓ uniquely identifies a node ℓ : [𝐵] and may represent further
characterising information (e.g. its location or other contextual information).
Each node hosts sensors 𝑆 ∈ 𝒮, actuators 𝐴 ∈ 𝒜 and control processes 𝑃 ∈ 𝒫,
all running in parallel and interacting with each other through a shared store.
Concerning cryptographic primitives, we assume that there exists a finite set of
keys, a priori associated to each node.

Let 𝒱 be a denumerable set of values (including numbers, booleans etc.),
ℐℓ and 𝒥ℓ be identifiers of sensors and actuators, respectively. The syntax of
IoT-LySa systems is in Figure 2.

In the syntax of systems, 0 denotes the null inactive system; ℓ : [𝐵] denotes
a single node; and the parallel composition operator | combines nodes. Inside
a node there is a parallel composition (by the operator ||) of components 𝐵:
control processes 𝑃 , sensors 𝑆, actuators 𝐴 and a shared store Σ.

We impose that in ℓ : [𝐵] there is always a single store Σℓ : 𝒳ℓ ∪ ℐℓ → 𝒱.
Therefore, a store is essentially an array of fixed dimension, and intuitively a
variable 𝑥 ∈ 𝒳ℓ and an identifier 𝑖 ∈ ℐℓ are interpreted as indexes in the array (no
need of 𝛼-conversions). We assume that store accesses are atomic, e.g. through
CAS instructions [27].

The process 0 represents the inactive one. The prefix 𝜏 represents the fact
that the process performs some internal actions and then it continues as 𝑃 . The
prefix ⟨⟨𝐸1, · · · , 𝐸𝑚⟩⟩ ◁ 𝐿 implements a simple form of multicast communication
among nodes: the tuple 𝐸1, . . . , 𝐸𝑚 is asynchronously sent to the nodes with
labels in 𝐿. As we will see below, communications in IoT-LySa are based on a
notion of compatibility, defined by different attributes, including a proximity of
the interlocutors and the transmission capabilities of the sender. The construct +
receives a message by considering two alternatives represented by the two input
prefixes. An input prefix (𝐸1,· · ·, 𝐸𝑗 ;𝑥𝑗+1,· · ·, 𝑥𝑚) accepts a 𝑚-tuple, provided
that its first 𝑗 terms match the input ones (pattern matching is embedded in
the input), and then binds the remaining store variables (separated by a “;”) to
the corresponding values. When the process receives a message, it tries to match
the message against the two possible input prefixes. If one of the two prefixes

8

𝒩 ∋ 𝑁 ::= s𝑦𝑠𝑡𝑒𝑚𝑠 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠
0 empty system
ℓ : [𝐵] single node (ℓ ∈ ℒ, the set of labels)
𝑁1 | 𝑁2 parallel composition of nodes

ℬ ∋ 𝐵 ::= node components
Σℓ store of node ℓ
𝑃 process
𝑆 sensor, with a unique identifier 𝑖 ∈ ℐℓ
𝐴 actuator, with a unique identifier 𝑗 ∈ 𝒥ℓ

𝐵 ‖ 𝐵 parallel composition of node components

𝒫 ∋ 𝑃 ::= c𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠
0 inactive process
𝜏.𝑃 internal action
⟨⟨𝐸1, · · · , 𝐸𝑟⟩⟩ ◁ 𝐿. 𝑃 asynchronous multi-output L⊆ ℒ
(𝐸1, · · · , 𝐸𝑗 ; 𝑥𝑗+1, · · · , 𝑥𝑚). 𝑃+
(𝐸′

1, · · · , 𝐸′
𝑗 ; 𝑥′

𝑗+1, · · · , 𝑥′
𝑚). 𝑄 switch or external choice

𝐸?𝑃 : 𝑄 conditional statement
𝑃𝐴 constant def.
decrypt 𝐸 as
{𝐸1, · · · , 𝐸𝑗 ; 𝑥𝑗+1, · · · , 𝑥𝑚}𝐾0

in 𝑃
decryption (with match.)

𝑥 := 𝐸.𝑃 assignment to 𝑥 ∈ 𝒳ℓ

ℰ ∋ 𝐸 ::= t𝑒𝑟𝑚𝑠
𝑣 value (𝑣 ∈ 𝒱)
𝑖 sensor location (𝑖 ∈ ℐℓ)
𝑥 variable (𝑥 ∈ 𝒳)
{𝐸1, . . . , 𝐸𝑚}𝑘0

encryption with key 𝑘0 (𝑘 ≥ 0)
f (𝐸1, . . . , 𝐸𝑚) function on data

𝒮 ∋ 𝑆 ::= s𝑒𝑛𝑠𝑜𝑟𝑠 𝒜 ∋ 𝐴 ::= a𝑐𝑡𝑢𝑎𝑡𝑜𝑟𝑠
0 inactive sensor 0 inactive actuator
𝜏.𝑆 internal action 𝜏.𝐴 internal action
𝑖 := 𝑣. 𝑆 store of 𝑣 ∈ 𝒱 (|𝑗,Γ|). 𝐴 command for actuator 𝑗

by the 𝑖𝑡ℎ sensor 𝛾.𝐴 triggered action (𝛾 ∈ Γ)
𝑆𝐴 constant def. 𝐴𝐴 constant def.

Figure 2: The syntax of IoT-LySa.

9

matches, then the computation continues by selecting the corresponding branch.
Otherwise, the 𝑚-tuple is not accepted. We assume that the pattern matching
expression of the input prefixes in hand are mutually exclusive, so the construct
is deterministic. In the rest of the paper we use (𝐸1, · · · , 𝐸𝑗 ; 𝑥𝑗+1, · · · , 𝑥𝑚). 𝑃
without + as a shorthand to denote an external choice whose second element has
0 as continuation. An agent is a static definition of a parametrised process. Each
agent identifier 𝑃𝐴 has a unique defining equation of the form 𝑃𝐴 = 𝑃 . The
process decrypt 𝐸 as {𝐸1, · · · , 𝐸𝑗 ;𝑥𝑗+1, · · · , 𝑥𝑚}𝑘0

in 𝑃 tries to decrypt an en-
crypted value using the key 𝑘0, provided that the first 𝑗 elements of the decrypted
term coincide with the terms 𝐸𝑗 . We assume a symmetric encryption schema,
which is most used in IoT systems because less energy consuming. As done in
Section 2, we often use the abbreviation ({𝐸1, · · · , 𝐸𝑗 ;𝑥𝑗+1, · · · , 𝑥𝑚}𝐾0

).𝑃 to
denote the process (;𝑥).decrypt 𝑥 as {𝐸1, · · · , 𝐸𝑗 ;𝑥𝑗+1, · · · , 𝑥𝑚}𝑘0

in 𝑃 , i.e. the
process that receives a term and immediately decrypts it.

A sensor, identified by a unique identifier belonging to the sets ℐℓ, can perform
an internal action 𝜏 , e.g. noise reduction, or store a value 𝑣, gathered from the
environment, in the shared store and continues as 𝑆. We do not provide an
explicit operation to read data from the environment but it is implemented as
an early input.

An actuator can perform an internal action 𝜏 or execute one of its action 𝛾,
possibly received from its controlling process. Both sensors and actuators can
repeat their behaviour.

Finally, in the syntax of term, a value represents a piece of data (e.g. keys or
values read the environment). The encryption function {𝐸1, . . . , 𝐸𝑚}𝑘0 returns
the result of encrypting values 𝐸𝑖 for 𝑖 ∈ [1,𝑚] with the key 𝑘0. The term
𝑓(𝐸1, . . . , 𝐸𝑚) is the application of function 𝑓 to 𝑚 arguments; we assume given
a set of primitive aggregation functions ℱ , typically for aggregating or comparing
values, either computed or sampled from the environment.

3.2. Enhanced Operational Semantics
To estimate cost, we give an enhanced reduction semantics following [13,

14, 15, 16, 17]. The underlying idea consists in enriching each transition with
an enhanced label 𝜃 that records what happen during the transition. Note that
labels only record information but they do not affect the semantics: indeed, the
standard semantics can be obtained by simply removing the labels. IoT-LySa
has a two-level semantics. The first level describes how a single node internally
behaves, i.e. how its components evolve; the second level describes instead how
the network globally behaves. Accordingly, we have two kinds of enhanced labels:
the labels Θ𝐵 that enrich the transitions of the first level semantics and the labels
Θ that enrich the transitions of the second level semantics. They are defined as
follows.

Definition 1. Given ℓ, ℓ𝑂, ℓ𝐼 ∈ ℒ, the sets of labels Θ𝐵 (ranged over by 𝜃𝐵),
Θ𝐶 (ranged over by 𝜃𝐶), and the set of enhanced labels Θ (ranged over by 𝜃) are
defined as:

10

𝜃𝐵 ::= 𝑠𝑒𝑛𝑠(𝑖) sensing
𝑠𝑡𝑜𝑟𝑒(𝐸) storing a term
⟨⟨𝐸1, ..., 𝐸𝑟⟩⟩ sending a tuple of terms
𝑑𝑜(𝑗, 𝛾) triggering
𝑎𝑐𝑡(𝛾) actuating
𝑖𝑛𝑡 internal activity
𝑑𝑒𝑐(𝐸, {𝐸′

1, · · · , 𝐸′
𝑗 ;𝑥𝑗+1, · · · , 𝑥𝑚}𝑘0) decryption of a message

𝜃𝐶 ::= ⟨⟨𝐸1, · · · , 𝐸𝑚⟩⟩, (𝐸1, · · · , 𝐸𝑗 ;𝑥𝑗+1, · · · , 𝑥𝑚) exchanged message

𝜃 ::= ℓ ⟨𝜃𝐵⟩ propagation of actions
ℓ𝑂 ◁ ℓ𝐼 ⟨𝜃𝐶⟩ inter-nodes comm.

The function Λ used to remove the ℒ component from the enhanced labels is defined
as follows

Λ(ℓ ⟨𝜃𝐵⟩) = 𝜃𝐵
Λ(ℓ𝑂 ◁ ℓ𝐼 ⟨𝜃𝐶⟩) = 𝜃𝐶

Note that labels embody possible encrypted terms: encryption does not corre-
sponds to any prefix of processes.

The labels for nodes components record actions occurred inside a node: sens-
ing from the sensor 𝑖 (𝑠𝑒𝑛𝑠(𝑖)); evaluating an expression 𝐸 and storing its result
(𝑠𝑡𝑜𝑟𝑒(𝐸)); sending a message made of 𝑟 terms (⟨⟨𝐸1, ..., 𝐸𝑟⟩⟩); driving an actua-
tor and affecting the environment (𝑑𝑜(𝑗, 𝛾) and 𝑎𝑐𝑡(𝛾)); performing and internal
action (𝑖𝑛𝑡); performing a decryption (𝑑𝑒𝑐(𝐸, {𝐸′

1, · · · , 𝐸′
𝑗 ;𝑥𝑗+1, · · · , 𝑥𝑚}𝑘0));

and exchanging a message ⟨⟨𝐸1, · · · , 𝐸𝑚⟩⟩, (𝐸1, · · · , 𝐸𝑗 ;𝑥𝑗+1, · · · , 𝑥𝑚).
There are two kinds of labels for nodes: (i) those with the form ℓ 𝜃𝐵 , where

the label ℓ identifies the node, by lifting a component label to a node one; (ii)
those associated with communications transitions that record the label of the
sender ℓ𝑂, the label of the receiver ℓ𝐼 and the exchanged message: ℓ𝑂 ◁ ℓ𝐼 ⟨𝜃𝐶⟩.
For the sake of simplicity, in the following we feel free to use the single label

ℓ𝑂 ◁ ℓ𝐼 ⟨⟨⟨{𝐸1, 𝐸2}𝑘⟩⟩, ({𝐸1;𝑥2}𝑘)⟩

to endow the complex action of receiving and decrypting at the same time.
In [13, 14, 15, 16, 17], labels also record the inference rules used during the
deduction of the transitions, in particular those given by the application of
parallel composition. The reason is that they encode the locations of the involved
processes with the position w.r.t the abstract syntax tree. We do not need to do
it because our systems come with labels that explicitly identify their locations.

As usual, our semantics consists of the standard structural congruence ≡ on
nodes, processes and sensors and of a set of rules defining the transition relation.

− (𝒩/≡, |, 0) and (ℬ/≡, ‖, 0) are commutative monoids
− 𝜇ℎ .𝑋 ≡ 𝑋{𝜇ℎ .𝑋/ℎ} for 𝑋 ∈ {𝑃,𝐴, 𝑆}
− ⟨⟨𝐸1, · · · , 𝐸𝑚⟩⟩ : ∅. 0 ≡ 0

11

Our notion of structural congruence ≡ is standard except for the last congruence
rule for processes that equates a multi-output with empty set of receivers to the
inactive process.

We have a two-level reduction relation → defined on nodes and its components.
It is the least relation satisfying the set of inference rules in Table 1. In the
definition of the rules, we assume the standard denotational interpretation [[𝐸]]Σ
for evaluating terms. We briefly comment them below.

(S-store)

Σ ‖ 𝑖 := 𝑣. 𝑆𝑖 ‖ 𝐵
𝑠𝑒𝑛𝑠(𝑖)−→ Σ{𝑣/𝑖} ‖ 𝑆𝑖 ‖ 𝐵

(Asgm)
[[𝐸]]Σ = 𝑣

𝑥 := 𝐸.𝑃 ‖ 𝐵
𝑠𝑡𝑜𝑟𝑒(𝐸)−→ Σ{𝑣/𝑥} ‖ 𝑃 ‖ 𝐵

(Ev-out) ⋀︀𝑚
𝑖=1 𝑣𝑖 = [[𝐸𝑖]]Σ

Σ ‖ ⟨⟨𝐸1, · · · , 𝐸𝑚⟩⟩ ◁ 𝐿. 𝑃 ‖ 𝐵
⟨⟨𝐸1,...,𝐸𝑚⟩⟩

−→ Σ ‖ ⟨⟨𝑣1, · · · , 𝑣𝑚⟩⟩ ◁ 𝐿.0 ‖ 𝑃 ‖ 𝐵

(Multi-Com)
ℓ2 ∈ 𝐿 ∧ 𝐶𝑜𝑚𝑝(ℓ1, ℓ2) ∧

⋀︀𝑗
𝑖=1 𝑣𝑖 = [[𝐸𝑖]]Σ2

ℓ1 : [⟨⟨𝑣1, · · · , 𝑣𝑚⟩⟩ ◁ 𝐿. 0 ‖ 𝐵1] |
ℓ2 : [Σ2 ‖ (𝐸1, · · · , 𝐸𝑗 ; 𝑥𝑗+1, · · · , 𝑥𝑚).𝑄 + (𝐸′

1, · · · , 𝐸
′
𝑗 ; 𝑥𝑗+1, · · · , 𝑥′

𝑚).𝑄′ ‖ 𝐵2]

ℓ1◁ℓ2 ⟨⟨⟨𝑣1,··· ,𝑣𝑚⟩⟩,(𝐸1,··· ,𝐸𝑗 ;𝑥𝑗+1,··· ,𝑥𝑚)⟩
−→

ℓ1 : [⟨⟨𝑣1, · · · , 𝑣𝑚⟩⟩ ◁ 𝐿 ∖ {ℓ2}. 0 ‖ 𝐵1] | ℓ2 : [Σ2{𝑣𝑗+1/𝑥𝑗+1, · · · , 𝑣𝑚/𝑥𝑚} ‖ 𝑄 ‖ 𝐵2]

(Decr)
[[𝐸]]Σ = {𝑣1, · · · , 𝑣𝑚}𝑘0

∧
⋀︀𝑗

𝑖=1 𝑣𝑖 = [[𝐸′
𝑖]]Σ

Σ ‖ decrypt 𝐸 as {𝐸′
1, · · · , 𝐸

′
𝑗 ; 𝑥𝑗+1, · · · , 𝑥𝑚}𝑘0

in 𝑃‖ 𝐵
⟨𝑑⟩−→ Σ{𝑣𝑗+1/𝑥𝑗+1, · · · , 𝑣𝑚/𝑥𝑚}‖ 𝑃 ‖ 𝐵

(A-com)
𝛾 ∈ Γ

⟨𝑗, 𝛾⟩. 𝑃 ‖ (|𝑗,Γ|). 𝐴 ‖ 𝐵
𝑑𝑜(𝑗,𝛾)−→ 𝑃 ‖ 𝛾.𝐴 ‖ 𝐵

(Act)

𝛾.𝐴
𝑎𝑐𝑡(𝛾)−→ 𝐴

(Int)

𝜏.𝑋
𝑖𝑛𝑡−→ 𝑋

(Node)

𝐵
𝜃𝐵−→ 𝐵′

ℓ : [𝐵]
ℓ⟨𝜃𝐵⟩
−→ ℓ : [𝐵′]

(ParN)
𝑁1

𝜃−→ 𝑁 ′
1

𝑁1|𝑁2
𝜃−→ 𝑁 ′

1|𝑁2

(ParB)

𝐵1
𝜃𝐵−→ 𝐵′

1

𝐵1‖𝐵2
𝜃𝐵−→ 𝐵′

1‖𝐵2

(CongrY)

𝑌 ′
1 ≡ 𝑌1

𝜃𝑌−→ 𝑌2 ≡ 𝑌 ′
2

𝑌 ′
1

𝜃𝑌−→ 𝑌 ′
2

Table 1: Reduction semantics, where 𝑑 = 𝑑𝑒𝑐(𝐸, {𝐸′
1, · · · , 𝐸′

𝑗 ;𝑥𝑗+1, · · · , 𝑥𝑚}𝑘0
),𝑋 ∈ {𝑃, 𝑆,𝐴},

𝑌 ∈ {𝑁,𝐵}, and 𝜃𝑌 ∈ Θ if 𝑌 = 𝑁 , 𝜃𝑌 ∈ Θ𝐵 if 𝑌 = 𝐵.

The first two rules implement the (atomic) asynchronous update of shared
variables inside nodes, by using the standard notation Σ{−/−}. According to
(S-store), the 𝑖𝑡ℎ sensor uploads the value 𝑣, gathered from the environment, into
the store location 𝑖. This rule implements a sort of early input in the spirit of
the one of the 𝜋-calculus [28] and records the sensing action performed by the
sensor 𝑖, in the label of the transition. According to (Asgm), a control process
updates the variable 𝑥 with the value of 𝐸 and the label records that during the
transition the store is updated by the evaluation of the expression 𝐸.

The rules (Ev-out) and (Multi-com) drive asynchronous multi-communications
among nodes. In the first rule a node labelled ℓ willing to send a tuple of values
⟨⟨𝑣1, ..., 𝑣𝑚⟩⟩, obtained by the evaluation of ⟨⟨𝐸1, ..., 𝐸𝑚⟩⟩, spawns a new process.

12

This process runs in parallel with the continuation 𝑃 and offers the evaluated
tuple to all the receivers in 𝐿. As a consequence, transmission is a non-blocking
action. The spawned process terminates when all receivers have received the
message, i.e. when the set 𝐿 is empty (see the last congruence rule and below).
The label generated during the transition records that the node is sending a
message whose content is obtained by evaluating the expressions 𝐸1, . . . , 𝐸𝑚.

In the rule (Multi-com), the message coming from ℓ1 is received by a node
labelled ℓ2. The communication succeeds, provided that (𝑖) ℓ2 belongs to the
set 𝐿 of possible receivers; (𝑖𝑖) the two nodes are compatible according to the
compatibility function 𝐶𝑜𝑚𝑝; and (𝑖𝑖𝑖) the first 𝑗 values of the message match
with one of the two branches of the “+” operator, i.e. if they match the evaluations
of the first 𝑗 terms in one of the input prefixes. Moreover, the label ℓ2 is removed
by the set of receivers 𝐿 of the tuple. The compatibility function 𝐶𝑜𝑚𝑝 defined
over node labels is used to model real world constraints on communication,
e.g. proximity, with 𝐶𝑜𝑚𝑝(ℓ1, ℓ2) that yields true only when the two nodes ℓ1,
ℓ2 are in the same transmission range. Finally, the label of the transition records
the occurred communication between the nodes ℓ1 and ℓ2 and information about
the pattern matching performed, where 𝑥𝑗+1, ..., 𝑥𝑚 in the transition label are
immaterial placeholders recalling the shape of the message.

The inference rule (Decr) expresses the result of decrypting an encrypted
term having the form {𝐸1, · · · , 𝐸𝑚}𝑘0

and of matching it against the pattern
{𝐸′

1, · · · , 𝐸′
𝑗 ;𝑥𝑗+1, · · · , 𝑥𝑚}𝑘0

, i.e. the pattern occurring in the corresponding
decryption. Similarly, to the communication case, we require that the value 𝑣𝑖
of each 𝐸𝑖 matches that of the corresponding 𝐸′

𝑖 for the first 𝑗 components and
that the keys are the same i.e. 𝐾0 (this models perfect symmetric cryptogra-
phy). When successful, the values of the remaining expressions are bound to the
corresponding variables. The label of the transition stores the expression to be
decrypted and those used during the pattern matching.

A process commands the 𝑗𝑡ℎ actuator through the rule (A-com), by sending
it the pair ⟨𝑗, 𝛾⟩; 𝛾 becomes the first prefix of the actuator, if it is one of its
actions. The label records that the identifier of the actuator and the sent action.
The rule (Act) says that the actuator performs the action 𝛾, which is recorded
also in the label of the transition. Similarly, for the rules (Int) for internal action.
The last rules propagate reductions across parallel composition ((ParN) and
(ParB)) and nodes (Node), while the (CongrY) are the standard reduction rules
for congruence. Note that in the rule (Node), the label 𝜃 is endowed with the
label ℓ that identifies the node in which the transition occurs.

Hereafter, we assume the standard notion of transition system: intuitively, it
is a graph, where the nodes represent systems of nodes and the (labelled) arcs
the possible transitions between them. The semantics above describes how a
system behaves at run time and, once the semantics of the aggregation function
is provided, it also provides the values a node in a system computes and records
in their stores. Therefore, the size of the transition system depends strongly on
the values read by the sensors and on the content of the stores. Thus, it could be
very large or potentially infinite. However, in the analysis of the next section we
are not interested in the actual results of a computation as the fact that a sensor

13

𝑁𝑝 = 𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁1 | 𝑁2 | 𝑁3 | 𝑁4

𝑁𝑠𝑖 = ℓ𝑠𝑖 : [Σ𝑠𝑖 ‖ 𝑃𝑠𝑖 ‖ 𝑆𝑠𝑖] where 𝑆𝑠𝑖 = 𝑠𝑖 := 𝑣𝑠𝑖 .𝜏.𝑆𝑠𝑖 𝑖 ∈ [0, 3]
𝑃𝑠𝑖 = (;𝑥𝑠𝑡𝑎𝑟𝑡𝑖).⟨⟨ℓ𝑠𝑖 , 𝑠𝑖⟩⟩ ◁ {ℓ1}.𝑃𝑠𝑖 where 𝑖 ∈ [0, 3]

𝑁1 = ℓ1 : [Σ1 ‖ 𝑃1 ‖ 𝐴0] where 𝐴0 = (|0,Γ|). 𝐴0

𝑃1 = ⟨⟨𝑠𝑡𝑎𝑟𝑡0⟩⟩ ◁ {ℓ𝑠0}.(ℓ𝑠0 ; 𝑧0).⟨⟨𝑠𝑡𝑎𝑟𝑡1⟩⟩ ◁ {ℓ𝑠1}.(ℓ𝑠1 ; 𝑧1).
⟨⟨𝑠𝑡𝑎𝑟𝑡2⟩⟩ ◁ {ℓ𝑠2}.(ℓ𝑠2 ; 𝑧2).⟨⟨𝑠𝑡𝑎𝑟𝑡3⟩⟩ ◁ {ℓ𝑠3}.(ℓ𝑠3 ; 𝑧3).
⟨⟨𝑎𝑣𝑔(𝑧0, 𝑧1, 𝑧2, 𝑧3)⟩⟩ ◁ {ℓ3}.(;𝑥𝑎𝑑).⟨𝐴0, 𝑥𝑎𝑑⟩. 𝑃1

𝑁2 = ℓ2 : [Σ2 ‖ 𝑃2 ‖ 𝑅0] where 𝑅0 = 𝑟0 := 𝑤.𝜏.𝑅0

𝑃2 = (;𝑥𝑏𝑒𝑔𝑖𝑛2).𝑑𝑏 := 𝑢𝑝𝑑𝑎𝑡𝑒(𝑑𝑏, 𝑟0).⟨⟨𝑑𝑏⟩⟩ ◁ {ℓ3}.(;𝑥𝑔𝑜2).𝑃2

𝑁3 = ℓ3 : [Σ3 ‖ 𝑃3]
𝑃3 = (;𝑥𝑎𝑣𝑔).⟨⟨𝑏𝑒𝑔𝑖𝑛2⟩⟩ ◁ {ℓ2}.(;𝑥𝑑𝑏).⟨⟨𝐴𝑐𝑡𝐷𝑒𝑐(𝑥𝑎𝑣𝑔, 𝑥𝑑𝑏)⟩⟩ ◁ {ℓ1}.

⟨⟨𝑥𝑎𝑣𝑔⟩⟩ ◁ {ℓ4}.𝑃3

𝑁4 = ℓ4 : [Σ4 ‖ 𝑃4]
𝑃4 = (;𝑤𝑎𝑣𝑔).𝑅𝑐

Figure 3: An IoT-LySa specification for SmartStore𝑝 (plain without security).

read a specific value, e.g. the sensor 𝑠0 of Figure 1 says that the temperature is
22.5 C∘, or that an aggregation function resulted in a specific value. We are only
interested in the sequence of the operations performed, e.g. the sensor 𝑠0 senses
a value or the node ℓ1 computes an average. For this reason, in the following
we consider a symbolic semantics that is defined as the one described above
but which differs from it only in the fact that the values read from sensors and
computed by aggregation functions are symbolic.

The transition system generated by this enhanced semantics is defined below.
Note that this transition system is finite, making our analysis easier.

Definition 2. An (enhanced) transition system is a quadruple ⟨𝒩 ,Θ,→, 𝑁0⟩,
where 𝒩 is the set of states (systems of nodes), Θ is the set of labels, → is the
transition relation described in Table 1, and 𝑁0 is the initial state.

3.3. The smart storehouse reloaded
To better clarify the constructs introduced above, we now provide the speci-

fication of our motivating example, expressed in IoT-LySa. While in Section 2,
we only described the components of nodes, their roles in the network and which
messages they exchange, here, we describe each node in details, by specifying
their sensors, actuators and control processes.

A first IoT-LySa specification for our storehouse is in Figure 4. We call
it SmartStore𝑝, and denote with 𝑁𝑝 the system of its eight nodes. In
the data collector nodes 𝑁𝑆𝑖 for 𝑖 ∈ [0, 3], each sensor 𝑆𝑠𝑖 periodically senses
the temperature and records it into its reserved location 𝑠𝑖 in the store Σ𝑠𝑖 ,
by using an assignment statement. The sensing operation works as an early
input where 𝑣𝑠𝑖 is the sampled temperature. After sensing, 𝑆𝑠𝑖 performs some

14

internal operations (the 𝜏 action), which we are not interested in modelling,
e.g. noise reduction of sensed data. Finally, it iterates its behaviour by a recursive
invocation. Each process 𝑃𝑠𝑖 iteratively performs the following actions:

∙ it waits for a start message from𝑁1, by using the receive primitive (;𝑥𝑠𝑡𝑎𝑟𝑡𝑖),
where the variable 𝑥𝑠𝑡𝑎𝑟𝑡𝑖 will store the received value;

∙ it collects the data provided by the sensor 𝑆𝑠𝑖 by simply accessing the
corresponding store location 𝑠𝑖, and

∙ it sends them together with its label to the node 𝑁1, by using the primitive
⟨⟨ℓ𝑠𝑖 , 𝑠𝑖⟩⟩ ◁ {ℓ1}, before repeating its behaviour.

Note also that in the specification we are abusing of notation treating labels as
values: actually, the node sends a literal value that denotes the relevant label.

In the node 𝑁1, the process 𝑃1 performs the following actions:

∙ it sends a 𝑠𝑡𝑎𝑟𝑡 message to 𝑁𝑠0 ;

∙ it waits for its answer containing the sensed value by using the receive
primitives (ℓ𝑠0 ; 𝑧0). The constant ℓ𝑠0 denotes the label of the sender from
which the process is waiting for a message. Whereas the variable 𝑧𝑖 is
used to store the second value extracted from the received pair. Note that
the receive primitive carries out pattern matching, where the term on the
left of the semicolon is the constant ℓ𝑠0 . In practice, through this receive
operation 𝑃1 only accepts pairs whose first element is ℓ𝑠0 , when this is the
case it takes the second element of the message and stores it in the variable
𝑧0.

∙ 𝑃1 interacts with 𝑁𝑠1 , 𝑁𝑠2 , and 𝑁𝑠3 by following the same communication
schema. Note that we are modelling here a polling protocol similar to those
used in master-slave communications, e.g. in Bluetooth [29].

∙ When all the messages are received, 𝑃1 computes the average of the store-
house temperature with the function 𝑎𝑣𝑔 and sends it to the node 𝑁3.

∙ Then, it waits for messages coming from the node 𝑁3 (see below) and
indicating how to adjust the temperature of the storehouse through the
cooling system. As expected, (;𝑥𝑎𝑑) means that we perform no pattern
matching (the part on the left of the semicolon is empty) and that the
received data are stored in the variable 𝑥𝑎𝑑.

∙ Finally, before repeating its behaviour, 𝑃1 commands the actuator 𝐴0 to
execute the action just received.

In the specification of the node 𝑁2, the sensor 𝑅0 is defined following the
same schema of the sensors 𝑆𝑖 above, where 𝑟0 is its reserved location.

∙ The control process 𝑃2 waits for a 𝑏𝑒𝑔𝑖𝑛 message from 𝑁3;

∙ it reads a value from 𝑅0;

15

∙ it updates the stocktaking 𝑑𝑏 with the function 𝑢𝑝𝑑𝑎𝑡𝑒;

∙ finally, before repeating its behaviour, it sends the updated stocktaking to
the node 𝑁3.

The node 𝑁3 consists of a single control process 𝑃3 that

∙ receives the data on the temperature from 𝑁1;

∙ it sends a 𝑏𝑒𝑔𝑖𝑛 message to 𝑁2 in order to receive data on the stocktaking;

∙ then, it sends a message to 𝑁4 to log the temperature;

∙ afterwards, it checks whether the temperature is acceptable for the quantity
and the kind of the stored food by using the function 𝐴𝑐𝑡𝐷𝑒𝑐;

∙ depending on the result of this check, it sends a message to 𝑁1 containing
information about the proper actions to take on the cooling system.

We do not detail the specification of the node 𝑁4: it is made of a single
control process 𝑃4 that receives data from 𝑁3 and stores them into the Cloud
running the continuation 𝑅𝑐, left abstract.

Of course, the specification SmartStore𝑝 is not robust against an attacker
since all communications are in clear. In our second scenario we assume to enable
the nodes 𝑁𝑠1 and 𝑁𝑠3 to use cryptography for obtaining reliable data and to use
the redundancy schema sketched in Section 2. The specification implementing
this approach, call it SmartStore𝑐 (the corresponding system of nodes is
𝑁 𝑐), is shown in Figure 4. There are new versions of processes 𝑃𝑠𝑖 for 𝑖 ∈ {1, 3},
𝑃1 and 𝑃3. In the specification, all the prefixes are enriched by tags (blue in
the pdf), which are not part of the IoT-LySa language, but that will make the
development of Sections 3 and 4 easier and more understandable. We assume
that the cryptographic keys 𝑘𝑠1 and 𝑘𝑠3 are exchanged once and for all at deploy
time and that they do not change during the execution, as it is often the case.

Now the processes 𝑃𝑠𝑖 (with 𝑖 ∈ {1, 3}) encrypt the data through the con-
struct {ℓ𝑠𝑖 , 𝑠𝑖}𝑘𝑠𝑖

, just before sending the message. Consequently, the new process
𝑃1 of the node 𝑁1 receives messages, decrypts them and performs consistency
checks on the received data. The construct ({ℓ𝑠𝑖 , 𝑧𝑖}𝑘𝑠𝑖

) is a shorthand meaning
that the process receives an encrypted message, decrypts it by using the key
𝑘𝑠𝑖 and if the pattern matching on ℓ𝑠𝑖 succeeds the value extracted from the
message is assigned to the variable 𝑧𝑖. Consistency checks are implemented by
the function 𝑐𝑚𝑝. It compares temperatures coming from secure sensors with
the those from insecure ones and returns true if data are as expected, and
false otherwise. Then, the process sends the returned boolean together with
the average results to the node 𝑁3. The system is therefore designed in such a
way that it can tolerate that part of the communications are compromised.

In turn, the specification of the process 𝑃3 of 𝑁3 is updated as follows. It
receives a message consisting of two values and behaves differently depending
on the first value, i.e. the result of consistency check made by 𝑁1. The choice
between the different behaviour is expressed by the construct +. This construct

16

means that the process receives a message, and then carries out pattern matching
with the two guards (true;𝑥𝑎𝑣𝑔) and (false;𝑥𝑎𝑣𝑔) selecting the successful one.
In our case, if the consistency check on the temperature failed the process 𝑃3

sends a command 𝛾𝑐ℎ𝑒𝑐𝑘 to 𝑁1 and raises an alarm to the Cloud (false branch)
before sending the message to 𝑁2, otherwise it behaves as in the previous version
(true branch), sending an OK message to the Cloud.

Finally, another possible specification able to overcome the problem of an
attacker intercepting and manipulating messages could be the following (call
it ̂︀𝑁 𝑐). Assume to use cryptography just in one sensor node, say 𝑁𝑠1 , and
to perform consistency checks similar to the previous ones. In particular, the
comparison function is now halfcmp and behaves as 𝑐𝑚𝑝 above but it uses only
two arguments. The specification of the new variant of our systems becomes ̂︀𝑁 𝑐,
where the modified components come with a hat (̂︀):

̂︀𝑁𝑐 = 𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | ̂︀𝑁𝑠3 | ̂︀𝑁1 | 𝑁2 | 𝑁3 | 𝑁4̂︀𝑁𝑠3 = ℓ𝑠𝑖 : [Σ𝑠3 ‖ ̂︀𝑃𝑠3 ‖ 𝑆𝑠3]̂︀𝑃𝑠3 = (;𝑥𝑠𝑡𝑎𝑟𝑡3)
𝑠30.⟨⟨ℓ𝑠3 , 𝑠3⟩⟩ ◁ {ℓ1}

𝑠31. ̂︀𝑃𝑠3̂︀𝑁1 = ℓ1 : [Σ1 ‖ ̂︀𝑃1 ‖ 𝐴0]̂︀𝑃1 = ⟨⟨𝑠𝑡𝑎𝑟𝑡0⟩⟩ ◁ {ℓ𝑠0}
10.(ℓ𝑠0 ; 𝑧0)

11.⟨⟨𝑠𝑡𝑎𝑟𝑡1⟩⟩ ◁ {ℓ𝑠1}12.({ℓ𝑠1 ; 𝑧1}𝑘𝑠1
)13.

⟨⟨𝑠𝑡𝑎𝑟𝑡2⟩⟩ ◁ {ℓ𝑠2}
14.(ℓ𝑠2 ; 𝑧2)

15.⟨⟨𝑠𝑡𝑎𝑟𝑡3⟩⟩ ◁ {ℓ𝑠3}
16.(ℓ𝑠3 ; 𝑧3)

17.

⟨⟨halfcmp(𝑧0, 𝑧1), 𝑎𝑣𝑔(𝑧0, ..., 𝑧3)⟩⟩ ◁ {ℓ3}18.
(;𝑥𝑎𝑑)

19.⟨𝐴0, 𝑥𝑎𝑑⟩. 110 ̂︀𝑃1

3.4. Running the smart storehouse
We now show how the SmartStore𝑐 system described in Figure 5 runs.

To recall the association between transitions and involved prefixes, enhanced
labels are indexed with the tags of the corresponding prefixes.

For brevity, we ignore the sensors actions, and put together some consecutive
steps (this should be clear since we put multiple labels on the relation transition).

∙ The first block of transitions concerns 𝑁1 that collects data about the
temperature in the room by interacting with the sensor nodes 𝑁𝑠𝑖 , receives
the messages and decrypts the encrypted ones.

∙ The second block describes 𝑁1 that compares the received values (we
assume they are OK), computes their average and sends the results of its
computations to 𝑁3. Since the result of the checks done by 𝑁1 is OK, the
first branch of 𝑁3 is selected. Node 𝑁3 then asks 𝑁2 for information on
the stocktaking database. The sensor 𝑟0 of the node 𝑁2 senses a food box
entering the storehouse, thus the control process 𝑃2 updates its database
𝑑𝑏 and sends it to the node 𝑁3.

∙ In the third block, node 𝑁3 receives information from 𝑁2 concerning the
updates of the stocktaking database. Then, it computes the actuation
decision and sends it to 𝑁1. The process 𝑃1 of the node 𝑁1 receives the
decision and drives the actuator 𝐴0 to carry out the right actuation.

17

𝑁𝑐 = 𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁1 | 𝑁2 | 𝑁3 | 𝑁4

𝑁𝑠𝑖 = ℓ𝑠𝑖 : [Σ𝑠𝑖 ‖ 𝑃𝑠𝑖 ‖ 𝑆𝑠𝑖] where 𝑆𝑠𝑖 = 𝑠𝑖 := 𝑣𝑠𝑖 .𝜏.𝑆𝑠𝑖 𝑖 ∈ [0, 3]

𝑃𝑠𝑖 = (;𝑥𝑠𝑡𝑎𝑟𝑡𝑖)
𝑠𝑖0.⟨⟨ℓ𝑠𝑖 , 𝑠𝑖⟩⟩ ◁ {ℓ1}

𝑠𝑖1.𝑃𝑠𝑖 𝑖 ∈ [0, 2]

𝑃𝑠𝑖 = (;𝑥𝑠𝑡𝑎𝑟𝑡𝑖)
𝑠𝑖0.⟨⟨{ℓ𝑠𝑖 , 𝑠𝑖}𝑘𝑠𝑖

⟩⟩ ◁ {ℓ1}𝑠𝑖1.𝑃𝑠𝑖 𝑖 ∈ [1, 3]

𝑁1 = ℓ1 : [Σ1 ‖ 𝑃1 ‖ 𝐴0]

𝑃1 = ⟨⟨𝑠𝑡𝑎𝑟𝑡0⟩⟩ ◁ {ℓ𝑠0}
10.(ℓ𝑠0 ; 𝑧0)

11.⟨⟨𝑠𝑡𝑎𝑟𝑡1⟩⟩ ◁ {ℓ𝑠1}
12.({ℓ𝑠1 ; 𝑧1}𝑘𝑠1

)13.

⟨⟨𝑠𝑡𝑎𝑟𝑡2⟩⟩ ◁ {ℓ𝑠2}
14.(ℓ𝑠2 ; 𝑧2)

15.⟨⟨𝑠𝑡𝑎𝑟𝑡3⟩⟩ ◁ {ℓ𝑠3}
16.({ℓ𝑠3 ; 𝑧3}𝑘𝑠3

)17.

⟨⟨𝑐𝑚𝑝(𝑧0, 𝑧1, 𝑧2, 𝑧3), 𝑎𝑣𝑔(𝑧0, 𝑧1, 𝑧2, 𝑧3)⟩⟩ ◁ {ℓ3}18.
(;𝑥𝑎𝑑)

19.⟨𝐴0, 𝑥𝑎𝑑⟩. 110𝑃1

𝑁2 = ℓ2 : [Σ2 ‖ 𝑃2 ‖ 𝑅0] where 𝑅0 = 𝑟0 := 𝑤.𝜏.𝑅0

𝑃2 = (;𝑥𝑏𝑒𝑔𝑖𝑛2)
20.𝑑𝑏 := 𝑢𝑝𝑑𝑎𝑡𝑒(𝑑𝑏, 𝑟0)

21.⟨⟨𝑑𝑏⟩⟩ ◁ {ℓ3}22.𝑃2

𝑁3 = ℓ3 : [Σ3 ‖ 𝑃3]

𝑃3 = (true;𝑥𝑎𝑣𝑔)
300.⟨⟨𝑏𝑒𝑔𝑖𝑛2⟩⟩ ◁ {ℓ2}310.(;𝑥𝑑𝑏)

320.⟨⟨𝑎𝑐𝑡𝐷𝑒𝑐(𝑥𝑎𝑣𝑔, 𝑥𝑑𝑏)⟩⟩ ◁ {ℓ1}330.
⟨⟨ok, 𝑥𝑎𝑣𝑔⟩⟩ ◁ {ℓ4}340.𝑃3 +

(false;𝑥𝑎𝑣𝑔)
301.⟨⟨𝑏𝑒𝑔𝑖𝑛2⟩⟩ ◁ {ℓ2}311.(;𝑥𝑑𝑏)

321.⟨⟨𝛾𝑐ℎ𝑒𝑐𝑘⟩⟩ ◁ {ℓ1}331.
⟨⟨alarm, 𝑥𝑎𝑣𝑔⟩⟩ ◁ {ℓ4}341.𝑃3

𝑁4 = ℓ4 : [Σ4 ‖ 𝑃4]
𝑃4 = (;𝑤𝑟𝑒𝑠, 𝑤𝑎𝑣𝑔)

40.𝑅𝑐.𝑃4

Figure 4: An IoT-LySa specification for SmartStore𝑐 (with security).

∙ Finally, in the fourth block, 𝑁3 sends an ok message to 𝑁4. Note that the
initial system evolves but it will always finally return to its initial form.

Consider the second version of our storehouse system. The run corresponding
to the one above is similar except for the following actions concerning the first
part where the node 𝑁1 collects data:

̂︀𝑁 𝑐 𝜃10−→𝜃𝑆00−→ ...
𝜃𝑆31−→ ...

𝜃17−→ 𝜃18−→
𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁 𝐼𝑋

1 | 𝑁3

In particular,

𝜃11 = 𝜃15 = 𝜃17 = ℓ𝑠𝑖 ◁ ℓ1⟨⟨⟨ℓ𝑠𝑖 , 𝑣𝑖⟩⟩, (ℓ𝑠𝑖 ; 𝑧𝑖)⟩ 𝑖 ∈ {0, 2, 3}
𝜃18 = ℓ1⟨⟨⟨ℎ𝑎𝑙𝑓𝑐𝑚𝑝(𝑣0, 𝑣1), 𝑎𝑣𝑔(𝑣0, · · · , 𝑣3)⟩⟩⟩
𝜃𝑠00 = 𝜃𝑠20 = 𝜃𝑠30 = ℓ1 ◁ ℓ𝑠𝑖⟨⟨⟨𝑠𝑡𝑎𝑟𝑡𝑖⟩⟩, (;𝑥𝑠𝑡𝑎𝑟𝑡𝑖)⟩
𝜃𝑡𝑎𝑔 = 𝜃𝑡𝑎𝑔 in all the other cases

4. Stochastic Semantics

We now show how to generate a Continuous Time Markov Chain (CTMC)
from a transition system (see [15] for more details). First, we introduce functions

18

𝑁𝑐 = 𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁1 | 𝑁2 | 𝑁3 | 𝑁4

𝜃10−→𝜃𝑆00−→𝜃𝑆01−→ 𝜃11−→ 𝜃12−→𝜃𝑆10−→𝜃𝑆11−→ 𝜃13−→ 𝜃14−→𝜃𝑆20−→𝜃𝑆21−→ 𝜃15−→ 𝜃16−→𝜃𝑆30−→𝜃𝑆31−→ 𝜃17−→
𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁𝑉 𝐼𝐼𝐼

1 | 𝑁2 | 𝑁3 | 𝑁4

𝜃18−→𝜃30𝑖−→𝜃31𝑖−→ 𝜃20−→ 𝜃21−→ 𝜃22−→
𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁𝐼𝑋

1 | 𝑁2 | 𝑁𝐼𝐼𝐼
30 | 𝑁4

𝜃320−→𝜃330−→𝜃340−→
𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁𝐼𝑋

1 | 𝑁2 | 𝑁3 | 𝑁4
𝜃19−→ 𝜃20−→
𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁1 | 𝑁2 | 𝑁3 | 𝑁4
𝜃40−→
𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁1 | 𝑁2 | 𝑁3 | 𝑁𝐼

4

where

𝜃10 = 𝜃12 = 𝜃14 = 𝜃16 = ℓ1⟨⟨⟨𝑠𝑡𝑎𝑟𝑡𝑖⟩⟩⟩ 𝑖 ∈ [0, 3]
𝜃𝑠𝑖0 = ℓ1 ◁ ℓ𝑠𝑖⟨⟨⟨𝑠𝑡𝑎𝑟𝑡𝑖⟩⟩, (;𝑥𝑠𝑡𝑎𝑟𝑡𝑖)⟩ 𝑖 ∈ [0, 3]
𝜃𝑠𝑖1 = ℓ𝑠𝑖⟨⟨ℓ𝑠𝑖 , 𝑠𝑖⟩⟩ 𝑖 ∈ {0, 2}
𝜃𝑠𝑖1 = ℓ𝑠𝑖⟨⟨{ℓ𝑠𝑖 , 𝑠𝑖}𝑘𝑠𝑖

⟩⟩ 𝑖 ∈ {1, 3}
𝜃11 = 𝜃15 = ℓ𝑠𝑖 ◁ ℓ1⟨⟨⟨ℓ𝑠𝑖 , 𝑣𝑖⟩⟩, (ℓ𝑠𝑖 ; 𝑧𝑖)⟩ 𝑖 ∈ {0, 2}
𝜃13 = 𝜃17 = ℓ𝑠𝑖 ◁ ℓ1⟨⟨⟨{ℓ𝑠𝑖 , 𝑣𝑖}𝑘𝑠𝑖

⟩⟩, ({ℓ𝑠𝑖 ; 𝑧𝑖}𝑘𝑠𝑖
)⟩ 𝑖 ∈ {1, 3}

where 𝑣𝑖 = [[𝑠𝑖]]Σ𝑠𝑖

𝜃18 = ℓ1⟨⟨⟨𝑐𝑚𝑝(𝑣0, · · · , 𝑣3), 𝑎𝑣𝑔(𝑣0, · · · , 𝑣3)⟩⟩⟩
𝜃300 = ℓ1 ◁ ℓ3⟨⟨⟨true, 𝑣𝑚⟩⟩, (true;𝑥𝑎𝑣𝑔)⟩

where true = [[𝑐𝑚𝑝(𝑧0, ..., 𝑧3)]]Σ𝑉 𝐼𝐼𝐼
1

∧ 𝑣𝑚 = [[𝑎𝑣𝑔(𝑧0, ..., 𝑧3)]]Σ𝑉 𝐼𝐼𝐼
1

𝜃310 = ℓ3⟨⟨⟨𝑏𝑒𝑔𝑖𝑛2⟩⟩⟩
𝜃20 = ℓ3 ◁ ℓ2⟨⟨⟨𝑏𝑒𝑔𝑖𝑛2⟩⟩, (;𝑥𝑏𝑒𝑔𝑖𝑛2)⟩
𝜃21 = ℓ2⟨𝑠𝑡𝑜𝑟𝑒(𝑢𝑝𝑑𝑎𝑡𝑒(𝑑𝑏, 𝑟0))⟩
𝜃22 = ℓ2⟨⟨⟨𝑑𝑏⟩⟩⟩

𝜃320 = ℓ2 ◁ ℓ3⟨⟨⟨𝑣𝑑𝑏⟩⟩, (𝑥𝑑𝑏)⟩
where 𝑣𝑑𝑏 = [[𝑑𝑏]]Σ𝐼𝐼

2

𝜃330 = ℓ3⟨⟨⟨𝐴𝑐𝑡𝐷𝑒𝑐(𝑥𝑎𝑣𝑔, 𝑥𝑑𝑏)⟩⟩⟩
𝜃340 = ℓ3⟨⟨⟨ok, 𝑥𝑎𝑣𝑔⟩⟩⟩
𝜃19 = ℓ3 ◁ ℓ1⟨⟨⟨𝑣𝑎𝑑, (;𝑥𝑎𝑑)⟩⟩⟩

where 𝑣𝑎𝑑 = [[𝐴𝑐𝑡𝐷𝑒𝑐(𝑥𝑎𝑣𝑔, 𝑥𝑑𝑏)]]Σ′
3

𝜃110 = ℓ1⟨𝑑𝑜(𝐴0, 𝑣𝑎𝑑)⟩

𝜃40 = ℓ3 ◁ ℓ4⟨⟨⟨ok, 𝑣𝑎𝑣𝑔⟩⟩, (;𝑤𝑟𝑒𝑠, 𝑤𝑎𝑣𝑔)⟩
where 𝑣𝑎𝑣𝑔 = [[𝑥𝑎𝑣𝑔]]Σ𝐼

3

Figure 5: A run of the SmartStore𝑐 system.

19

on the enhanced labels to associate costs with transitions. In general costs can
be measured in terms of the resources of interest. Here, we focus on the time.
In particular, the cost of a system is specified in terms of the time spent on
transitions, and it depends on the performed action as well as on the involved
nodes. Intuitively, cost functions define exponential distributions, from which
we compute the rates at which a system evolves and the corresponding CTMC.
Then, to evaluate the performance we calculate the stationary distribution of
the CTMC and the transition rewards. Moreover, we define a bisimulation-
based equivalence that can be exploited to compare the performance of different
specifications. In the next section, we will consider the energy.

4.1. Cost Functions
Our cost functions assign a rate to each transition with label 𝜃 ∈ Θ. To define

this rate, we suppose to execute each action on a dedicated architecture that only
performs that action, and we estimate the corresponding duration. To model the
performance degradation due to the run-time support, we introduce a scaling
factor for each routine called by the implementation under consideration. Here,
we just propose a format for these functions, with parameters that depend on the
nodes to be instantiated on need. For instance, in a node where the cryptographic
operations are performed at very high speed (e.g. by a cryptographic accelerator),
but with a slow link (low bandwidth), the time will be low for encryptions and
high for communication; vice versa, in a node offering a high bandwidth, but
poor cryptography resources, the required time will be high for encryptions and
low for communication.

Technically, we interpret costs as parameters of exponential distributions
𝐹 (𝑡) = 1 − 𝑒−𝑟𝑡, with rate 𝑟 and 𝑡 as time parameter (general distributions
are also possible see [30]): the transition rate 𝑟 is the parameter that identifies
the exponential distribution of the duration times of the transition, as usual in
stochastic process algebras (e.g. [31]). The shape of 𝐹 (𝑡) is a curve that grows
from 0 asymptotically approaching 1 for positive values of its argument 𝑡. The
parameter 𝑟 determines the slope of the curve: the greater the rate 𝑟, the faster
the time in which 𝐹 (𝑡) approaches its asymptotic value, and therefore the faster
the speed of the corresponding transition. The exponential distributions that we
use enjoy the memoryless property, i.e. the occurrence of a new transition does
not depend on when the last transition occurred. We also assume that transitions
are time homogeneous, i.e. that the corresponding rates do not depend on the
time at which they occur.

We first associate costs with terms, and then we define the functions that
associates rates with the (enhanced labels of) transitions. Even though we are
mainly interested in the costs of communications and in the computational ones
due to the application of aggregation functions and of encryption and decryption,
we initially associate costs with every possible activity. We need the auxiliary

20

function 𝑓𝐸 : ℰ → IR+ that estimates the effort needed to manipulate terms.

∙ 𝑓𝐸(𝑣) = 𝑓𝑙𝑜𝑎𝑑(𝑣)
∙ 𝑓𝐸(𝑖) = 𝑓𝑙𝑜𝑎𝑑(𝑖)
∙ 𝑓𝐸(𝑥) = 𝑓𝑙𝑜𝑎𝑑(𝑥)
∙ 𝑓𝐸(fun(𝐸1, ..., 𝐸𝑚)) = 𝑓fun(𝑓𝐸(𝐸1), ..., 𝑓𝐸(𝐸𝑚))
∙ 𝑓𝐸({𝐸1, . . . , 𝐸𝑚}𝑘0

) = 𝑓𝑒𝑛𝑐(𝑓𝐸(𝐸1), ..., 𝑓𝐸(𝐸𝑚), 𝑐𝑟𝑦𝑝𝑡𝑜_𝑠𝑦𝑠𝑡𝑒𝑚, 𝑘𝑖𝑛𝑑(𝑘0))

Manipulating a non composed term has the cost of loading it, while the cost of
a composed term depends on the cost of its components and on the particular
function applied to it. In the case of encryption, we use the function 𝑓𝑒𝑛𝑐, which
also depends on the used crypto-system and on the kind (short/long, short-
term/long-term) of the key.

We now present the functions $𝛼 : Θ𝐵 → IR+ and $𝑡 : Θ → IR+ to assign
costs to enhanced labels.

∙ $𝛼(𝑠𝑒𝑛𝑠(𝑖)) = 𝑓𝑠𝑒𝑛𝑠(𝑖)
∙ $𝛼(𝑠𝑡𝑜𝑟𝑒(𝐸)) = 𝑓𝑠𝑡𝑜𝑟𝑒(𝐸)
∙ $𝛼(⟨⟨𝐸1, ..., 𝐸𝑚⟩⟩) = 𝑓𝑜𝑢𝑡(𝑓𝐸(𝐸1), ..., 𝑓𝐸(𝐸𝑚), 𝑏𝑤)
∙ $𝛼(𝑑𝑜(𝑗, 𝛾)) = 𝑓𝑡𝑟𝑖𝑔(𝑗)
∙ $𝛼(𝑎𝑐𝑡(𝛾)) = 𝑓𝑎𝑐𝑡(𝛾)
∙ $𝛼(𝑖𝑛𝑡) = 𝜆
∙ $𝛼(𝑑𝑒𝑐(𝐸, {𝐸′

1, · · · , 𝐸′
𝑗 ;𝑥𝑗+1, · · · , 𝑥𝑚}𝑘0)) =

𝑓𝑑𝑒𝑐(𝑓𝐸(𝐸), 𝑓𝐸(𝐸1), ..., 𝑓𝐸(𝐸𝑗), 𝑐𝑟𝑦𝑝𝑡𝑜_𝑠𝑦𝑠𝑡𝑒𝑚, 𝑘𝑖𝑛𝑑(𝐾0), 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑀𝑎𝑡𝑐ℎ(𝑗))

∙ $𝑡(ℓ 𝜃𝐵) = 𝑓()(ℓ) · $𝛼(𝜃𝐵)
∙ $𝑡(ℓ𝑂 ◁ ℓ𝐼 ⟨⟨⟨𝐸1, ..., 𝐸𝑚⟩⟩, (𝐸1, · · · , 𝐸𝑗 ;𝑥𝑗+1, · · · , 𝑥𝑚)⟩) =

𝑓<>(ℓ𝑂, ℓ𝐼) · 𝑓𝑖𝑛(𝑓𝐸(𝐸1), ..., 𝑓𝐸(𝐸𝑗), 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑀𝑎𝑡𝑐ℎ(𝑗), 𝑏𝑤)

where the functions 𝑓𝑠𝑒𝑛𝑠, 𝑓𝑠𝑡𝑜𝑟𝑒, 𝑓𝑡𝑟𝑖𝑔, 𝑓𝑎𝑐𝑡 define the costs of the routines that
implement sensing, storing, triggering, and actuating; while 𝜆 is the cost of an
internal action. The functions 𝑓𝑜𝑢𝑡 and 𝑓𝑖𝑛 define the costs of the routines that
implement the send and receive primitives. Besides the implementation cost due
to their own algorithms, the functions above depend on the bandwidth of the
channel (represented by 𝑏𝑤), on the cost of the exchanged terms (computed by
𝑓𝐸), and on the nodes involved in the communication. Also, the cost of an input
depends on the number of required matchings (represented by 𝑚𝑎𝑡𝑐ℎ(𝑗)). The
function 𝑓𝑑𝑒𝑐 defines the cost of the decryption routine: its cost is similar to the
one for encryption, with the additional cost of matchings.

The costs associated to labels 𝜃𝐵 only take into account the low-level opera-
tions corresponding to the actions, independently of the context, i.e. the node
in which they are performed. The cost associated to a label ℓ 𝜃𝐵 also considers
in which node the action is performed, by using the function 𝑓()(ℓ). Nodes can
indeed have different costs for the same activity.

Finally, in the inter-node communication the two partners independently per-
form some low-level operations locally to their nodes, labelled ℓ𝑂 and ℓ𝐼 . Hence,
the cost also depends on the nodes involved in the communication, represented

21

𝑁𝑠 = 𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁1 | 𝑁2 | 𝑁3 | 𝑁4

𝑁𝑠𝑖 = ℓ𝑠𝑖 : [Σ𝑠𝑖 ‖ 𝑃𝑠𝑖 ‖ 𝑆𝑠𝑖] where 𝑆𝑠𝑖 = 𝑠𝑖 := 𝑣𝑠𝑖 .𝜏.𝑆𝑠𝑖 𝑖 ∈ [0, 3]

𝑃𝑠𝑖 = (;𝑥𝑠𝑡𝑎𝑟𝑡𝑖)
𝑠𝑖0.⟨⟨ℓ𝑠𝑖 , 𝑠𝑖⟩⟩ ◁ {ℓ1}

𝑠𝑖1.𝑃𝑠𝑖 𝑖 ∈ [0, 2]

𝑃𝑠𝑖 = (;𝑥𝑠𝑡𝑎𝑟𝑡𝑖)
𝑠𝑖0.⟨⟨{ℓ𝑠𝑖 , 𝑠𝑖}𝑘𝑠𝑖

⟩⟩ ◁ {ℓ1}𝑠𝑖1.𝑃𝑠𝑖 𝑖 ∈ [1, 3]

𝑁1 = ℓ1 : [Σ1 ‖ 𝑃1 ‖ 𝐴0]

𝑃1 = ⟨⟨𝑠𝑡𝑎𝑟𝑡0⟩⟩ ◁ {ℓ𝑠0}
10.(ℓ𝑠0 ; 𝑧0)

11.⟨⟨𝑠𝑡𝑎𝑟𝑡1⟩⟩ ◁ {ℓ𝑠1}
12.({ℓ𝑠1 ; 𝑧1}𝑘𝑠1

)13.

⟨⟨𝑠𝑡𝑎𝑟𝑡2⟩⟩ ◁ {ℓ𝑠2}
14.(ℓ𝑠2 ; 𝑧2)

15.⟨⟨𝑠𝑡𝑎𝑟𝑡3⟩⟩ ◁ {ℓ𝑠3}
16.({ℓ𝑠3 ; 𝑧3}𝑘𝑠3

)17.

⟨⟨𝑐𝑚𝑝(𝑧0, 𝑧1, 𝑧2, 𝑧3), 𝑎𝑣𝑔(𝑧0, 𝑧1, 𝑧2, 𝑧3)⟩⟩ ◁ {ℓ3}18.
(;𝑥𝑎𝑑)

19.⟨𝐴0, 𝑥𝑎𝑑⟩. 110𝑃1

𝑁3 = ℓ3 : [Σ3 ‖ 𝑃3]

𝑃3 = (true;𝑥𝑎𝑣𝑔)
300.⟨⟨𝑎𝑐𝑡𝐷𝑒𝑐(𝑥𝑎𝑣𝑔)⟩⟩ ◁ {ℓ1}330.𝑃3 +

(false;𝑥𝑎𝑣𝑔)
301.⟨⟨𝛾𝑐ℎ𝑒𝑐𝑘⟩⟩ ◁ {ℓ1}331.𝑃3

Figure 6: The simplified version of IoT-LySa specification for SmartStore𝑐 (with security).

here by the function 𝑓<>(ℓ𝑂, ℓ𝐼). In particular, it may depend on the level of
interference in the neighbourhood of the nodes that, in turn, affects the duration
of the channel arbitration at the MAC layer of the communication subsystem.
It could also depend on other parameters such as the communication medium,
latency and so on.

These costs represent the time spent performing the corresponding action,
with the intuition that the lower the rate, the greater the time needed to complete
an action and therefore the slower the speed of the transition.

For simplicity, we ignore the costs for other primitives, e.g. constant invoca-
tion, parallel composition, summation (see [15] for a complete treatment).

Note that we do not fix the actual cost function: we only propose for it a
set of parameters to reflect some features of an idealised architecture. Although
very abstract, this suffices to make our point. A precise instantiation comes with
the refinement steps from specification to implementations as soon as actual
parameters become available.

4.2. Smart storehouse example (cont’d)
In order to make our performance analysis easier to be presented, we will

consider the simplified version of our system SmartStore𝑐 (still denoted with
𝑁 𝑐 for simplicity), as described in Figure 6, where the tags coincide with the
ones in the corresponding prefixes in Figure 4. The whole enhanced transition
system follows, where transitions with tags 𝑠30𝑖 and 𝑠33𝑖 succinctly represent
the transitions tagged with 𝑠300, 𝑠330, and 𝑠301, 𝑠331, respectively.

22

𝑁𝑐 𝜃10−→𝜃𝑆00−→𝜃𝑆01−→ 𝜃11−→ 𝜃12−→𝜃𝑆10−→𝜃𝑆11−→ 𝜃13−→ 𝜃14−→𝜃𝑆20−→𝜃𝑆21−→ 𝜃15−→ 𝜃16−→𝜃𝑆30−→𝜃𝑆31−→ 𝜃17−→ 𝜃18−→

𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁𝐼𝑋
1 | 𝑁3

𝜃30𝑖−→
{︂

𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁𝐼𝑋
1 | 𝑁𝐼

30 if 𝑖 = 0
𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁𝐼𝑋

1 | 𝑁𝐼
31 if 𝑖 = 1

𝜃33𝑖−→ 𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁𝐼𝑋
1 | 𝑁3 𝑖 ∈ {0, 1}

𝜃19−→𝜃110−→
𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁1 | 𝑁3 = 𝑁𝑐

Analogously, we consider the simplified version of the second process ̂︀𝑁 𝑐. Its
evolution is similar to the one of 𝑁 𝑐. In particular:

𝜃𝑠31 = ℓ𝑠3⟨⟨ℓ𝑠3 , 𝑠3⟩⟩
𝜃17 = ℓ𝑠1 ◁ ℓ1⟨⟨⟨{ℓ𝑠1 , 𝑣1}𝑘𝑠1

⟩⟩, ({ℓ𝑠1 ; 𝑧1}𝑘𝑠1
)⟩

𝜃18 = ℓ1⟨⟨⟨𝑐𝑚𝑝(𝑣0, · · · , 𝑣3), 𝑎𝑣𝑔(𝑣0, · · · , 𝑣3)⟩⟩⟩
𝜃𝑡𝑎𝑔 = 𝜃𝑡𝑎𝑔 in all the other cases

We now associate a rate with each transition in the transition system of 𝑁 𝑐.
To illustrate our methodology, we assume that the coefficients due to the nodes
amount to 1, i.e. 𝑓()(ℓ) = 1 and 𝑓<>(ℓ, ℓ′) = 1 for each ℓ, ℓ′ in ℒ.

We instantiate the cost functions defined above, in terms of the following
symbolic parameters: (𝑖) lo (st) for the loading (storing) of a simple, i.e. not
composed term 𝐸𝑠𝑖𝑚𝑝𝑙𝑒; (𝑖𝑖) f for the application of the aggregate function fun,
whose cost is proportional to the number of its arguments; (𝑖𝑖𝑖) e and d for
encrypting and for decrypting; (𝑖𝑣) s and r for sending and for receiving; (𝑣) ma
for pattern matching; and (𝑣𝑖) t for commanding an action to an actuator; (𝑣𝑖𝑖)
𝜎 and 𝛼 for sensing and actuating. Given these parameters, the instantiation of
the cost functions is the following.

∙ 𝑓𝐸(𝐸𝑠𝑖𝑚𝑝𝑙𝑒) = lo

∙ 𝑓𝐸(𝑓𝑢𝑛(𝐸1, . . . , 𝐸𝑚) =
∑︀𝑚

𝑖=1 𝑓𝐸(𝐸𝑖) + 𝑚 · f
∙ 𝑓𝐸({𝐸1, . . . , 𝐸𝑚}𝑘0

) =
∑︀𝑚

𝑖=1 𝑓𝐸(𝐸𝑖) + 𝑚 · e

∙ $𝑡(ℓ 𝑠𝑒𝑛𝑠) = 𝜎
∙ $𝑡(ℓ 𝑎𝑐𝑡(𝑥𝑎𝑑)) = 𝛼
∙ $𝑡(ℓ 𝑑𝑜(𝑗, 𝛾)) = t

∙ $𝑡(ℓ 𝑠𝑡𝑜𝑟𝑒(𝐸)) = 𝑓𝐸(𝐸) + st

∙ $𝑡(ℓ ⟨⟨𝐸1, . . . , 𝐸𝑚⟩⟩) =
∑︀𝑚

𝑖=1 𝑓𝐸(𝐸𝑖) + 𝑚 · s
∙ $𝑡(ℓ𝑂 ◁ ℓ𝐼 ⟨⟨⟨𝑣1, . . . , 𝑣𝑚⟩⟩), (𝐸1, · · · , 𝐸𝑗 ;𝑥𝑗+1, · · · , 𝑥𝑚)⟩) =∑︀𝑗

𝑖=1 𝑓𝐸(𝐸𝑖) + 𝑚 · r + 𝑗 · ma

∙ $𝑡(ℓ ⟨⟨{𝐸1, 𝐸2}𝑘)⟩⟩) = 𝑓𝐸({𝐸1, 𝐸2}𝑘) + s

∙ $𝑡(ℓ𝑂 ◁ ℓ𝐼 ⟨⟨⟨{𝐸1, 𝐸2}𝑘⟩⟩, ({𝐸1;𝑥2}𝑘)⟩) = 𝑓𝐸(𝐸1) + r + 2 · d + ma

For the sake of simplicity, we ignore the costs of sensing from the environment
and the cost of taking actions of actuators. Both costs in our scenario can be
covered by the remaining computational costs.

23

The rates of the transitions of 𝑁 𝑐 and ̂︀𝑁 𝑐 are 𝑐𝑡𝑎𝑔 = $𝑡(𝜃𝑡𝑎𝑔) and 𝑐𝑡𝑎𝑔 =

$𝑡(𝜃𝑡𝑎𝑔) and are described below. Recall that the greater the rate, the faster the
speed of the transition.

𝑐10 = 𝑐12 = 𝑐14 = 𝑐16 = $𝑡(ℓ1⟨⟨⟨𝑠𝑡𝑎𝑟𝑡𝑖⟩⟩⟩) = 1
lo+s

𝑖 ∈ [0, 3]

𝑐𝑠𝑖0 = $𝑡(ℓ1 ◁ ℓ𝑠𝑖⟨⟨⟨𝑠𝑡𝑎𝑟𝑡𝑖⟩⟩, (;𝑥𝑠𝑡𝑎𝑟𝑡𝑖)⟩) = 1
lo+r

𝑖 ∈ [0, 3]

𝑐𝑠𝑖1 = $𝑡(ℓ𝑠𝑖⟨⟨ℓ𝑠𝑖 , 𝑠𝑖⟩⟩) = 1
2·(lo+s) 𝑖 ∈ {0, 2}

𝑐𝑠𝑖1 = $𝑡(ℓ𝑠𝑖⟨⟨{ℓ𝑠𝑖 , 𝑠𝑖}𝑘𝑠𝑖
⟩⟩) = 1

2·(lo+e)+s
𝑖 ∈ {1, 3}

𝑐11 = 𝑐15 = $𝑡(ℓ𝑠𝑖 ◁ ℓ1⟨⟨⟨ℓ𝑠𝑖 , 𝑣𝑖⟩⟩, (ℓ𝑠𝑖 ; 𝑧𝑖)⟩) = 1
lo+2·r+ma

𝑖 ∈ {0, 2}
𝑐13 = 𝑐17 = $𝑡(ℓ𝑠𝑖 ◁ ℓ1⟨⟨⟨{ℓ𝑠𝑖 , 𝑣𝑖}𝑘𝑠𝑖

⟩⟩, ({ℓ𝑠𝑖 ; 𝑧𝑖}𝑘𝑠𝑖
)⟩) = 1

lo+r+2·d+ma
𝑖 ∈ {1, 3}

𝑐18 = $𝑡(ℓ1⟨⟨⟨𝑐𝑚𝑝(𝑧0, · · · , 𝑧3), 𝑎𝑣𝑔(𝑧0, · · · , 𝑧3)⟩⟩⟩) = 1
8·(lo+f)+2·s

𝑐30𝑖 = $𝑡(ℓ1 ◁ ℓ3⟨⟨⟨booli, 𝑣𝑚⟩⟩, (𝑏𝑜𝑜𝑙𝑖;𝑥𝑎𝑣𝑔)⟩) = 1
lo+m+2·r

𝑐330 = $𝑡(ℓ3⟨⟨⟨𝐴𝑐𝑡𝐷𝑒𝑐(𝑥𝑎𝑣𝑔)⟩⟩⟩) = 1
lo+f+s

𝑐331 = $𝑡(ℓ3⟨⟨⟨𝛾𝑐ℎ𝑒𝑐𝑘⟩⟩⟩) = 1
lo+s

𝑐19 = $𝑡(ℓ3 ◁ ℓ1⟨⟨⟨𝑣𝑎𝑑⟩⟩, (;𝑥𝑎𝑑)⟩) = 1
lo+r

𝑐110 = $𝑡(ℓ1⟨𝑑𝑜(𝐴0, 𝑣𝑎𝑑)⟩) = 1
t

𝑐𝑠31 = $𝑡(ℓ𝑠3⟨⟨ℓ𝑠3 , 𝑠3⟩⟩) = 1
2·(lo+s)

𝑐17 = $𝑡(ℓ𝑠1 ◁ ℓ1⟨⟨⟨{ℓ𝑠1 , 𝑣1}𝑘𝑠1
⟩⟩, ({ℓ𝑠1 ; 𝑧1}𝑘𝑠1

)⟩) = 1
lo+r+2·d+ma

𝑐18 = $𝑡(ℓ1⟨⟨⟨halfcmp(𝑧0, 𝑧1), 𝑎𝑣𝑔(𝑧0, · · · , 𝑧3)⟩⟩⟩) = 1
6·(lo+f)+2·s

𝑐𝑡𝑎𝑔 = 𝑐𝑡𝑎𝑔 in all the other cases

4.3. Stochastic Analysis
By using the above rates, we can now transform the transition system 𝑁

into its corresponding 𝐶𝑇𝑀𝐶(𝑁). We recall that the exponential distributions
we use enjoy the memoryless property and are time-homogeneous. Afterwards,
we can calculate the actual performance measures, by using reward structures
(see [32] for more details on the theory of stochastic processes).

Markov Chains. First, we summarise some notions used in the CMTC derivation.
We start by the definition of transition rate, i.e. the rate at which a system evolves
from 𝑁𝑖 to 𝑁𝑗 that amounts to the sum of the single rates 𝜃𝑘 of all the possible
transitions from 𝑁𝑖 to 𝑁𝑗 (if 𝑁𝑗 cannot be reached in one step, the rate is 0).

Definition 3. The transition rate 𝑞(𝑁𝑖, 𝑁𝑗) between two systems 𝑁𝑖 and 𝑁𝑗 is
defined as follows

𝑞(𝑁𝑖, 𝑁𝑗) =
∑︁
𝜃𝑘

$𝑡(𝜃𝑘) where 𝑁𝑖
𝜃𝑘−→ 𝑁𝑗

Given a transition system 𝑁 , the corresponding CTMC has a state for each
node in 𝑁 , and the arcs between states are obtained by coalescing all the arcs
with the same source and target in 𝑁 . The rates at which the system evolves
from one state to another can be arranged in a matrix Q, called the generator

24

matrix. Apart from its diagonal, it corresponds to the adjacency matrix of the
graph that represents the CTMC considered. Note that 𝑞(𝑁𝑖, 𝑁𝑗) coincides with
the off-diagonal element 𝑞𝑖𝑗 of the generator matrix Q. Hence, hereafter we will
use both CTMC and its corresponding Q to denote a Markov chain.

Definition 4. Given a system 𝑁 and its transition system. Then, the generator
matrix 𝑄 of the continuous time Markov chain of N (called 𝐶𝑇𝑀𝐶(𝑁)) is a
[𝑛× 𝑛] square matrix with elements 𝑞𝑖𝑗 defined as follows.

𝑞𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝑞(𝑁𝑖, 𝑁𝑗) =

∑︀
𝜃𝑘

$𝑡(𝜃𝑘) if 𝑖 ̸= 𝑗 ∧ 𝑁𝑖
𝜃𝑘−→ 𝑁𝑗

−
𝑛∑︀

𝑗=0,𝑗 ̸=𝑖

𝑞𝑖𝑗 if 𝑖 = 𝑗

Each entry 𝑞𝑖𝑗 defines the instantaneous transition rate from 𝑁𝑖 to 𝑁𝑗 in terms
of the transitions outgoing from 𝑁𝑖. The total transition rate between two states
is the sum of the rates of the transitions connecting the corresponding nodes in
the transition system. The diagonal entries are such that the sum of all rows is
zero. Hence, we can directly define the graph CTMC associated with a system.

Definition 5. Given a transition system associated with a system 𝑁 , we define
the continuous time Markov chain 𝐶𝑇𝑀𝐶(𝑁) of 𝑁 as the labelled transition
system, whose transition relation is the minimal relation defined as follows

𝑁𝑖
𝜃𝑘−→ 𝑁𝑗

𝑁𝑖
𝑞𝑖𝑗−→ 𝑁𝑗

where 𝑞𝑖𝑗 is defined as in Definition 4.

It is possible to show (see [15]) that the definitions above are correct, i.e. that
they coincide (apart from the diagonal) and that 𝐶𝑇𝑀𝐶(𝑁) is actually a con-
tinuous time Markov chain.

The conditional transition rate from 𝑁𝑖 to 𝑁𝑗 , via an action labelled 𝜃, is the
sum of the activity rates decorating arcs that connect the corresponding nodes
in the derivation graph which are also labelled by the action of kind 𝜃. It is the
rate at which a system that behaves as component 𝑁𝑖 evolves to behaving as
component 𝑁𝑗 as the result of completing an activity of kind 𝜃.

Definition 6. The conditional transition rate 𝑞(𝑁𝑖, 𝜃,𝑁𝑗) between two systems
𝑁𝑖 and 𝑁𝑗 is defined as follows

𝑞(𝑁𝑖, 𝜃,𝑁𝑗) =
∑︁

𝑁𝑖
𝜃−→𝑁𝑗

$𝑡(𝜃)

Evaluating the Performance. Performance analysis usually has to do with the
behaviour of systems over long periods of time, necessary for the system to reach
a sort of regular pattern of behaviour. Statistically speaking, the system reaches
the equilibrium. For this reason, to evaluate the performance of 𝑁 , we need to
obtain the stationary distribution for the 𝐶𝑀𝑇𝐶(𝑁).

25

Definition 7. A Continuous Time Markov Chain has a stationary probability
distribution Π = (𝑋0, . . . , 𝑋𝑛−1) if

Π𝑇Q = 0 ∧
𝑛∑︁

𝑖=0

𝑋𝑖 = 1

The stationary probability distribution can be found by using the normalisation
condition

∑︀𝑛
𝑖=0 𝑋𝑖 = 1 and the global balance equations Π𝑇Q = 0 (the rate of

flow coming out of each state is balanced by the rate of flow entering the state).
To have a unique stationary distribution 𝐶𝑇𝑀𝐶(𝑁) must be time homo-

geneous and irreducible (i.e. all states can be reached from all other states).
The first condition is clearly satisfied. The second condition is fulfilled if all the
states of 𝐶𝑇𝑀𝐶(𝑁) are positive recurrent (a state is positive recurrent if the
probability of the system to return to the state is 1 and the number of the needed
steps is finite). Since a derivative 𝑁 ′ of 𝑁 corresponds to a state of 𝐶𝑇𝑀𝐶(𝑁),
it suffices then that 𝑁 ′ is reachable by any of its derivatives through a finite
sequence of transitions because we only consider finite state processes. So, we
will restrict our attention to systems in this form.

4.4. Smart storehouse example (cont’d)
Back to both the systems of our running example, we first consider the

transition system corresponding to 𝑁 𝑐 that is, as required above, finite and with
a cyclic initial state. Therefore, it has stationary distribution.

We derive the generator matrix Q1 of 𝐶𝑇𝑀𝐶(𝑁 𝑐), described in Figure 7,
where, for simplicity, we use the parameters 𝑎, 𝑏, 𝑐, ..., 𝑤 to refer to the inverses of
the rates of our system (in the transition system below, we put the parameters
as indexes of the arrows with the corresponding rates), e.g. 𝑐10 = 1

lo+s
= 1

𝑎 .

𝑁𝑐 𝑐10−→𝑎
𝑐𝑆00−→𝑏

𝑐𝑆01−→𝑐
𝑐11−→𝑑

𝑐12−→𝑒
𝑐𝑆10−→𝑓

𝑐𝑆11−→𝑔
𝑐13−→ℎ

𝑐14−→𝑖
𝑐𝑆20−→𝑗

𝑐𝑆21−→𝑘
𝑐15−→𝑙

𝑐16−→𝑚
𝑐𝑆30−→𝑛

𝑐𝑆31−→𝑜
𝑐17−→𝑝

𝑐18−→𝑞

𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁𝐼𝑋
1 | 𝑁3

𝑐30𝑖−→𝑟/𝑠

{︂
𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁𝐼𝑋

1 | 𝑁𝐼
30 if 𝑖 = 0

𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁𝐼𝑋
1 | 𝑁𝐼

31 if 𝑖 = 1
𝑐33𝑖−→𝑡/𝑢 𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁𝐼𝑋

1 | 𝑁3
𝑐19−→𝑣

𝑐110−→𝑤

𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁1 | 𝑁3 = 𝑁𝑐

The corresponding stationary distribution Π1 is the solution of the following
system of symbolic linear equations,

26

1
𝑤𝑥21 − 1

𝑎𝑥0 = 0;
1
𝑎𝑥0 − 1

𝑏𝑥1 = 0;
1
𝑏𝑥1 − 1

𝑐𝑥2 = 0;
1
𝑐𝑥2 − 1

𝑑𝑥3 = 0;
1
𝑑𝑥3 − 1

𝑒𝑥4 = 0;
1
𝑒𝑥4 − 1

𝑓 𝑥5 = 0;
1
𝑓 𝑥5 − 1

𝑔 𝑥6 = 0;
1
𝑔 𝑥6 − 1

ℎ𝑥7 = 0;
1
ℎ𝑥7 − 1

𝑖 𝑥8 = 0;
1
𝑖 𝑥8 − 1

𝑗 𝑥9 = 0;
1
𝑗 𝑥9 − 1

𝑘𝑥10 = 0;

1
𝑘𝑥10 − 1

𝑙 𝑥11 = 0;
1
𝑙 𝑥11 − 1

𝑚𝑥12 = 0;
1
𝑚𝑥12 − 1

𝑛𝑥13 = 0;
1
𝑛𝑥13 − 1

𝑜𝑥14 = 0;
1
𝑜𝑥14 − 1

𝑝𝑥15 = 0;
1
𝑝𝑥15 − 1

𝑞 𝑥16 = 0;
1
𝑞 𝑥16 − (1

𝑟 + 1
𝑠)𝑥17 = 0;

1
𝑟 𝑥17 − 1

𝑡 𝑥18 = 0;
1
𝑠𝑥17 − 1

𝑢𝑥19 = 0;
1
𝑡 𝑥18 + 1

𝑢𝑥19 − 1
𝑣 𝑥20 = 0;

1
𝑣 𝑥20 − 1

𝑤𝑥21 = 0;

∑︀21
𝑖=0 𝑥𝑖 = 1;

𝑎, 𝑏, 𝑐, ..., 𝑤 ̸= 0;

computed by exploiting the computer algebra package Mathematica [35]. The
stationary distribution Π1 is

[𝑎
𝐶
, 𝑏

𝐶
, 𝑐

𝐶
, 𝑑

𝐶
, 𝑒

𝐶
, 𝑓

𝐶
, 𝑔

𝐶
, ℎ

𝐶
, 𝑖

𝐶
, 𝑗

𝐶
, 𝑘

𝐶
,

𝑙
𝐶
, 𝑚

𝐶
, 𝑛

𝐶
, 𝑜

𝐶
, 𝑝

𝐶
, 𝑞

𝐶
, 𝑟𝑠

(𝑟+𝑠)𝐶
, 𝑠𝑡

(𝑟+𝑠)𝐶
, 𝑟𝑢

(𝑟+𝑠)𝐶
, 𝑣

𝐶
, 1

𝐶
]

where

𝐶 = 1+ 𝑎+ 𝑏+ 𝑐+ 𝑑+ 𝑒+ 𝑓 + 𝑔+ ℎ+ 𝑖+ 𝑗 + 𝑘+ 𝑙+𝑚+𝑛+ 𝑜+ 𝑝+ 𝑞+
𝑟𝑠

𝑟 + 𝑠
+

𝑠𝑡

𝑟 + 𝑠
+

𝑟𝑢

𝑟 + 𝑠
+ 𝑣

We can also note that, because of the chosen instantiatiation of the cost
functions above, some of the obtained rates coincide, thus possibly simplifying
our computations.

𝑐10 = 𝑐12 = 𝑐14 = 𝑐16 = 𝑐331
𝑐19 = 𝑐𝑠𝑖0 𝑖 ∈ [0, 3]
𝑐𝑠𝑖1 𝑖 ∈ {1, 3}
𝑐𝑠𝑖1 𝑖 ∈ {0, 2}

Similarly, we can derive the generator matrix ̂︀𝑄′
1 and the corresponding

stationary distribution ̂︀Π1 for the transition system corresponding to ̂︀𝑁 𝑐.

[𝑎

𝐶̂
, 𝑏

𝐶̂
, 𝑐

𝐶̂
, 𝑑

𝐶̂
, 𝑒

𝐶̂
, 𝑓

𝐶̂
, 𝑔

𝐶̂
, ℎ

𝐶̂
, 𝑖

𝐶̂
, 𝑗

𝐶̂
, 𝑘

𝐶̂
,

𝑙

𝐶̂
, 𝑚

𝐶̂
, 𝑛

𝐶̂
, 𝑜

𝐶̂
, 𝑝

𝐶̂
, 𝑞

𝐶̂
, 𝑟𝑠

(𝑟+𝑠)𝐶̂
, 𝑠𝑡

(𝑟+𝑠)𝐶̂
, 𝑟𝑢

(𝑟+𝑠)𝐶̂
, 𝑣

𝐶̂
, 1

𝐶̂
]

𝐶 = 1+𝑎+ 𝑏+ 𝑐+ 𝑑+ 𝑒+ 𝑓 + 𝑔+ℎ+ 𝑖+ 𝑗+𝑘+ 𝑙+𝑚+𝑛+ 𝑜
′
+ 𝑝

′
+ 𝑞

′
+

𝑟𝑠

𝑟 + 𝑠
+

𝑠𝑡

𝑟 + 𝑠
+

𝑟𝑢

𝑟 + 𝑠
+ 𝑣

Note that the only differences are in the rates 𝑜′, 𝑝′, 𝑞′ corresponding to the
rates of the transitions that differ from the ones in 𝑁 𝑐:

27

𝑜′ = 𝑐𝑠31
𝑝′ = 𝑐17
𝑞′ = 𝑐18

Also note that it is easy to study the impact of variations on rate parameters
on the performance analysis by resorting to a computer algebra package like
Mathematica that is able to solve symbolic equations.

4.5. Reward structures
To define performance measures for a system 𝑁 , we define the corresponding

reward structure, following [36, 31]. Usually, a reward structure is a function
that associates a reward with any state passed through a computation of 𝑁 ,
according to the measures of interest. For instance, for computing the amount of
usage of a resource, a reasonable choice is to associate a nonzero reward (e.g. 1)
with any state in which the resource can be used and zero to the others.

As in [15], since we are in a process algebraic setting, we compute rewards
of states, starting from transition rates.

Definition 8. Given a function 𝜌 associating a transition reward with each
transition 𝜃 in a transition system, the reward of a state 𝑁 is

𝜌𝑁 =
∑︁

𝑁
𝜃−→𝑁 ′

𝜌(𝜃)

The reward structure of a system 𝑁 is a vector of rewards, whose elements
correspond to the states reachable from 𝑁 , i.e. to its derivatives 𝑑(𝑁). By looking
at the stationary distribution and varying the reward structure, we can compute
different performance measures. The total reward is obtained by combining the
values of the stationary distribution Π with rewards.

Definition 9. Given a system 𝑁 , let Π = (𝑋0, . . . , 𝑋𝑛−1) be its stationary
distribution. The total reward of 𝑁 is computed as 𝑅(𝑁) =

∑︀
𝑁𝑖∈𝑑(𝑁) 𝜌𝑁𝑖

·𝑋𝑖,
where 𝑑(𝑁) is the set of derivatives of 𝑁 .

4.6. Smart storehouse example (cont’d)
We now apply the method above, to analyse the performance of both systems

of our running example, to compare their relative efficiency. We can consider
different performance measures, depending on particular aspects of system be-
haviour, by suitably associating rewards with the set of activities of interest.

A possible measure can describe the number of actuation commands decided
per time unit. Thus, we associate a nonzero reward to the transitions that
represent the sending of an actuation command performed by node 𝑁3 and 𝑁̂3.
The corresponding transitions have labels 𝜃330 and 𝜃331, 𝜃330 and 𝜃331. Now, we
assign nonzero rewards with the nodes from which those transitions come.

𝜌𝑁18
1; 𝜌𝑁19

= 1; 𝜌𝑁𝑖
= 0 𝑖 ̸∈ {18, 19}

𝜌𝑁̂18
1; 𝜌𝑁̂19

= 1; 𝜌𝑁̂𝑖
= 0 𝑖 ̸∈ {18, 19}

28

The total reward 𝑅(𝑁 𝑐) of the system then amounts to

𝑠𝑡

(𝑟 + 𝑠)𝐶
+

𝑟𝑢

(𝑟 + 𝑠)𝐶

while 𝑅(̂︀𝑁 𝑐) to
𝑠𝑡

(𝑟 + 𝑠)𝐶
+

𝑟𝑢

(𝑟 + 𝑠)𝐶

By comparing the two throughputs, since 𝐶 > 𝐶, it is straightforward to
obtain that 𝑅(𝑁 𝑐) < 𝑅(̂︀𝑁 𝑐), i.e. that, as expected, ̂︀𝑁 𝑐 performs better than 𝑁 𝑐.
To use this measure, it is necessary to instantiate our parameters under various
hypotheses, depending on several factors, such as the network load, the packet
size, and so on. Furthermore, we need to consider the costs of cryptographic
algorithms and how changing their parameters impact on the guaranteed security
level (see e.g. [37]).

Our running example on concrete devices. To make our analysis concrete, we
instantiate our example on real devices (note that the average of the density
function is the inverse of the rate). We assume to have a mote-class hardware
platform, say MicaZ [38] and that our communication primitives are implemented
by a typical radio sub-system for sensor networks, for instance based on IEEE
802.15.4 [38], with a bandwidth of 256 𝑘𝑏𝑝𝑠. Hence, we set the time of send-
ing/receiving a message to se w re w 2 𝑚𝑠. The cost of cryptographic primitives
depends on the adopted solution: software or hardware. In our case, we take
the cost from [39]. In the first solution, the time for encrypting is en w 1.5 𝑚𝑠
and for decrypting is de w 1.5 𝑚𝑠. In the second solution, we assume to have
a chip radio like CC2420. Although this chip does not provide decryption via
hardware [39], we assume that the decryption cost is equivalent to that of the
encryption, which is en w de w 30 𝜇𝑠. We also consider a third case in which
the encryption is performed at the hardware level and the decryption at the
software level. For the sake of simplicity, suppose to further simplify the costs
of the transitions of the system of 𝑁 𝑐, by only considering the costs of sending,
receiving, encrypting and decrypting, and by neglecting constants. The new costs
are therefore as follows.

𝑎 = se;
𝑏 = re;
𝑐 = se;
𝑑 = re;
𝑒 = se;
𝑓 = re;
𝑔 = (se + en);
ℎ = (re + de);
𝑖 = se;
𝑗 = re;
𝑘 = se;

𝑙 = re;
𝑚 = se;
𝑛 = re;
𝑜 = (se + en);
𝑝 = (re + de);
𝑞 = se;
𝑟 = re;
𝑠 = re;
𝑡 = se;
𝑢 = se;
𝑣 = re;
𝑤 = se

29

When se = re = 2 𝑚𝑠 and en = de = 1.5 𝑚𝑠, we have the following stationary
distribution Π1

[1
23 ,

1
23 ,

1
23 ,

1
23 ,

1
23 ,

1
23 ,

7
92 ,

7
92 ,

1
23 ,

1
23 ,

1
23 ,

1
23 ,

1
23 ,

1
23 ,

7
92 ,

7
92 ,

1
23 ,

1
46 ,

1
46 ,

1
46 ,

1
23 ,

1
46]

whereas for ̂︀𝑁 𝑐, we would have (with 𝑜′ = se and 𝑝′ = re) the following stationary
distribution ̂︀Π1:

[2
43 ,

2
43 ,

2
43 ,

2
43 ,

2
43 ,

2
43 ,

7
86 ,

7
86 ,

2
43 ,

2
43 ,

2
43 ,

2
43 ,

2
43 ,

2
43 ,

2
43 ,

2
43 ,

2
43 ,

1
43 ,

1
43 ,

1
43 ,

2
43 ,

1
43]

When se = re = 2 𝑚𝑠 and en = de = 0.03 𝑚𝑠, we have the following
stationary distributions Π1 and ̂︀Π1:

[50
1003 ,

50
1003 ,

50
1003 ,

50
1003 ,

50
1003 ,

50
1003 ,

203
4012 ,

203
4012 ,

50
1003 ,

50
1003 ,

50
1003 ,

50
1003 ,

50
1003 ,

50
1003 ,

203
4012 ,

203
4012 ,

50
1003 ,

25
1003 ,

25
1003 ,

25
1003 ,

50
1003 ,

25
1003]

[100
2003 ,

100
2003 ,

100
2003 ,

100
2003 ,

100
2003 ,

100
2003 ,

203
4006 ,

203
4006 ,

100
2003 ,

100
2003 ,

100
2003 ,

100
2003 ,

100
2003 ,

100
2003 ,

100
2003 ,

100
2003 ,

100
2003 ,

50
2003 ,

50
2003 ,

50
2003 ,

100
2003 ,

50
2003]

If se = re = 2 𝑚𝑠 and en = 0.03 𝑚𝑠 and de = 1.5 𝑚𝑠, we have the following
stationary distributions Π1 and ̂︀Π1:

[100
2153 ,

100
2153 ,

100
2153 ,

100
2153 ,

100
2153 ,

100
2153 ,

203
4306 ,

175
2153 ,

100
2153 ,

100
2153 ,

100
2153 ,

100
2153 ,

100
2153 ,

100
2153 ,

203
4306 ,

175
2513 ,

100
2153 ,

50
2153 ,

50
2153 ,

50
2153 ,

100
2153 ,

50
2153]

[200
4153 ,

200
4153 ,

200
4153 ,

200
4153 ,

200
4153 ,

200
4153 ,

203
4153 ,

350
4153 ,

200
4153 ,

200
4153 ,

200
4153 ,

200
4153 ,

200
4153 ,

200
4153 ,

200
4153 ,

200
4153 ,

200
4153 ,

100
4153 ,

100
4153 ,

100
4153 ,

200
4153 ,

100
4153]

From these distributions, for instance in the first case, we can obtain that

𝑅(𝑁 𝑐) =
2

46
<

2

43
= 𝑅(̂︀𝑁 𝑐).

4.7. Performance Bisimulation
In this subsection, we define a bisimulation-based equivalence that represents

a further tool to compare program performance. We adapt to IoT-LySa the
notion of late bisimulation and of performance bisimulation, introduced in [33]
for 𝜋-calculus to cope with exponential transition distributions. As in [33], these
notions are parametric as they depend on a given function that applied to
enhanced labels, extracts the part of information of interest there encoded, which
in our setting can be information on the performed actions independently from
the labels of the involved nodes.

30

Definition 10. Given a function 𝑓 and a binary relation 𝒮 on systems of nodes
𝑁 , it is an f-simulation if 𝑁1𝒮𝑁2 implies that

∙ if 𝑁1
ℓ1 ⟨𝜃𝐵⟩−→ 𝑁 ′

1, then for some 𝑁 ′
2, 𝑁2

ℓ2 ⟨𝜃𝐵⟩−→ 𝑁 ′
2, 𝑓(ℓ1 ⟨𝜃𝐵⟩) = 𝑓(ℓ2 ⟨𝜃𝐵⟩),

and 𝑁 ′
1𝒮𝑁 ′

2;

∙ if 𝑁1
ℓ𝑂◁ℓ𝐼 ⟨𝜃𝐶⟩−→ 𝑁 ′

1, then for some 𝑁 ′
2, 𝑁2

ℓ′𝑂◁ℓ′𝐼 ⟨𝜃𝐶⟩−→ 𝑁 ′
2, 𝑓(ℓ𝑂 ◁ ℓ𝐼 ⟨𝜃𝐶⟩) =

𝑓(ℓ′𝑂 ◁ ℓ′𝐼 ⟨𝜃𝐶⟩), and 𝑁 ′
1𝒮𝑁 ′

2.

The relation 𝒮 is an f-bisimulation if both 𝒮 and 𝒮−1 are f-simulations. We write
𝑁1 ≈𝑓 𝑁2, i.e. 𝑁1 is bisimilar to 𝑁2, if there exists an f-bisimulation 𝒮 such that
𝑁1𝒮𝑁 ′

1.

If we put 𝑓 = Λ we obtain a bisimulation, reminiscent of the classical late
bisimulation of the 𝜋-calculus, that allows us to investigate the qualitative proper-
ties of systems of nodes, since we are only focussing on the kind of the performed
actions.

To deal with the stochastic information implicitly carried by transition labels,
we extend the conditions given in Definition 10 on transitions between states to
conditions on transitions between equivalence classes. Indeed in the qualitative
setting, bisimulation equivalence of two states requires that any transition of
one state has at least one matching transition of the other state, while in the
quantitative one bisimulation takes the “quantity” (e.g. rates) of transitions into
account. To this aim we resort to the function 𝛾0 in the following proposition
that gives an alternative definition of ≈𝑓 , as done in [33, 34].

Proposition 1. Given a function 𝑓 , a binary relation 𝒮 on systems of nodes 𝑁
is an f-simulation if 𝑁1𝒮𝑁2 implies that for any equivalence class 𝐶 originated
from 𝒮

∀𝜃1. 𝛾0(𝑁1, 𝜃1, 𝐶) = 𝛾0(𝑁2, 𝜃2, 𝐶),
𝑓(𝜃1) = 𝑓(𝜃2),

where

𝛾0(𝑁, 𝜃, 𝐶) =

{︃
1 if ∃𝑁 ′ ∈ 𝐶.𝑁

𝜃−→ 𝑁 ′

0 otherwise

Proof.

∙ (Case 𝜃 = ℓ ⟨𝜃𝐵⟩). According to Definition 10, we have to prove that𝑁1𝒮𝑁 ′
1

implies that if 𝑁1
𝜃1−→ 𝑁 ′

1, then for some 𝑁 ′
2, 𝑁2

𝜃2−→ 𝑁 ′
2, 𝑓(𝜃1) = 𝑓(𝜃2) and

𝑁 ′
1𝒮𝑁 ′

2. By hypothesis, we know that 𝛾0(𝑁1, 𝜃1, 𝐶) = 𝛾0(𝑁2, 𝜃2, 𝐶). The
case when 𝛾0(𝑁1, 𝜃1, 𝐶) = 0 is trivial. When 𝛾0(𝑁1, 𝜃1, 𝐶) = 1 we know
that there exist 𝑁 ′

1, 𝑁
′
2 ∈ 𝐶 such that 𝑁1

𝜃1−→ 𝑁 ′
1 and 𝑁2

𝜃2−→ 𝑁 ′
2. Further-

more, it holds that 𝑁 ′
1𝒮𝑁 ′

2 because 𝐶 is the equivalent class originated
by 𝒮. Since we know 𝑓(𝜃1) = 𝑓(𝜃2) from the hypotheses, we can conclude
that 𝒮 is an f-simulation.
Repeating the same pattern of proof starting with 𝑁2

𝜃2−→ 𝑁 ′
2, we obtain

that also 𝒮−1 is an f-simulation, and therefore 𝒮 is an f-bisimulation.

31

∙ (Case 𝜃 = ℓ𝑂 ◁ ℓ𝐼 ⟨𝜃𝐶⟩). The proof is similar and therefore omitted.

We now instantiate the f-bisimulation by modifying the definition of the func-
tion 𝛾0, in order to consider the duration of transitions, according to exponential
distributions. To this aim, we use the function 𝛾, where the cost function $𝑡
is applied to enhanced labels for extracting the corresponding transition rates.
Given an equivalence class 𝐶, 𝛾(𝑁, 𝜃, 𝐶) is given by the sum of the conditional
transition rates 𝑞(𝑁𝑖, 𝑁𝑗 , 𝜃) (see Definition 6) between 𝑁 and any 𝑁𝑖 ∈ 𝐶, via
a given action labelled 𝜃𝑖, with Λ(𝜃𝑖) = Λ(𝜃).

Note that, in the exponential case, equivalence classes are just singletons 𝑁 .
Furthermore, we can use Λ as function 𝑓 .

Definition 11. The exponential function 𝛾 is defined as

𝛾(𝑁, 𝜃, 𝐶) =
∑︁

𝑁𝑖∈𝐶,Λ(𝜃𝑖)=Λ(𝜃)

𝑞(𝑁𝑖, 𝜃,𝑁𝑗) =
∑︁

𝑁𝑖∈𝐶,Λ(𝜃𝑖)=Λ(𝜃)

𝑟𝑖,

where 𝑟𝑖 = $𝑡(𝜃𝑖) are the exponential distributions associated with a 𝑁
𝜃𝑖−→ 𝑁𝑖

transition, where Λ(𝜃𝑖) = Λ(𝜃).

Note that 𝛾 is the total conditional rate from 𝑁 to 𝐶. Two nodes are per-
formance bisimilar if there is an equivalence relation such that, for any action
labelled 𝜃, the total conditional transition rates originating from those compo-
nents to any equivalence class, via activities of the same kind, coincide.

Definition 12. Given a function $𝑡, a binary relation 𝒮 on systems of nodes
𝑁 , is a performance simulation if 𝑁1𝒮𝑁2 implies that for any equivalence class
𝐶 originating from 𝒮

∀𝜃1. 𝛾(𝑁1, 𝜃1, 𝐶) = 𝛾(𝑁2, 𝜃2, 𝐶),
Λ(𝜃1) = Λ(𝜃2).

The relation 𝒮 is a performance bisimulation if both 𝒮 and 𝒮−1 are performance
simulations. We write 𝑁1 ≈𝑝 𝑁2, i.e. 𝑁1 is bisimilar to 𝑁2, if there exists a
performance bisimulation 𝒮 such that 𝑁1𝒮𝑁 ′

1.

Example. We apply our notion of performance bisimulation to our case study.
In the version of Figure 6, we have a node 𝑁𝑠𝑖 for each sensor 𝑆𝑠𝑖 (we omit here
the other nodes and the communications with other nodes).

𝑁𝑠 = 𝑁𝑠0 | 𝑁1 | 𝑁2| 𝑁3

𝑁𝑠𝑖 = ℓ𝑠𝑖 : [Σ𝑠𝑖 ‖ 𝑃𝑠𝑖 ‖ 𝑆𝑠𝑖] where 𝑆𝑠𝑖 = 𝑠𝑖 := 𝑣𝑠𝑖 .𝜏.𝑆𝑠𝑖 𝑖 ∈ [0, 3]

𝑃𝑠𝑖 = (;𝑥𝑠𝑡𝑎𝑟𝑡𝑖)
𝑠𝑖0.⟨⟨ℓ𝑠𝑖 , 𝑠𝑖⟩⟩ ◁ {ℓ1}

𝑠𝑖1.𝑃𝑠𝑖 𝑖 ∈ [0, 2]

𝑃𝑠𝑖 = (;𝑥𝑠𝑡𝑎𝑟𝑡𝑖)
𝑠𝑖0.⟨⟨{ℓ𝑠𝑖 , 𝑠𝑖}𝑘𝑠𝑖

⟩⟩ ◁ {ℓ1}𝑠𝑖1.𝑃𝑠𝑖 𝑖 ∈ [1, 3]

𝑁1 = ℓ1 : [Σ1 ‖ 𝑃1 ‖ 𝐴0]

𝑃1 = ⟨⟨𝑠𝑡𝑎𝑟𝑡0⟩⟩ ◁ {ℓ𝑠0}
10.(ℓ𝑠0 ; 𝑧0)

11.⟨⟨𝑠𝑡𝑎𝑟𝑡1⟩⟩ ◁ {ℓ𝑠1}
12.({ℓ𝑠1 ; 𝑧1}𝑘𝑠1

)13.

⟨⟨𝑠𝑡𝑎𝑟𝑡2⟩⟩ ◁ {ℓ𝑠2}
14.(ℓ𝑠2 ; 𝑧2)

15.⟨⟨𝑠𝑡𝑎𝑟𝑡3⟩⟩ ◁ {ℓ𝑠3}
16.({ℓ𝑠3 ; 𝑧3}𝑘𝑠3

)17...

32

Suppose that, for optimisation reasons, we are interested in using fewer nodes,
but keeping a similar behaviour. Thus, we define a new specification and we
exploit our performance bisimulation to check that it has the same behaviour of
the previous one.

We illustrate the case in which there are two nodes 𝑁𝑠01 and 𝑁𝑠23 , where
the first one collects the data coming from the sensors 𝑆𝑠0 and 𝑆𝑠1 , while the
second node collects the data coming from the sensors 𝑆𝑠2 and 𝑆𝑠3 .

𝑁𝑠 = 𝑁𝑠01 | 𝑁𝑠23 | 𝑁1 |...
𝑁𝑠𝑖,𝑖+1 = ℓ𝑠𝑖 : [Σ𝑠𝑖,𝑖+1 ‖ 𝑃𝑠𝑖,𝑖+1 ‖ 𝑆𝑠𝑖 ‖ 𝑆𝑠𝑖+1] where

𝑆𝑠𝑘 = 𝑠𝑘 := 𝑣𝑠𝑘 .𝜏.𝑆𝑠𝑘 𝑘 ∈ [𝑖, 𝑖+ 1], 𝑖 ∈ [0, 2]

𝑃𝑠𝑖,𝑖+1 = (;𝑥𝑠𝑡𝑎𝑟𝑡𝑖)
𝑠𝑖0.⟨⟨ℓ𝑠𝑖 , 𝑠𝑖⟩⟩ ◁ {ℓ1}

𝑠𝑖1.

(;𝑥𝑠𝑡𝑎𝑟𝑡𝑖+1)
𝑠(𝑖+1)0.⟨⟨{ℓ𝑠𝑖 , 𝑠𝑖}𝑘𝑠𝑖

⟩⟩ ◁ {ℓ1}𝑠(𝑖+1)1.𝑃𝑠𝑖,𝑖+1 𝑖 ∈ {0, 2}
𝑁1 = ℓ1 : [Σ1 ‖ 𝑃1 ‖ 𝐴0]

𝑃1 = ⟨⟨𝑠𝑡𝑎𝑟𝑡0⟩⟩ ◁ {ℓ𝑠01}
10.(ℓ𝑠0 ; 𝑧0)

11.⟨⟨𝑠𝑡𝑎𝑟𝑡1⟩⟩ ◁ {ℓ𝑠01}
12.({ℓ𝑠1 ; 𝑧1}𝑘𝑠1

)13.

⟨⟨𝑠𝑡𝑎𝑟𝑡2⟩⟩ ◁ {ℓ𝑠23}
14.(ℓ𝑠2 ; 𝑧2)

15.⟨⟨𝑠𝑡𝑎𝑟𝑡3⟩⟩ ◁ {ℓ𝑠23}
16.({ℓ𝑠3 ; 𝑧3}𝑘𝑠3

)17...

It can be easily verified that the two systems 𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁1 and
𝑁𝑠01 | 𝑁𝑠23 | 𝑁1 are performance bisimilar, since they match each other’s moves.

5. Measuring the energy

In this section we show how to extend our analysis to measure also the energy
depleted by a network of nodes. Here, we assume that the energy consumed by a
node during its execution is proportional to computational and communication
activities and to the time spent to perform them (that is, in turn, inversely
proportional to the corresponding rates).

We then introduce a cost function $𝑒 : Θ → IR+, by extending the one $𝑡
defined in Section 4, defined as follows

$𝑒(𝜃) =

⎧⎨⎩
𝑒𝑐

$𝑡(𝜃)
if 𝜃 = ℓ⟨𝜃𝑏⟩ for some ℓ and 𝜃𝑏

𝑒𝑟
$𝑡(𝜃)

otherwise

where the factors 𝑒𝑐 and 𝑒𝑟 are the coefficients for computation and communica-
tion activities, respectively. Note that when the transition is a communication
of computed values, we assume that the prevalent energy cost is the one of the
transmission.

We differentiate between the computation and communication costs be-
cause the energy required for processing is different from that for transmis-
sion/reception. Furthermore, concerning the latter cost, we assume that this is
proportional to the time spent in send/receive operations. Note that, in general,
the energy cost on the communication sub-system is mostly due to the length of
its period of activity (regardless it is in receive, send or listening state). However,
if the MAC protocol used in the communication sub-system is based on low
power listening mechanisms (for example B-MAC [40] or X-MAC [41]), then
the costs are actually bound to the number of send and receive operations, as

33

defined in our model. We plan to extend this energy cost model to other MAC
protocols not based on low power listening in our future work.

Note that the time, as measured in Section 4, can be considered a global
resource that each node can consume. Thus, it is natural to consider its con-
sumption by taking into account the whole behaviour of nodes and processes.
The energy is instead local, and each node consumes independently of the other
nodes. On the one hand, each node has its own energy supply as a battery, which
is finite; on the other hand, the lifetime of the network can be affected by a
single node that stops working due to the lack of energy. In this last case we are
interested in looking, steps by steps, whether the energy budget is sufficient to
go on. For this reason, we focus on the energy efficiency of each node and not on
the one of the whole system. To do that, we introduce a notion of energy budget
representing how much energy a node owns and may spend and, we define a new
semantics, call it energy-sensitive, on top of the enhanced one of Section 3.

Here we consider two ways to deal with this energy budget. In the first case,
a budget represents the maximal quantity of energy that a node may use during
its execution, e.g. its initial battery charge. A node can complete a transition if it
has enough budget and each action decrements this quantity. In the second case,
a budget calculates how much charge a node requires in order to complete its
computation and communication tasks. Thus, each action that a node performs
increments the required budget.

For the new semantics we introduce some notations. Let Γ: ℒ → IR+ be the
energy function from node labels to positive numbers, mapping each node to its
energy budget. To uniformly represent the two ways of using the budget we use
the symbol ⊗ that stands for the classical operation + or − on positive numbers.
We denote with Γ[ℓ⊗𝑚] the function update defined as follows

Γ[ℓ⊗𝑚](ℓ′) =

{︂
Γ(ℓ) ⊗𝑚 for ℓ = ℓ′

Γ[ℓ⊗𝑚](ℓ′) = Γ(ℓ′) otherwise

Furthermore, given an enhanced label 𝜃, we use the shorthand 𝜃.ℓ to denote the
label of the node carrying the transition out, i.e. 𝜃.ℓ = ℓ, when 𝜃 = ℓ⟨𝜃𝑏⟩, or
𝜃.ℓ = ℓ𝐼 when ℓ𝑂 ◁ ℓ𝐼 ⟨⟨⟨𝐸1, · · · , 𝐸𝑚⟩⟩, (𝐸1, · · · , 𝐸𝑗 ;𝑥𝑗+1, · · · , 𝑥𝑚)⟩.

Given a system of nodes 𝑁 the energy-sensitive semantics is characterised
by transitions of the form Γ ⊢ 𝑁

𝜃−→ Γ′ ⊢ 𝑁 ′ meaning that the system of nodes
with an energy budget Γ performs a step with enhanced label 𝜃 and becomes 𝑁 ′

with the energy budget updated to Γ′, provided that the condition (see below
the predicate ◇) on budgets is respected. The whole semantics can be totally
specified by the following rule:

𝑁
𝜃−→ 𝑁 ′ ◇ (Γ(𝜃.ℓ), $𝑒(𝜃))

Γ ⊢ 𝑁
𝜃−→ Γ[𝜃.ℓ⊗ $𝑒(𝜃)] ⊢ 𝑁 ′

where ◇ is a predicate that says if the transition is energy affordable for the node
with label ℓ with the current energy budget Γ(𝜃.ℓ). For example, if we consider
the budget as the upper bound a node may spend, a naive instantiation consists

34

in taking ◇ equal to ≥. Instead, we can define the predicate as the one always
true when we consider the budget as a counter of the required energy.

Note that the model where the budget is consumed can be used to capture
the notion of lifetime of a network. This is defined in literature as the time at
which the first network node depletes its battery (i.e. its energy battery becomes
0); alternatively as the time for a number or a percentage of nodes to use up
the energy supplies. More precise characterisations can be found in [42], where
lifetime is considered an application-specific notion, and therefore it should take
into account not only the number of nodes, but also the importance of the single
nodes for the application.

In our framework, we can compute the lifetime value, by analysing the tran-
sition graph of our system of nodes. It is sufficient to look for the shortest path
reaching a vertex where one of the nodes has just depleted its battery. Similarly,
we can look for a vertex where a given number (say 𝑘) of nodes deplete their
batteries, or at least one of a given number (say 𝑘) of nodes depletes its battery.

5.1. Smart storehouse example (cont’d)
Back to our storehouse system, we apply the second kind of energy-sensitive

semantics to measure the energy required by each node in order to complete a
run of its duty cycle. In particular, for each node of the system 𝑁 𝑐, the vector
Γ calculates how much charge the node requires completing its task. Thus,
each transition increments the required consumption of the node. By using the
computed Γ we can decide the energy supply to assign to each node in order for
the system to work for at least a certain number of iterations.

To this aim, we set the initial energy consumption Γ0 to

Γ0 ℓ𝑠0 ℓ𝑠1 ℓ𝑠2 ℓ𝑠3 ℓ1 ℓ3
0 0 0 0 0 0

while the subsequent vectors, which in this case express the energy budget
required to reach the respective state, are derived considering the following
parametric runs.

Γ0 ⊢ 𝑁𝑐 𝑐10−→𝑎
𝑐𝑆00−→𝑏

𝑐𝑆01−→𝑐
𝑐11−→𝑑

𝑐12−→𝑒
𝑐𝑆10−→𝑓

𝑐𝑆11−→𝑔
𝑐13−→ℎ

𝑐14−→𝑖
𝑐𝑆20−→𝑗

𝑐𝑆21−→𝑘
𝑐15−→𝑙

𝑐16−→𝑚
𝑐𝑆30−→𝑛

𝑐𝑆31−→𝑜
𝑐17−→𝑝

𝑐18−→𝑞

Γ′ ⊢ 𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁𝐼𝑋
1 | 𝑁3

𝑐30𝑖−→𝑟/𝑠

{︂
Γ′′
0 ⊢ 𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁𝐼𝑋

1 | 𝑁𝐼
30 if 𝑖 = 0

Γ′′
1 ⊢ 𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁𝐼𝑋

1 | 𝑁𝐼
31 if 𝑖 = 1

Γ′′′
𝑖 ⊢𝑐33𝑖−→𝑡/𝑢 𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁𝐼𝑋

1 | 𝑁3
𝑐19−→𝑣

𝑐110−→𝑤

Γ′′′′
𝑖 ⊢ 𝑁𝑠0 | 𝑁𝑠1 | 𝑁𝑠2 | 𝑁𝑠3 | 𝑁1 | 𝑁3 = 𝑁𝑐

where
Γ′ ℓ𝑠0 ℓ𝑠1 ℓ𝑠2 ℓ𝑠3 ℓ1 ℓ3

(𝑐𝑠00+𝑐𝑠01)
𝑒𝑟

(𝑐𝑠10+𝑐𝑠11)
𝑒𝑟

(𝑐𝑠20+𝑐𝑠21)
𝑒𝑟

(𝑐𝑠30+𝑐𝑠31)
𝑒𝑟

(𝑐10+...+𝑐18)
𝑒𝑟

0

Γ′′ ℓ𝑠0 ℓ𝑠1 ℓ𝑠2 ℓ𝑠3 ℓ1 ℓ3
(𝑐𝑠00+𝑐𝑠01)

𝑒𝑟

(𝑐𝑠10+𝑐𝑠11)
𝑒𝑟

(𝑐𝑠20+𝑐𝑠21)
𝑒𝑟

(𝑐𝑠30+𝑐𝑠31)
𝑒𝑟

(𝑐10+...+𝑐18)
𝑒𝑟

𝑐3𝑖0
𝑒𝑟

Γ′′′
𝑖 ℓ𝑠0 ℓ𝑠1 ℓ𝑠2 ℓ𝑠3 ℓ1 ℓ3

(𝑐𝑠00+𝑐𝑠01)
𝑒𝑟

(𝑐𝑠10+𝑐𝑠11)
𝑒𝑟

(𝑐𝑠20+𝑐𝑠21)
𝑒𝑟

(𝑐𝑠30+𝑐𝑠31)
𝑒𝑟

(𝑐10+...+𝑐18)
𝑒𝑟

𝑐3𝑖0+𝑐33𝑖
𝑒𝑟

Γ′′′′
𝑖 ℓ𝑠0 ℓ𝑠1 ℓ𝑠2 ℓ𝑠3 ℓ1 ℓ3

(𝑐𝑠00+𝑐𝑠01)
𝑒𝑟

(𝑐𝑠10+𝑐𝑠11)
𝑒𝑟

(𝑐𝑠20+𝑐𝑠21)
𝑒𝑟

(𝑐𝑠30+𝑐𝑠31)
𝑒𝑟

(𝑐10+...+𝑐110)
𝑒𝑟

𝑐3𝑖0+𝑐33𝑖
𝑒𝑟

35

Therefore, the last energy consumption Γ′′′′
𝑖 is also the energy budget required

to complete an entire cycle.

Γ0 ℓ𝑠0 ℓ𝑠1 ℓ𝑠2 ℓ𝑠3 ℓ1 ℓ3
Γ𝑠0 Γ𝑠1 Γ𝑠2 Γ𝑠3 Γ1 Γ3

6. Related Work

Our approach follows the well-established line of research about performance
evaluation through process calculi and probabilistic model checking (see [43, 44]
for a survey). To the best of our knowledge, the application of formal methods
to IoT systems or to wireless sensor networks is still in its youth, and only a
limited number of papers in the literature addressed the problem from a pro-
cess algebras perspective, e.g. [45, 46, 47, 48]. In [49] the problem of modelling
and estimating the communication cost in an IoT scenario is tackled through
Stochastic Petri Nets. Their approach is similar to ours: they derive a CTMC
from a Petri Net describing the system and proceed with the performance evalu-
ation by using standard tools. Differently from us, they focus not on the cost of
security but only on the one of communication (they do not use cryptographic
primitives). In [50] a performance comparison between the security protocols
IPSec and DTLS is presented, in particular by considering their impact on the
resources of IoT devices with limited computational capabilities. They modified
protocols implementations to make them properly run on the devices. An ex-
tensive experimental evaluation study on these protocols shows that both their
implementations ensure a good level of end-to-end security. In [51] the authors
propose a methodology similar to ours that combines a security analysis for
non-interference with an evaluation of the performance. As in our case, they use
the same formal system to reason on both aspects.

Another line of research related to our is that of [52, 53, 54], where the authors
investigate security issues arising in IoT and cyber-physical systems (CPSs) in a
process algebraic setting. In particular, in [52] the hybrid process calculus CCPSA
is presented for modelling cyber-physical system and cyber-physical attacks. The
attacks taken into account concern physical layer, i.e. an attacker can tamper
with both the sensors and actuators. In [53] is presented a bisimulation metric
to compare the behaviour of an IoT system with the behaviour of the same
system under attack. This metric aims at evaluating not only the vulnerability
of a IoT system to a certain attack, but also the impact of a successful attack in
terms of the deviation introduced in the behaviour of the target system. Finally,
in [54] pCCPS, a hybrid probabilistic process calculus with a discrete notion of
time, is proposed for specifying and reasoning on CPSs. Cyber-physical systems
are represented by a physical components describing the physical processes and
a cyber component that govern sensors and actuators, and that is responsible
for the communication with other cyber components. Furthermore, pCCPS is
equipped with a bisimulation metric that formalise a notion of behavioural
distance between two systems.

36

7. Conclusions

In the IoT scenario security is critical but it is hard to address in an affordable
way due to the limited computational capabilities of smart objects. We have
presented a formal framework that supports designers in specifying an IoT
system and in estimating the cost of security mechanisms. Using a process
algebraic language for modelling both the behaviour and the performance of
systems allows us to incorporate performance analysis into the design and to
obtain a qualitative and quantitative model, starting from the same system
specification. A key feature of our approach is that quantitative aspects are
symbolically represented by parameters. Actual values are obtained as soon as
the designer provides some additional information about the hardware and the
network architecture and the cryptographic algorithms relative to the system in
hand. By abstractly reasoning about these parameters designers can compare
different implementations of the same IoT system, and choose the one that
ensures the best trade-off between security guarantees and their price. In practice,
we considered the process algebra IoT-LySa [7] and we adapted the technique
of [16] to determine the costs of using/not using cryptographic measures in
communications and to reason about the cost-security trade-offs. In particular,
we defined an enhanced semantics, where each system transition is associated
with a rate in the style of [14, 15]. From the rates we derive a CTMC, through
which we could perform cost evaluation, by using standard techniques and tools
[18, 19].

As future work, we plan to improve our proposal by including asymmetric
cryptography into the picture and to introduce mechanisms to consider context-
aware security in the line of [55, 56]. Moreover, we plan to realise a tool for the
design and development of large-scale sensor networks. Finally, we will extend
the current model for energy efficiency to adapt to different settings, MAC-layers
and multi-hop networks.

Acknowledgements We thank Francesco Romani for his help in the alge-
braical treatment of our case study data.

References

[1] T. Simon, Critical infrastructure and the Internet of Things.
URL https://www.cigionline.org/publications/critical-
infrastructure-and-internet-things-0

[2] CISCO, IoE-Driven Smart Street Lighting Project Allows Oslo to Reduce
Costs, Save Energy, Provide Better Service.
URL http://www.cisco.com/c/dam/m/en_us/ioe/public_sector/
pdfs/jurisdictions/Oslo_Jurisdiction_Profile_051214REV.pdf

[3] U.S. Department of Homeland Security, Strategic principles for securing
the Internet of Things.
URL https://www.dhs.gov/securingtheIoT

37

https://www.cigionline.org/publications/critical-infrastructure-and-internet-things-0
https://www.cigionline.org/publications/critical-infrastructure-and-internet-things-0
https://www.cigionline.org/publications/critical-infrastructure-and-internet-things-0
http://www.cisco.com/c/dam/m/en_us/ioe/public_sector/pdfs/jurisdictions/Oslo_Jurisdiction_Profile_051214REV.pdf
http://www.cisco.com/c/dam/m/en_us/ioe/public_sector/pdfs/jurisdictions/Oslo_Jurisdiction_Profile_051214REV.pdf
http://www.cisco.com/c/dam/m/en_us/ioe/public_sector/pdfs/jurisdictions/Oslo_Jurisdiction_Profile_051214REV.pdf
http://www.cisco.com/c/dam/m/en_us/ioe/public_sector/pdfs/jurisdictions/Oslo_Jurisdiction_Profile_051214REV.pdf
https://www.dhs.gov/securingtheIoT
https://www.dhs.gov/securingtheIoT
https://www.dhs.gov/securingtheIoT

[4] P. Oltermann, German parents told to destroy doll that can spy on
children.
URL https://www.theguardian.com/world/2017/feb/17/german-
parents-told-to-destroy-my-friend-cayla-doll-spy-on-children

[5] K. Zetter, Everything We Know About Ukraine’s Power Plant Hack.
URL https://www.wired.com/2016/01/everything-we-know-about-
ukraines-power-plant-hack/

[6] A. Greenberg, Hackers Remotely Kill a Jeep on the Highway—With Me in
It.
URL http://www.wired.com/2015/07/hackers-remotely-kill-jeep-
highway/

[7] C. Bodei, P. Degano, G.-L. Ferrari, L. Galletta, Where do your IoT ingre-
dients come from?, in: Procs. of Coordination 2016, Vol. 9686 of LNCS,
Springer, 2016, pp. 35–50.

[8] C. Bodei, P. Degano, G.-L. Ferrari, L. Galletta, A step towards checking
security in IoT, in: Procs. of ICE 2016, Vol. 223 of EPTCS, 2016, pp. 128–
142.

[9] C. Bodei, P. Degano, G.-L. Ferrari, L. Galletta, Tracing where IoT data are
collected and aggregated, Logical Methods in Computer Science 13 (3:5)
(2017) 1–38.

[10] C. Bodei, L. Galletta, Tracking sensitive and untrustworthy data in IoT,
in: Procs.of the First Italian Conference on Cybersecurity (ITASEC 2017),
CEUR Vol-1816, 2017, pp. 38–52.

[11] C. Bodei, P. Degano, L. Galletta, E. Tuosto, Tool supported analysis of IoT,
in: Procs. of ICE 2017, Vol. 261 of EPTCS, 2017, pp. 37–56.

[12] C. Bodei, P. Degano, G.-L. Ferrari, L. Galletta, Sustainable precision agri-
culture from a process algebraic perspective: a smart vineyard, Atti Soc.
Tosc. Sci. Nat.e Mem., Suppl. 125 (2018) 39–44.

[13] P. Degano, C. Priami, Non interleaving semantics for mobile processes,
Theoretical Computer Science 216.

[14] P. Degano, C. Priami, Enhanced operational semantics, ACM Computing
Surveys 33 (2) (2001) 135 – 176.

[15] C. Nottegar, C. Priami, P. Degano, Performance evaluation of mobile pro-
cesses via abstract machines, Transactions on Software Engineering 27 (10).

[16] C. Bodei, M. Buchholtz, M. Curti, P. Degano, F. Nielson, H. R. Nielson,
C. Priami, On evaluating the performance of security protocols, in: Proc. of
PaCT 2005, Vol. 3606 of LNCS, Springer, 2005, pp. 1 – 15.

38

https://www.theguardian.com/world/2017/feb/17/german-parents-told-to-destroy-my-friend-cayla-doll-spy-on-children
https://www.theguardian.com/world/2017/feb/17/german-parents-told-to-destroy-my-friend-cayla-doll-spy-on-children
https://www.theguardian.com/world/2017/feb/17/german-parents-told-to-destroy-my-friend-cayla-doll-spy-on-children
https://www.theguardian.com/world/2017/feb/17/german-parents-told-to-destroy-my-friend-cayla-doll-spy-on-children
https://www.wired.com/2016/01/everything-we-know-about-ukraines-power-plant-hack/
https://www.wired.com/2016/01/everything-we-know-about-ukraines-power-plant-hack/
https://www.wired.com/2016/01/everything-we-know-about-ukraines-power-plant-hack/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

[17] C. Bodei, M. Curti, P. Degano, C. Priami, A quantitative study of two
attacks, Electr. Notes Theor. Comput. Sci. 121 (2005) 65–85.

[18] A. Reibnam, R. Smith, K. Trivedi, Markov and Markov reward model tran-
sient analysis: an overview of numerical approaches, European Journal of
Operations Research 40 (2) (1989) 257–267.

[19] W. J. Stewart, Introduction to the numerical solutions of Markov chains,
Princeton University Press, 1994.

[20] I. Dietrich, F. Dressler, On the lifetime of wireless sensor networks, ACM
Trans. Sen. Netw. 5 (1) (2009) 5:1–5:39.

[21] C. Bodei, L. Galletta, The cost of securing IoT communications?, in:
Procs.of Italian Conference on Theoretical Computer Science, CEUR Vol-
1720, 2016, pp. 163–176.

[22] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, H. R. Nielson, Automatic val-
idation of protocol narration, in: Computer Security Foundations Workshop
(CSFW-16 2003), IEEE Computer Society, 2003, pp. 126–140.

[23] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, H. R. Nielson, Static val-
idation of security protocols, Journal of Computer Security 13 (3) (2005)
347–390.

[24] H. Gao, C. Bodei, P. Degano, H. Nielson, A formal analysis for capturing
replay attacks in cryptographic protocols., in: Proc. of ASIAN’07, LNCS
4846, Springer, 2007, pp. 150–165.

[25] H. Gao, C. Bodei, P. Degano, A formal analysis of complex type flaw attacks
on security protocols, in: Proc. of AMAST’08, LNCS 5140, Springer, 2008,
pp. 167–183.

[26] C. Bodei, L. Brodo, P. Degano, H. Gao, Detecting and preventing type flaws
at static time, Journal of Computer Security 18 (2) (2010) 229–264.

[27] M. Herlihy, Wait-free synchronization, ACM Trans. Program. Lang. Syst.
13 (1) (1991) 124–149.

[28] D. Sangiorgi, D. Walker, Pi-Calculus: A Theory of Mobile Processes, Cam-
bridge University Press, 2001.

[29] B. Technology, Bluetooth core specification version 4.2.
URL https://www.bluetooth.com/specifications/bluetooth-core-
specification

[30] C. Priami, Language-based performance prediction of distributed and mobile
systems, Information and Computation 175 (2002) 119–145.

[31] J. Hillston, A Compositional Approach to Performance Modelling, Cam-
bridge University Press, 1996.

39

https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification

[32] R. Nelson, Probability, Stochastic Processes and Queeing Theory, Springer,
1995.

[33] C. Priami, Language-based performance prediction for distributed and mo-
bile systems, Inf. Comput. 175 (2) (2002) 119–145.

[34] J. Hillston, A compositional approach to performance modelling, Ph.D.
thesis, University of Edinburgh, UK (1994).
URL http://hdl.handle.net/1842/15027

[35] Wolfram Mathematica, https://www.wolfram.com/mathematica/.

[36] R. Howard., Dynamic Probabilistic Systems: Semi-Markov and Decision
Systems, Vol. Volume II, Wiley, 1971.

[37] J. Lee, K. Kapitanova, S. Son, The price of security in wireless sensor
networks, Computer Networks 54 (17) (2010) 2967–2978.

[38] P. Baronti, P. Pillai, V. W. C. Chook, S. Chessa, A. Gotta, Y. Hu, Wireless
sensor networks: A survey on the state of the art and the 802.15.4 and
zigbee standards, Computer Communications 30 (7) (2007) 1655–1695.

[39] M. Healy, T. Newe, E. Lewis, Efficiently securing data on a wireless sensor
network, Journal of Physics: Conference Series 76 (1) (2007) 012063.

[40] J. Polastre, J. Hill, D. Culler, Versatile low power media access for wireless
sensor networks, in: Proc. of the 2nd International Conference on Embedded
Networked Sensor Systems, SenSys 2004, 2004, pp. 95–107.

[41] M. Buettner, G. V. Yee, E. Anderson, R. Han, X-MAC: A short preamble
mac protocol for duty-cycled wireless sensor networks, in: Proc. of the 4th
International Conference on Embedded Networked Sensor Systems, SenSys
’06, 2006, pp. 307–320.

[42] I. Dietrich, F. Dressler, On the lifetime of wireless sensor networks, TOSN
5 (1) (2009) 5:1–5:39.

[43] M. Kwiatkowska, G. Norman, D. Parker, Stochastic model checking, in:
Procs. of Formal Methods for the Design of Computer, Communication and
Software Systems: Performance Evaluation (SFM 2007), Vol. 4486 of LNCS,
2007, pp. 220–270.

[44] M. Kwiatkowska, D. Parker, Advances in probabilistic model checking, in:
Procs. of Software Safety and Security - Tools for Analysis and Verification,
Vol. 33, IOS Press, 2012, pp. 126–151.

[45] I. Lanese, D. Sangiorgi, An operational semantics for a calculus for wireless
systems, Theor. Comput. Sci. 411 (19) (2010) 1928–1948.

40

http://hdl.handle.net/1842/15027
http://hdl.handle.net/1842/15027
https://www.wolfram.com/mathematica/

[46] I. Lanese, L. Bedogni, M. D. Felice, Internet of things: a process calculus
approach, in: Procs of Symp. on Applied Computing (SAC 2013), ACM,
2013, pp. 1339–1346.

[47] R. Lanotte, M. Merro, A semantic theory of the Internet of Things., in:
Procs. of Coordination 2016, Vol. 9686 of LNCS, Springer, 2016, pp. 157–
174.

[48] A. Singh, C. R. Ramakrishnan, S. Smolka, A process calculus for mobile ad
hoc networks, Sci. Comput. Program. 75 (6) (2010) 440–469.

[49] L. Chen, L. Shi, W. Tan, Modeling and performance evaluation of Internet
of Things based on Petri Nets and behavior expression, Research Journal
of Applied Sciences, Engineering and Technology 4 (18) (2012) 3381–3385.

[50] A. D. Rubertis, L. Mainetti, V. Mighali, L. Patrono, I. Sergi, M. Stefanizzi,
S. Pascali, Performance evaluation of end-to-end security protocols in an
Internet of Things, in: Proc. of (SoftCOM) 2013, IEEE, 2013, pp. 1–6.

[51] A. Aldini, M. Bernardo, An integrated view of security analysis and perfor-
mance evaluation: Trading qos with covert channel bandwidth, in: M. Heisel,
P. Liggesmeyer, S. Wittmann (Eds.), Computer Safety, Reliability, and Se-
curity, 23rd International Conference, Vol. 3219 of LNCS, Springer, 2004,
pp. 283–296.

[52] R. Lanotte, M. Merro, R. Muradore, L. Viganò, A formal approach to cyber-
physical attacks, in: 30th IEEE Computer Security Foundations Symposium,
CSF 2017, 2017, pp. 436–450.

[53] R. Lanotte, M. Merro, S. Tini, Towards a formal notion of impact metric
for cyber-physical attacks, in: Proc. of the 14th International Conference
on integrated Formal Methods (IFM 2018), Vol. 11023 of LNCS, 2018, pp.
296–315.

[54] R. Lanotte, M. Merro, S. Tini, A probabilistic calculus of cyber-physical
systems, CoRR abs/1707.02279.

[55] C. Bodei, P. Degano, L. Galletta, F. Salvatori, Linguistic mechanisms for
context-aware security, in: Proc. of 11th International Colloquium on The-
oretical Aspects of Computing, LNCS 8687, Springer, 2014, pp. 61–79.

[56] C. Bodei, P. Degano, L. Galletta, F. Salvatori, Context-aware security: Lin-
guistic mechanisms and static analysis, Journal of Computer Security 24 (4)
(2016) 427–477.

41

⎡ ⎢ ⎣−
1 𝑎

1 𝑎
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
1 𝑏

1 𝑏
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
1 𝑐

1 𝑐
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
1 𝑑

1 𝑑
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
1 𝑒

1 𝑒
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
1 𝑓

1 𝑓
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
1 𝑔

1 𝑔
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
−

1 ℎ
1 ℎ

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
−

1 𝑖
1 𝑖

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
−

1 𝑗
1 𝑗

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

−
1 𝑘

1 𝑘
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
1 𝑙

1 𝑙
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
1 𝑚

1 𝑚
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
1 𝑛

1 𝑛
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
1 𝑜

1 𝑜
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
1 𝑝

1 𝑝
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
1 𝑞

1 𝑞
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
−
(
1 𝑟
+

1 𝑠
)

1 𝑟
1 𝑠

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
1 𝑡

0
1 𝑡

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
1 𝑢

1 𝑢
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
1 𝑣

1 𝑣
1 𝑤

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
1 𝑤

⎤ ⎥ ⎦

(1
)

F
ig

ur
e

7:
A

ru
n

of
th

e
S
m

a
r
t
S
t
o
r
e
𝑐

sy
st

em

42

	Introduction
	A storehouse with perishable food
	The design of IoT-LySa
	A smart storehouse
	Reasoning on the design

	IoT-LySa and its Enhanced Semantics
	Syntax
	Enhanced Operational Semantics
	The smart storehouse reloaded
	Running the smart storehouse

	Stochastic Semantics
	Cost Functions
	Smart storehouse example (cont'd)
	Stochastic Analysis
	Smart storehouse example (cont'd)
	Reward structures
	Smart storehouse example (cont'd)
	Performance Bisimulation

	Measuring the energy
	Smart storehouse example (cont'd)

	Related Work
	Conclusions

