
Received: 00 Month 0000 Revised: 00 Month 0000 Accepted: 00 Month 0000

DOI: xxx/xxxx

ARTICLE TYPE

Experimental Validation of a semi-distributed SQP method for
optimal coordination of automated vehicles at intersections

Robert Hult*1 | Mario Zanon2 | Gianluca Frison3 | Sébastien Gros1 | Paolo Falcone1

1Department of Electrical Engineering,
Chalmers University of Technology,
Gothenburg, Sweden

2IMT School of Advanced Studies, Lucca,
Italy

3Department of Microsystems Engineering,
University of Freiburg, Freiburg, Germany

Correspondence
*Corresponding author. Email:
robert.hult@chalmers.se

Present Address
Department of Electrical Engineering,
Chalmers University of Technology,
Hörsalsvägen 11, SE-41296 Göteborg,
Sweden

Summary

In this paper, we study the optimal coordination of automated vehicles at inter-
sections. The problem can be stated as an optimal control problem, which can be
decomposed into one NLP which schedules access to the intersection and one opti-
mal control problem per vehicle. The decomposition enables a bi-level MPC, where
an outer control loop schedules access to the intersection, and inner control loops
compute the appropriate vehicle commands. We discuss a practical implementation
of the bi-level controller where the NLP is solved with a tailored SQP algorithm
which enables distribution of most computation to the vehicles. Results from an
extensive experimental campaign are presented, where the bi-level controller and
the semi-distributed SQP is implemented on a test setup consisting of three auto-
mated vehicles. In particular, we show that the vehicle-level controller can enforce
the scheduled intersection access within a relevant accuracy, and that the bi-level
controller can handle large perturbations and large communication delays, which
makes the scheme applicable in practical scenarios. Finally, the use of wireless com-
munication introduce delays in the outer control loop and to allow faster feedback,
we introduce a Real Time Iteration (RTI) like variation of the bi-level controller.
Experimental and simulated results indicate that the RTI-variation offer comparable
performance using less computation and communication.

KEYWORDS:
Automated Vehicles, Intersection Coordination, Distributed Model Predictive Control, Distributed Non-
linear programming

1 INTRODUCTION

The current trend towards automation of road vehicles can be expected to continue, and eventually virtually all vehicles will be
fully automated and communicating. This technology can be leveraged to obtain synergistic effects through cooperation between
the automated vehicles, and thereby enable drastic improvements to the traffic system. In this paper we discuss an algorithm
necessary for one such improvement: the automation of intersection crossings. With all vehicles automated, communicating and
cooperative, the traffic-lights, signs and rules used today could be removed and the vehicles could instead rely on automated
coordination controllers. As discussed in1, the potential benefits include increased safety, increased energy efficiency and higher
traffic throughput.

2 AUTHOR ONE ET AL

However, there are several challenges that must be addressed before coordination controllers can be applied in practice.
Most importantly, such controllers must be able to guarantee that no collisions occur, and in particular, the guarantees must be
applicable to scenarios with uncertainty. This includes handling of unexpected events and the on-line re-coordination of vehicles
in the presence of new information. Furthermore, a useful coordination algorithm must be scalable to be relevant for more
than small scenarios. However, since finding the optimal collision free motion profiles for vehicles crossing an intersection is a
combinatorial problem, there are computational scalability issues. In fact, determining the existence of even one collision free
solution has been shown to be an NP-hard problem in the general case2. Moreover, it is a known problem that vehicle-to-vehicle
(V2V) communication systems have capacity limits, so that the number of vehicles that can communicate simultaneously is
restricted3. A practically useful coordination algorithmmust therefore also scale well in terms of both how often communication
is required and the data volumes involved.
Although the application of intersection coordination controllers lies in the future, a number of contributions have been made

during the last decade, most of which are surveyed in4 and5. In much of the current literature, various heuristics are used
to address the challenges of the problem. In these works, the motion profile is typically the result of a rule-based controller
which switches between discrete behavioral modes6,7,8,9, or is obtained from a restricted space, e.g. trapezoidal10 or linear11
velocity profiles. On the other hand, a number of approaches based on Optimal Control (OC) formulations of the coordination
problem can be found in the literature, e.g.12,13,14,15,16,17,18,19,20,21,? and? . In most cases, the computation of a crossing
order is separated from the computation of the optimal state and control trajectories to avoid the combinatorial explosion of the
solution space. For instance, in14,16,19 variations of "First-Come-First-Served" policies are used to produce a crossing order and
OC problems constrained to satisfy this order are solved afterwards. Using a similar strategy,15 leverages results from polling-
systems to compute the crossing order, while in22 and? mixed-integer quadratic programing is used to compute an approximately
optimal crossing order. A different approach is taken in12, where a heuristic gives a decision order rather than a crossing order.
The vehicles thereafter sequentially solve optimal control problems, where each vehicle is constrained to avoid collisions with
the vehicles that precedes it in the decision order. The application of OC formulations to closed-loop control is considered in
e.g.13,21 and23.
As discussed in1, the benefits of OC approaches in general include their ability to consider a wider range of applicable motion

profiles, include constraints and use explicitly stated objective functions. Contrary to many heuristic methods, explicit objective
functions gives an additional degree of control over the characteristics of a coordinated solution, which is a desirable property.
Given the severity of collisions, closed-loop control, i.e. the recalculation of control commands based on measurements of the
system state, is a necessity to handle the uncertainty that is present in real scenarios. In many cases, OC schemes can leverage
well established theory to derive properties of closed-loop control schemes, account for various forms of uncertainty and to
construct efficient solution algorithms.
In this paper we use the OC formulation of the coordination problem first presented in22 but focus on finding the optimal

solution for a given crossing order. With this formulation, the problem is given a hierarchical structure, where optimal, collision
free intersection occupancy time-slots are obtained as the solution to a Nonlinear Program (NLP), and the optimal state and
control trajectories as the solution to optimal control problems that are separable between the vehicles. The structure enables
a bi-level Model Predictive Control (MPC) architecture where coordination is separated from vehicle control. In particular,
the upper, intersection-level, controller computes and updates optimal, non-overlapping time-slots based on the current vehicle
states, and the lower, vehicle-level, controllers compute the optimal control commands for the vehicles, given a time-slot and
current state.
In earlier work, we proposed a semi-distributed Sequential Quadratic Programing (SQP) for the solution of the timeslot

NLP24. The algorithm was extended in25 where a convergence proof was also given. We established the persistent feasibility of
the bi-level MPC scheme and discussed robustness aspects in23, and presented experimental results. Extensions to Economic
Nonlinear MPC were presented in? , and a comparison of24 and25 was given in? , supported by experimental data.
The SQP procedure in24 and25 has the property that most computations can be performed on-board the involved vehicles and

the algorithm’s internal information passing can be performed using V2V communication. This enables a practical scenario
where the SQP procedure is used to close the intersection-level control loop (repeatedly solve the timeslot NLP on-line) in a
semi-distributed manner. While such a scheme has several desirable properties, it is necessary to evaluate its practical usefulness
in a real world setting. First, the algorithmic performance needs to be assessed for real scenarios. In particular, the effects of
delays inherent to practical communication systems must be studied. Second, the effects of both poor algorithmic performance
and real-world perturbations on the performance of the bi-level controller must be investigated and possible issues addressed.

AUTHOR ONE ET AL 3

Coordinator

(a)

pi(t)

pini pouti

(b)

FIGURE 1 Subfigure (a) contains a schematic illustration of the scenarios considered in this paper. Subfigure (b) illustrates
how the intersection is modeled: the arrows shows the fixed paths of the vehicles, and the red square illustrates the zone inside
the intersection where collisions can occur.

To this end, we describe a practical implementation of the the bi-level controller in this paper, where the intersection-level
control loop is closed using the SQP presented in24,25. In particular, we detail the application of the bi-level controller on a test-
setup consisting of three automated vehicles, where the SQP is solved in a semi-distributed fashion using V2V communication,
and the vehicle-level control loop is closed using the high-performance QP solver HPMPC26. Furthermore, we introduce mod-
ifications to the bi-level controller which increase the practical applicability of the scheme. First, a relaxation of vehicle-level
MPC problem is presented, which resolves infeasibility issues inherent to the formulation in24,25. Second, two modifications to
the intersection-level controller are introduced to handle the large computational delays that can arise due to the execution of the
SQPs over a wireless network. In particular, we propose a scheme where the intersection control loop is closed in a Real Time
Iteration (RTI) fashion27 to allow faster feedback and less communication. That is, instead of solving the NLP to convergence,
the intersection-level control loop consists of performing one SQP iteration and thereafter applying the resulting timeslot. More-
over, we present results from an extensive experimental campaign where the implementation was evaluated. We discuss the
algorithmic performance and provide a detailed study on the SQP execution times, where the experimental data is compared to
ideal cases. We also analyze the difference between the different modifications to the intersection-level controllers. Comparative
data is provided for both experimental and simulated cases, where the system is subjected to both large and small perturbations.
The remainder of the paper is organized as follows: In Section 2 we introduce the problem and state the optimal control

problem. In Section 3 we detail the semi-distributed SQP method. In Section 4 we detail a practical implementation of the SQP
and bi-level control. In Section 5 we present and discuss experimental results. The paper is concluded in Section 6.

2 PROBLEM FORMULATION

In this paper we consider problems such as that illustrated in Figure 1 a, whereNa vehicles approach an intersection equipped
with a central coordinating unit. We assume that all involved vehicles are automated, cooperative and participate in the coordi-
nation procedure and that no other, non-cooperative entities (e.g., pedestrians and bicyclists) are present. For simplicity, we also
assume that no vehicles makes turns or change lanes.

2.1 Modeling
We assume that the vehicles move along predefined paths and that the vehicle dynamics along the paths can be described by

ẋi(t) = Acixi(t) + B
c
i ui(t), (1)

where xi(t) ∈ ℝn, ui(t) ∈ ℝm and Aci ∈ ℝn×n, Bci ∈ ℝn×m. Specifically, the state vector is such that xi(t) = (pi(t), yi(t)), where
pi(t) ∈ ℝ is the position of the center of the vehicle on its path and yi(t) ∈ ℝn−1 collects all non position states (e.g., velocity

4 AUTHOR ONE ET AL

and acceleration). Moreover, the vehicle state- and control trajectories are subject to constraints of the form

Dixi(t) + Giui(t) ≥ bi, (2)

capturing e.g. actuation limitations and passenger comfort restrictions.
We consider only Di, Gi, Aci , B

c
i such that ṗ(t) ≥ 0, i.e. the dynamics and constraints are such that no vehicle can reverse.

As illustrated in Figure 1 b, we define the intersection as an interval [pini , p
out
i] on the path of each vehicle such that collisions

are avoided if pi(t) ∈ [pini , p
out
i] ⇒ pj(t) ∉ [pinj , p

out
j] hold, for all vehicles i ≠ j1. Furthermore, we define the time-of-entry, tini ,

and time-of-clearance, touti , of the intersection through

pi(tini) = p
in
i and pi(touti) = pouti , (3)

respectively. Collision avoidance is thereby ensured if

touti ≤ tinj (4)

for all vehicle pairs (i, j) such that vehicle i crosses the intersection before vehicle j. In the remainder of the paper we denote
Ti = (tini , t

out
i) the time-slot of vehicle i, and say that a vehicle conforms to a time-slot if it only occupies the intersection within

[tini , t
out
i].

2.2 Optimal Control formulation
With the objective

Ji(xi(t), ui(t)) = Vi,f (xi(tf)) +

tf

∫
0

li(xi(t), ui(t))dt, (5)

where Vi,f (xi(tf)) and li(xi(t), ui(t)) are convex and quadratic, and tf is fixed, we state problem of optimally coordinating the
vehicles through the intersection as

min
T ,x(t),u(t)

Na
∑

i=1
Ji(xi(t), ui(t)) (6a)

s.t. xi(0) = x̂i,0 i ∈ I[1,Na], (6b)
ẋi(t) = Acixi(t) + B

c
i ui(t), i ∈ I[1,Na], (6c)

Dixi(t) + Giui(t) ≥ bi, , i ∈ I[1,Na], (6d)
pi(tini) = p

in
i , pi(touti) = pouti , i ∈ I[1,Na], (6e)

touti ≤ tini+1 i ∈ I[1,Na−1]. (6f)

Here, I[a,b] = {a,… , b} for integers a < b, x(t) = (x1(t),… , xNa
(t)), u(t) = (u1(t),… , uNa

(t)), T = (T1,… , TNa
) and x̂i,0 is the

initial state of vehicle i, and the vehicles are ordered such that vehicle i crosses before vehicle i + 1.

2.2.1 Decomposition
It was shown in22 that the coordination problem can be decomposed in a hierarchical fashion, where the time-slot schedule T is
the solution of a nonlinear program (NLP), and the vehicle state and control trajectories xi(t), ui(t) are the solution to separable
vehicle optimal control problems.
With this decomposition, the following NLP give the optimal time-slot schedule T for a given order S

min
T

Na
∑

i=1
Vi(x̂i,0, Ti) (7a)

s.t. Ti ∈ domain(Vi(x̂i,0, Ti)), i ∈ I[1,Na], (7b)
touti ≤ tini+1 i ∈ I[1,Na], (7c)

1We want to emphasize that the definition of the intersection easily can be subdivided into several mutual-exclusion zones, each with its own start and stop position.
However, for simplicity of presentation the paper is developed with the single zone shown in Figure 1 b.

AUTHOR ONE ET AL 5

where Vi(x̂i,0, Ti) is defined as the optimal value function of the vehicle optimal control problem

Vi(x̂i,0, Ti) = min
xi(t),ui(t)

Ji(xi(t), ui(t)) s.t. xi(0) = x̂i,0, (1), (2), pi(tini) = p
in
i , pi(t

out
i) = pouti . (8)

For the optimal Ti, (8) gives the optimal state and control trajectories xi(t), ui(t).

2.2.2 Discretization
For practical reasons, we consider piece-wise constant inputs and discretization of the vehicle dynamics using the sampling time
Ts when we solve the vehicle problem (8). More precisely, we define xi,k = xi(tk) and u(t) = ui,k,∀t ∈ [tk, tk+1[, with tk = kts,
and the state update function xi,k+1 = Aixi,k + Biui,k, where Ai = i(ts) = exp(Aci ts), Bi = i(ts) = ∫ ts

0 exp(A
c
i (ts − s))B

c
i ds

and where xi,k = (pi,k, vi,k).
Since the discrete position is defined only at tk, (3) only defines values of tini and touti that are integer multiples of ts in the

discrete time case. To allow tini and touti to assume continuous values, we define a continuous time representation of the position
using the discrete time state- and control sequences as

pdi (t, wi) = [1, 0n−1]
(

i(t − tk)xi,k + i(t − tk)ui,k
)

, k = f loor(t∕ts), (9)

where wi = (xi,0, ui,0,… , xi,N−1, ui,N−1, xi,N) and where tf = Nts. The discrete time statement of the objective function is

J di (wi) = x⊤i,NPixi,N +
N−1
∑

k=0

1
2

[

xi,k
ui,k

]⊤

Qi

[

xi,k
ui,k

]

+ q⊤i

[

xi,k
ui,k

]

(10)

whereby we have the discrete time formulation of (8) as

Vi(x̂i,0, Ti) = minwi
J di (wi) (11a)

s.t. xi,0 = x̂i,0 (11b)
xi,k+1 = Aixi,k + Biui,k, k ∈ I[0,N−1], (11c)
Dixi,k + Giui,k(t) ≥ bi, , k ∈ I[0,N−1], (11d)
pdi (t

in
i , wi) = pini , (11e)

pdi (t
out
i , wi) = pouti , (11f)

which can be solved for real-valued tini and touti in [0, Nts]. We note here that for wi which satisfies (11c), pdi (t, wi) is K-times
continuously differentiable, where K is the relative degree of (1) with the position pi(t) as the output24.

2.2.3 Problem Properties
The constraint set domain(Vi(x̂i,0, Ti)) in (7b) is implicitly defined as the set of Ti for which the optimization problem (11) is
feasible given the initial state x̂i,0. However, it was shown in22 that domain(Vi(x̂i,0, Ti)) can be written as

ℎi(x̂i,0, Ti) =

⎡

⎢

⎢

⎢

⎢

⎣

Lin(x̂i,0) − tini
tini − U

in(x̂i,0)
U (x̂i,0, tini) − t

out
i

touti − L(x̂i,0, tini)

⎤

⎥

⎥

⎥

⎥

⎦

≥ 0, (12)

where Lin(x̂i,0), U in(x̂i,0), U (x̂i,0, tini) and L(x̂i,0, t
in
i) are defined as the solutions to the NLPs

Lin(x̂i,0) = minwi,t
t s.t. (11b), (11c), (11d), pdi (t, wi) = pini , (13)

U in(x̂i,0) = maxwi,t
t s.t. (11b), (11c), (11d), pdi (t, wi) = pini , (14)

L(x̂i,0, tini) = minwi,t
t s.t. (11b), (11c), (11d), pdi (t

in
i , wi) = pini , p

d
i (t, wi) = pouti , (15)

U (x̂i,0, tini) = maxwi,t
t s.t. (11b), (11c), (11d), pdi (t

in
i , wi) = pini , p

d
i (t, wi) = pouti . (16)

That is, tini must lie between the earliest and latest time-of-entry that the vehicle can perform. Similarly, for a specified time-of-
entry tini , t

out
i must lie between the earliest and latest time-of-clearance the vehicle can perform. Moreover, it was shown in24

6 AUTHOR ONE ET AL

that if a mild technical assumption holds, the optimizers of the linear programs (LPs)

wub
i (x̂i,0, t

in
i) = argminwi

pi,N s.t. (11b), (11c), (11d), pdi (t
in
i , wi) = pini , (17)

wlb
i (x̂i,0, t

in
i) = argmaxwi

pi,N s.t. (11b), (11c), (11d), pdi (t
in
i , wi) = pini . (18)

are also optimizers of (15) and (16) respectively. Consequently, (15) and (16) can be evaluated by first solving the LPs (17), (18)
and thereafter solving

pdi (U (x̂i,0, , t
in
i), w

ub
i (x̂i,0, t

in
i)) − p

out
i = 0 (19)

pdi (L(x̂i,0, , t
in
i), w

lb
i (x̂i,0, t

in
i)) − p

out
i = 0 (20)

for U (x̂i,0, tini) and L(x̂i,0, t
in
i). The bounds L

in(x̂i,0) and U in(x̂i,0) can be obtained similarly. In the remainder of the paper we will
for notational convenience only include the explicit dependence on x̂i,0 in ℎi(x̂i,0, Ti) and Vi(x̂i,0, Ti) when necessary.

2.3 Receding horizon implementation
In order to reject perturbations and compensate for model inaccuracies, the solution to the optimal coordination problem can
be applied in a receding horizon fashion in a model predictive controller (MPC). In particular, the decomposed formulation
offers a natural separation between coordination, i.e. resolving potential collisions, and vehicle control. This enables a bi-level
control structure: an outer control loop computes collision free time-slots by solving (7) at the current state, while inner control
loops compute the vehicle control command ui,0 for a given time-slot Ti at the current state by solving (11). Feedback is thereby
due to updated estimates of the current state in the inner control loops, which translates into modifications of the cost function
Vi(x̂i,0, Ti) and the constraint set ℎi(x̂i,0, Ti) in the outer control loop. The bi-level scheme has the benefit that perturbations that
arise for one vehicle are counteracted by all vehicles, i.e the optimal timeslot of vehicle i at time k, Ti(Xk), is a function of the
state of all vehicles Xk = (x1,k,… , xNa,k) through (7).
Note that in principle, the time-slot schedule could be computed once and the rejection of possible perturbations could be left

to the inner control loops. However, by closing the outer control loop the system can (a) reject larger perturbations by adjusting
the time-slot schedule T and thereby provide collision avoidance in more demanding scenarios and (b) continuously improve the
solution. The properties of the bi-level controller are discussed in23, where the closed-loop system is shown to be persistently
feasible and stable in the nominal case.

3 A SEMI-DISTRIBUTED SQP METHOD

While the computations in the vehicle-level control loop can be performed independently by all vehicles, the upper control
loop relies on the solution of the NLP (7) and information from all vehicles. Considering the intended application, a solution
algorithm in which much of the computations can be parallelized and performed on board the vehicles is desirable as it improves
scalability. However, if computations are performed on board the vehicles, the algorithm must be executed with information
exchanged over the V2V communication network. As is reported in e.g.3, there are scalability issues with the current V2V
technology and a solution algorithm should therefore not require frequent nor large data exchange. Consequently, second-order
optimization methods are preferable to first-order ones, as the former in general needs fewer iterations to find a solution to the
problem. Therefore, a semi-distributed sequential programming (SQP) algorithm was proposed in24,25. In the remainder of the
section we detail the semi-distributed SQP.

3.1 SQP
Using the developments of Section 2.2.3, we rewrite NLP (7) as

min
T

V (T) s.t. ℎ(T) ≥ 0, (21)

where V (T) =
∑Na
i=1 Vi(Ti) and we lumped constraints (7b)-(7c) in the function ℎ(T). The associated Lagrange function is

defined as (T , �) ∶= V (T) − �⊤ℎ(T), where � = (�1,… , �Na
, �s). Here, �i are the Lagrange multipliers of the constraint

ℎi(Ti) ≥ 0 and �s the multipliers of the precedence constraints (7c), which we write as ℎs(T) ≥ 0

AUTHOR ONE ET AL 7

Starting from an initial guess z(0) = (T (0), �(0)), SQP iteratively updates the primal-dual solution candidate z(c) using

z(c+1) = z(c) + �(c)Δz(c), (22)

with �(c) ∈ (0, 1] and Δz(c) = (ΔT (c), �̃(c) −�(c)). Here, (ΔT (c), �̃(c)) is the primal-dual solution of the Quadratic Programming
(QP) subproblem

min
ΔT

1
2
ΔT ⊤H (c)ΔT + ∇TV (T (c))⊤ΔT (23a)

s.t. ℎ(T (c)) + ∇Tℎ(T (c))⊤ΔT ≥ 0, (23b)

where H (c) is a positive-definite approximation of the Lagrange function Hessian ∇2T(T
(c), �(c)). Variants of SQP differ pri-

marily in the computations of the step size �(k) and the Lagrange function Hessian approximation H (k), and we describe next
the methods employed to solve (7). For more details on SQP see e.g.,28.

3.1.1 Hessian Approximation
To ensure that the QP subproblems (23) are convex, it is in general required that the reduced Hessian is positive-definite. While
there are several ways of enforcing positive-definiteness of the reducedHessian, we adopt the strategy of adding enough curvature
in all negative-curvature directions to ensure that the full Hessian is positive-definite. In particular, we note that NLP (21) is
such that the Hessian has the block-diagonal form

∇2T(T
(c), �(c)) = diag(Li(T

(c)
1 , �(c)1),… , LNa

(T (c)Na
, �(c)Na

)) (24)

where Li(T
(c)
i , �(c)i) = ∇

2
Ti
Vi(T

(c)
i)+ ⟨�(c)i ,∇

2
Ti
ℎi(T

(c)
i)⟩. We define a positive-definite approximation to∇2T(T

(c), �(c)) asH (c)
i =

diag(H (c)
1 ,… ,H (c)

Na
), where H (c)

i = E(c)
i D

(c)
i E

(c)
i
⊤
. Here, D(c)

i is a diagonal matrix where the j th diagonal element is d(c)i,j =
max(e(c)i,j , "), where ei,j is the j

th eigenvalue of Li(T
(c)
i , �(c)i) and " > 0 is a constant. The columns of E(c)

i are the normalized
eigenvectors corresponding to the eigenvalues in Di. Note that, due to the small size of the blocks Li(T

(c)
i , �(c)i), the required

eigenvalue decomposition is very cheap to compute.

3.1.2 Step size selection
In order to guarantee convergence of SQP algorithms, the step-size �(c) must be selected such that progress towards a solution
to the problem is made. In this paper, we employ a line search on the so called l1 merit function, which is defined as

M(T (c)) = V (T (c)) + �(c)||ℎ−(T (c))||1, (25)

where ℎ−(T (c)) = min(ℎ(T (c)), 0) and �(c) is a parameter chosen so that �(c) > ||�(c)||1. Progress towards a solution is ensured
when �(c) is selected such that the Armijo condition is satisfied:

M(T (c) + �(c)ΔT (c)) ≤M(T (c)) +
DΔT (c)M(T (c))�(c), (26)

where
 ∈ (0, 0.5] andDΔT (c)M(T (c)) is the derivative ofM(T) in the direction of ΔT (c), evaluated at T (c). Provided that ΔT (c)

is a descent direction on (25), �(c) which satisfies (26) exists and can be found by so-called backtracking, i.e. by successively
decreasing �(c) from 1 until (26) is satisfied28.
Since the constraint set ℎi(Ti) ≥ 0 defines the set of feasible parameters for the parametric QP (11), and Vi(Ti) is the optimal

value function for the same QP, we note that Vi(Ti), and therebyM(T), is undefined when ℎi(Ti) ≱ 0. We resolve this issue by
using the projection based method presented in25, where the merit function is evaluated at a projected point (T (c)i + �(c)ΔT (c)i)
rather than at T (c)i + �(c)ΔT (c)i . Here, the projection operator is defined as

(Ti) ∶=
(

tini , min(U (t
in
i),max(L(t

in
i), t

out
i))

)

. (27)

It was shown in25 that if ΔT (c) is a descent direction on (25), small enough �(c) exists which satisfies (26), giving that one
can backtrack on M((T (c) + �(c)ΔT (c))) as well. Note that with this modification, the l1 merit function reads M((T)) =
V ((T)) + �||ℎ−s ((T))⅄Ƶ|| and the primal-dual update is

T (c+1)i = 
(

T (c)i + �(c)ΔT (c)i

)

, i ∈ I[1,Na] (28a)

�(c+1) = �(c) + �(c)Δ�(c). (28b)

8 AUTHOR ONE ET AL

We note that an alternative solution to the issue of non-definedM(T) is to soften the position constraints (11e) and (11f) with
an l1 penalty as suggested in24. However, in doing so the objective in the quadratic subproblem (42) will be dominated by the
penalty term whenever it is evaluated at ℎi(Ti) ≱ 0 for one vehicle, and a sharp non-smoothness will appear at the point where
the problem becomes feasible. The algorithmic performance of this method has been found to be worse than the method based
on the projection (27)? .

3.2 Calculation of derivatives
The first and second-order derivatives of the objective function components Vi(T

(c)
i) and constraint components ℎi(T

(c)
i) are

required to form the QP-subproblem (23). Since Vi(T
(c)
i) is the optimal value function of the QP (11) and ℎi(T

(c)
i) is evalu-

ated using the solution to the LPs (18), (17), the derivatives are evaluated using tools from parametric sensitivity analysis. In
particular, we have that

dVi(Ti)
dtini

=
)i(wi(Ti), �i(Ti), �i(Ti))

)tini
= �ini (Ti)

)pdi
(

tini , wi(Ti)
)

)tini
, (29)

where i(wi, �i, �i) is the Lagrange Function of the QP (11)29. Here, wi(Ti) is the primal solution of (11) for Ti, �i(Ti) is the
dual solution corresponding to the constraints (11b)-(11d), and �i(Ti) = (�ini (Ti), �

out
i (Ti)) the dual solution corresponding to

constraints (11e), (11f). The second-order derivatives can thereafter be obtained using the chain rule, and we have, for instance,

d2Vi(Ti)

dtini
2

=
d�ini
dtini

)pdi
(

tini , wi(Ti)
)

)tini
+ �ini (Ti)

(

)2pdi
(

tini , wi(Ti)
)

)tini
2

+
)2pdi

(

tini , wi(Ti)
)

)tini)wi

dwi

dtini

)

. (30)

The derivatives of the constraints are obtained similarly, as is exemplified for U (tini) below. We have by definition that

pdi (U (t
in
i), w

ub
i (t

in
i)) − p

out
i = 0, (31)

where wub
i (t

in
i) is the solution to (17) for t

in
i . Differentiation w.r.t. t

in
i then gives that

dU (tini)

dtini
= −

(

)pdi
(

tini , w
ub
i (t

in
i)
)

)tini

)−1
)pdi

(

tini , w
ub
i (t

in
i)
)

)wub
i

dwub
i

dtini
. (32)

The second-order derivative is obtained by applying the chain rule to (32), but the resulting expression is rather large and is
omitted her for brevity. However, the interested reader can find it in24, and it should be noted that it includes the term d2wi∕dtini

2.
The computation of the first and second-order derivatives of L(tin) is identical.

Parametric Sensitivity Analysis
The expressions (29), (30) and (32) rely on the first and second-order sensitivity of the primal-dual solution with respect to Ti,
which acts as a problem parameter in the QP (11) and LPs (18),(17). Note that for the general parametric optimization problem
with free variable x and parameter p

min
x
q(x) s.t a(x, p) ≥ 0 (33)

the KKT conditions are satisfied at the solution, given that some constraint qualification hold.Denoting the primal dual solution
to (33) z∗ = (x∗, �∗), the KKT conditions are

∇(z∗, p) = 0, a(x∗, p) ≥ 0, �∗ ≥ 0, a(x∗, p) ∗ �∗ = 0, (34)

where (z) = q(x, p) − �⊤a(x, p) and ∗ denotes element-wise multiplication. In particular, denoting the set of active constraints
at the solution aA(x∗, p) and the corresponding multipliers �∗A, we have that

r =
⎡

⎢

⎢

⎣

∇(z∗, p)
aA(x∗, p)

aA(x∗, p) ∗ �∗A

⎤

⎥

⎥

⎦

= 0 (35)

and note that the solution map z∗ ∶= z(p) must be such that dr(z(p),p)
dp

= 0. Evaluating the total derivative of r(z(p), p) w.r.t. p,
one obtains

dz
dp

= −
()r
)z

)−1)r
)p
, (36)

AUTHOR ONE ET AL 9

Data (Ti) Vi ∇TiVi ∇2TiVi ℎi(Ti) ∇Tiℎi(Ti) ∇Tiℎi(Ti)
Floats 2 1 2 3 22 2 2

TABLE 1 The information which needs to be sent from a vehicle to the central node each iterate. The central node needs to
send 2 floats to each vehicle: the current primal solution candidate T (c)i .

and, using the chain rule that
d2z
dp2

= −
()r
)z

)−1(d
dp

(

)r
)p

)

+ d
dp

()r
)z

) dz
dp

)

. (37)

Both (36) and (37) exist if ()r
)z
)−1 exists, and the latter is guaranteed if Linear Independence Constraint Qualification (LICQ) and

the Second Order Sufficient Conditions (SOSC) hold at the primal-dual solution of (33). The sensitivities required to evaluate
(29), (30) and (32) can thereby be obtained by solving (36) for the KKT conditions of the QP (11) using the parameters Ti, and
by solving (36) and (37) for the KKT conditions of the LPs (17), (18), using the parameter tini .
Note that if the program (33) is solved using a second-order method, the solver performs iterations similar to

z(c+1) = z(c) − �(c)
()r
)z

)−1
r. (38)

This means that the solver will have factorized the matrix)r
)z

at the solution z, whereby the evaluation of (36) can be done at
little additional computational cost. Consequently, if a second-order method is used to evaluate Vi(Ti) and ℎi(Ti) in the SQP, the
derivatives are cheap to compute.

3.3 Schematic algorithm
A convergence for SQP applied to (7) is given in25. The SQP procedure is performed as follows

1. Initialize the primal-dual variables v(0) = (T (0), �(0)).

2. ∀i: Solve QP (11) and LPs (18), (17) to get cost, constraints and derivatives.

3. Assemble and solve QP to get Δv(c)

4. Perform Projection Line search according to Section 3.1.2:

(a) ∀i: Solve LPs (18), (17) at T �i = T (c)i + �(c)ΔT (c)i and compute i(T �i). Solve QP (11) with i(T �i) to get Vi, ∇Vi,
∇2Vi, ℎi, ∇ℎi, ∇2ℎi.

(b) AssembleM� =
∑Na
i=1 Vi(i(T

�
i) + �

(c)
||ℎs((T �))⅄Ƶ||1

(c) If the Armijo condition (26) is not fulfilled, set �(c) = �(c)�, � ∈ (0, 1) and repeat from 4a.

5. Perform primal-dual update (28a). If a solution is not reached, increment c and repeat from 3.

The computations in steps 2 and 4a consist of the solution of QP (11) and LPs (17),(18) and the associated derivative computa-
tions detailed in Section 3.2. We emphasize that most computations are separable and can be performed in parallel on board the
vehicles. However, while the LPs (18)-(18) can be solved in parallel they must be solved before the the QP (11) due to the use
of i(Ti). The non-parallelizable part of the algorithm is the formation and solution of the QP-subproblem (23), which thereby
necessitates a central network node. In the scenarios considered in this paper, the Coordinator shown in Figure 1 a takes this
role. Note that the SQP sub problem (23) has 2N variables and 5N − 1 constraints, and will be significantly smaller than the
vehicle-level QP (11) in moderately sized scenarios and horizons Ni. In such cases, the computational bottleneck will be the
evaluation of Vi(T

(c)
i) and ℎi(tini

(c)) and the associated derivatives.

Communication Aspects
The information that needs to be communicated from the central node to the vehicles is only the currently held primal solution
candidate, consisting of 2Na floats. The data a vehicle is required to communicate to the central node is listed in Table 1 .

10 AUTHOR ONE ET AL

Consequently, each iterate will involve the communication of at least 14 floats per vehicle, and additional 14 for each reduction
of the step size �. This will increase the time per iterate, and can, depending on communication protocol and implementation,
constitute the bulk of the time required to solve the problem.
We note that it is only necessary to resend (T �i) and Vi((T

�
i)) to evaluate the merit function M� and check the Armijo

condition (26). The remaining information in Table 1 could then be sent after the primal-dual update. However, while the
amount of data transmitted would be less, two additional rounds of communication would be needed: one from the central
node, notifying the vehicles of step acceptance, and one from the vehicles containing the remaining information. As practical
communication systems include a significant overhead, the total time required by communication would be notably higher.
While this requires the vehicles to compute the derivatives of Vi(Ti) and ℎi(Ti) when not strictly needed, the calculations can be
made highly efficient and will have a small impact on the total solve time (c.f. Section 3.2).
Besides what is mentioned here, the algorithmwill require the communication of a number of logical variables, e.g. commands

for algorithm start and stop, step acceptance etc. However, the amount of such data per iterate amounts to a few bytes and since
it can be sent together with the other data, the additional time required is negligible.

3.4 Real time implementation of the intersection-level controller
While the vehicle-level control loops consists of the on-line solution of QP (11), the on-line solution of NLP (7) forms the basis
of the intersection-level control loop. In particular, when NLP (7) is solved using the SQP introduced in this section, it includes
distributed computation and wireless communication. In the ideal case, algorithmic overhead, computation and communication
require a negligible amount of time compared to the time scale of the system dynamics, and the current vehicle state xi,k (and
therefore Vi(xi,k, Ti) and ℎi(xi,k, Ti) can be considered constant during the time it takes to solve the SQP. However, non negligible
delays can be expected in a real application, and the vehicle state might change significantly between the SQP iterations. The
use of wireless communication in particular is a likely source of comparatively large delays, as packet drops are likely to occur
and subsequent re-transmissions of data often are necessary.
This raises what is known as the real-time dilemma30: Should the NLP be solved to convergence when the resulting T

will be outdated w.r.t. the system state, or should an approximate solution T be sought using the most up-to-date information.
This implies that the resulting control law T ∗(xi,k) will be a sub-optimal approximation of the truly optimal solution feedback,
regardless of how the dilemma is handled. In this paper, we consider two different solutions to the dilemma:

3.4.1 Alternative 1: Solving the intersection-level NLP to convergence from a predicted state
In the first solution, which we denote the Converged controller, we use a scheme similar to that of31 or32, where Vi(Ti), ℎi(Ti)
are computed from a predicted future state x̄i,K rather than the current state xi,k, and the resulting control law T ∗(X̄i,k) is not
applied until time tK . The predicted state is obtained from the open loop predictions of QP (11) in the vehicle-level control
loops, which are computed using a previous timeslot schedule T . A block diagram of the scheme is illustrated in Figure 2 a.
If the evolution of the real system stays close to the predicted trajectories so that x̄i,K predicted at some k < K is close to

the actual state xi,K at K , the resulting intersection-level control-law will T ∗(X̄i,k) provide a good approximation to T ∗(Xi,k).
However, the scheme will introduce a significant delay in the feedback of the intersection-level scheme. In fact, denoting update
frequency of the intersection-level controller tTs , we note that the reaction to a perturbation that occurs between kt

T
s and (k+1)tTs

will not be applied to the system until (k + 2)tTs .

3.4.2 Alternative 2: Approximate the intersection-level NLP in a RTI-fashion
The second solution, which we call the 1-step controller, does not solve the SQP to convergence, and thereby avoids long solution
times. Instead, we adopt a strategy where the current state measurements are used to compute Vi(Ti), ℎi(Ti) and their derivatives,
but where only one full SQP step is taken in the solution of (7). The resulting control lawT (1)(Xk) = T (0)+ΔT (0)(Xk) is thereafter
applied directly to the vehicles. While the control law is approximate, it enables rapid feedback and reaction to perturbations to
the vehicles. The procedure is illustrated in Figure 2 b.
This can be seen as an application of the Real Team Iteration (RTI) scheme for dynamic optimization27, applied to the NLP

(7). However, we note that the dynamic optimization problems (11) that gives the vehicle control commands are solved to
convergence at all times.

AUTHOR ONE ET AL 11

MPC (11)

C.P. (7)

MPC (11)

Vehicle

T ∗i (X̄K)

T (c)i (X̄K)

x̄∗i,K

ū∗i,k

xi,k

i(x̄i,K)
Vi(x̄i,K , Ti)

(a) Schematic illustration of the converged controller. Due to non-
negligible delays caused by computation, communication and over-
head, the MPC problem (11) solved at the current state cannot
be used to provide the sensitivities. The sensitivities are instead
computed by solving (11) from the predicted state at future time K .

MPC (11)

(23) & (22)

Vehicle

T (1)i (Xk)

ū∗i,k

xi,k

i(xi,k)
Vi(xi,k, Ti)

(b) Structure of the 1-step controller where (7) isn’t solved to con-
vergence. The derivatives needed to solve the QP sub-problems (23)
are computed from the solution to theMPC problem (11), which also
gives the control command.

FIGURE 2 Schematic illustration of the two intersection-level controllers

4 EXPERIMENTAL VALIDATION

In this section we describe an experimental setup which was used to validate the bi-level controller described in Section 2.3.
In particular, we detail an implementation of the distributed SQP described in Section 3.1 in which most computations are
performed on board the vehicles and communicated to a central coordinating unit using V2V communication. We also provide
details on the hardware platform used.

4.1 Practical implementation of the Vehicle-level Control-loop
The vehicle-level control loop consists of solving the problem (11) every time instant at the current state xi,k, using the time-slot
Ti and applying the resulting optimal ui,k to the vehicle. However, problem (11) differs from standard MPC formulations in that
the position constraints (11e) and (11f) force the vehicle to be at a specific position at a given time. As the vehicle gets closer
to the intersection, the ability to affect when the intersection is entered and departed diminishes. Moreover, in a real scenario,
the closed-loop system is constantly exposed to perturbations in the form of plant-prediction model mismatches, measurement
noise and other external disturbances. It therefore becomes increasingly likely that problem (11) is infeasible for (xi,k, Ti) when
the vehicle gets closer to the intersection.
To address this issue we first relax the equality constraints (11e) and (11f) to the inequalities

pini − p
d
i (t

in
i , wi) ≥ 0, pdi (t

out
i , wi) − pouti ≥ 0. (39)

With this relaxation, the vehicle is allowed to occupy the intersection within Ti rather than using the intersection throughout all
of Ti. While this ensures that the controller, for instance, does not slow down the vehicle to stay longer in the intersection in
response to a perturbation, infeasibilities are still possible. We therefore introduce an additional softening of the constraints (39)
as

pini − p
d
i (t

in
i , wi) + �ini ≥ 0, pdi (t

out
i , wi) − pouti + �outi ≥ 0, �ini ≥ 0 and �outi ≥ 0. (40)

and add the term Pi(�i) =
1
2
�⊤i �i�

q
i + �i1⊤�i to the objective, where �i = (�ini , �

out
i) and �qi > 0, �i > 0 are penalty weights.

12 AUTHOR ONE ET AL

The relaxed-and-softened vehicle MPC problem solved at time tk is thereby

min
w̄i,�i

Ji(w̄i) + Pi(�i) (41a)

s.t. x̄i,k = xi,k (41b)
x̄i,k+n+1 = Aix̄i,k+n + Biūi,k+n, n ∈ I[0,N−1], (41c)
Dix̄i,k+n + Eiūi,k+n(t) ≥ bi, , n ∈ I[0,N−1], (41d)
pini − p

d
i (t

in
i , w̄i) + �ini ≥ 0, (41e)

pdi (t
out
i , w̄i) − pouti + �outi ≥ 0, (41f)

�ini ≥ 0, �outi ≥ 0. (41g)

Here, we differentiate the state and control of the vehicle xi,k, ui,k from the open loop predictions x̄i,k, ūi,k. The control command
applied at time tk is the optimal open loop control command ui,k = ū∗i,k.
The softening of the constraints ensures that there will be no feasibility issues due to the position constraints (39). In fact, Ti

no longer affects the feasibility of the optimization problem (41). Note that if �i is chosen large enough, Pi(�i)3 is a so-called
exact penalty function28. A well known property of exact penalty functions is that the problem with softened constraints will
return a solution with �i = 0 whenever such a solution exists (see e.g.,33 Theorem 14.3.1). Moreover, when �i is chosen large
enough and no solution exists for �i = 0, the solution minimizes ||�i||∞ and thereby the violations of the constraint (39)23.

4.2 Efficient Solution of the Quadratic and Linear Programs
General purpose solvers are too slow to give real-time feasible solutions to the vehicle-level QP (41) and the LPs (18), (17), and
solvers tailored to the special structure of these optimization problems have to be considered.
As discussed in Section 3.2, in case second-order optimization methods are used to solve these QPs/LPs, the sensitivities

of the cost function and constraints can be easily and cheaply computed from the local optimization problems by reusing the
KKT matrix factorization available from the QPs/LPs solver. In this work, we used a version of the interior-point method (IPM)
HPMPC26 tailored to allow the efficient computation of the tangential predictor at the solution.
HPMPC provides an implementation of a Mehrotra’s predictor-corrector IPM tailored for the solution of QPs in the form of

optimal control problems (OCP). The IPM employs a backward Riccati recursion for the efficient computation of the search direc-
tion. As its linear algebra framework, HPMPCmakes use of BLASFEO? , which provides a set of linear algebra routines tailored
to provide high computational performance for rather small matrix sizes, as typical in embedded optimization applications.
On the algorithmic side, the IPM in HPMPC is coupled with a partial condensing algorithm. Partial condensing34 is a tech-

nique that allows to control the level of sparsity of an OCP problem by trading off horizon length with input vector size, by
condensing block-wise the original OCP. It is possible to compute the theoretical optimal horizon length based on the analysis
of the flop count of the algorithm. In practice, however, other factors affect the optimal choice of the horizon length, such as
the performance of linear algebra routines? . The QP (41) is a perfect example of that. Since the state and input vector sizes
are very small and the horizon length is long, partial condensing gives a QP reformulation that HPMPC can solve much faster,
since many operations on small matrices (where the linear algebra performs poorly) are replaced with few operations on large
matrices (where the linear algebra gives higher computational performance).
In this work, HPMPC has been modified to allow the efficient computation of sensitivities. Namely, the solver now allows the

reuse of the last KKT matrix factorization (where Lagrange multipliers and slack variables of inequality constraints are frozen
at their value close to the solution) to cheaply compute the solution of other systems of linear equations with different right
hand side. If there are no changes in the active set, this allows the efficient computation of the tangential predictor around the
current solution35. Therefore, the sensitivities in 36 can be cheaply computed by performing the partial condensing of the right
hand side and the solution of the KKT system reusing the cached KKT matrix factorization. The computational cost of these
operations is negligible with respect to the QP/LP solution, which comprises a complete partial condensing pre-processing step,
plus a KKT matrix factorization and two KKT system solutions per IPM iteration (which are typically in the range of 6-15 per
QP/LP solution).

3The quadratic term in Pi(�i) is added for numerical reasons, and the parameter �q is typically small.

AUTHOR ONE ET AL 13

Efficient solution of the intersection-level problems
As noted in Section 3.3, the computational bottleneck of the SQP in moderately sized scenarios is the solution of the vehicle-
level QP (41) and the LPs (18), (17). This is due to the comparatively small size of the QP subproblem (23) in such cases.
General purpose QP solvers can therefore be fast enough and used to solve (23) in real-time. Due to this, MATLABs QP-solver
quadprog was used in the experimental validation.
However, with an increasing number of vehicles, the time required to solve the QP subproblem (23) with a general purpose

solver will approach that required by HPMPC for the solution of (41) and the LPs (18), (17). For large scenarios, solving (23)
could therefore become a computational bottleneck of the SQP. It is therefore desirable to use efficient, structure exploiting
solvers also for the QP subproblem (23). For this reason, we propose the following reformulation of (23):

min
ΔT ,ut

Na
∑

i=1

1
2
ΔT ⊤i H

(c)ΔTi + ∇Tif (T
(c)
i)⊤ΔTi (42a)

s.t. tini
(c) + Δtini+1 = u

t
i (42b)

uti − t
out
i

(c) − Δtouti ≥ 0 (42c)
ℎi(T

(c)
i) + ∇Tiℎ(T

(c)
i)⊤ΔTi ≥ 0. (42d)

That is, the time-slot incrementsΔTi are formulated as states in the dynamical system (42b), where the variable ut = (ut1,… , utNa
)

is introduced as a fictitious control. The precedence constraint (7c) is formulated as the path constraint (42c). The problem is
thereby written on a stage-wise form for which efficient solvers as HPMPC can be deployed, and significant performance gains
can be made. For instance, the typical time required to solve (23) for a three vehicle scenario with quadprog is around 2 ms using
a standard laptop. The time required by HPMPC for the same problem using the same hardware lies around 40 �s. Moreover, the
time-complexity of HPMPC is linear in the number of stages, and approximately 100 �s are required for a 30-vehicle scenario,
where quadprog requires 7 ms. For a 300-vehicle scenario HPMPC requires approximately 850 �s to converge, while quadprog
requires approximately 1 s.

4.3 Algorithm
The procedures executed by the coordinator and the vehicles when the converged intersection controller is used are summarized
in Algorithm 1 and Algorithm 2. Before the SQP is solved the first time, the central node requests the vehicles’ non-coordinated
optimal time-slot Ti which serves as the primal initial guess. In subsequent solutions of the SQP, the previous optimal solution
is used instead. The solution is considered found when either ||(∇(z), ℎ−(T))||∞ < " or when ||(ΔT , ℎ−(T))||∞ < ". On the
vehicle side, the MPC problem (41), is solved every ts using the most recently commanded time-slot T ∗i . When a request from
the central node is registered, the vehicles evaluate and send the functions and derivatives needed to solve the SQP.

Implementation Restrictions and Practical Considerations
Due to implementation related details, the algorithm was executed with the period ts = 0.1 s. This restricted the communication
of new information from both the central node and the vehicles to occur at a maximum of 10 Hz. With an ideal communication
system, one iteration of the SQP (with �(c) = 1) therefore requires ts s to broadcast T (line 11 of Algorithm 1) and ts s for the
vehicles to respond with i(i(T �i)) (line 12 of Algorithm 1), i.e. the lowest time required per SQP iterate is 2ts s. Moreover,
for the Converged intersection controller, each execution of the SQP commences tTs s before the resulting time-slots should be
applied to the vehicles, which gives the algorithm tTs s to converge and notify the vehicles of the results. For simplicity, the
period of the intersection-level control loop is set to tTs s, which due to the long expected solve times is set to tTs = 3 s. Finally,
to ensure that all vehicles are predicted to be before the intersection when the new time-slots are applied, the SQP is only solved
when no vehicle is close to the intersection. In particular, for scenarios where the desired speed is vref = 50 km∕h, the SQP is
suspended when the first vehicle is 50 m away from the intersection. We emphasize that this modification is done for simplicity
of implementation and that the problem formulation allows the SQP to be solved with a vehicle to be inside the intersection.

14 AUTHOR ONE ET AL

Algorithm 1 Central Node. Here, i(Ti) =
{Vi(Ti),∇TiVi(Ti), ∇

2
Ti
Vi(Ti), ℎi(Ti), ∇Tiℎi(Ti),∇

2
Ti
ℎi(Ti)},

where the dependence on the initial state x̂i,0 has been
dropped for notational simplicity.
1: Send coordination start state xstarti and start time tstart.
2: Request T (0)i from vehicles, initialize �(0), K = 0
3: loop
4: Wait until t == tstart + (K − 1)tTs
5: Set tK = KtTs , T = T ∗, � = �∗, r = 0
6: Broadcast T , tK , r and requesti(Ti) computed at tK .
7: Wait until all vehicles has responded.
8: while exit conditions not fulfilled do
9: Set r = r+1, Assemble and solve (23) forΔz, set
�(c) = 1

10: loop
11: Broadcast T �i = T (c)i + �(c)ΔT (c)i and request

i(T �i) and i(T
�
i)

12: Wait until all vehicles have responded.
13: M� = V ((T �)) + �(c)||ℎs((T �))⅄Ƶ||1
14: if M� ≤M(T (c)) +
DΔT (c)M(T (c))�(c) then
15: T (c+1) = (T �)
16: �(c+1) = �(c) + �(c)(�̃(c) − �(c))
17: Exit loop.
18: else
19: �(c) = �(c)�
20: end if
21: end loop
22: end while
23: Set T ∗ = T (c) and send out time-slot to apply T ∗.
24: K ← K + 1
25: end loop

Algorithm 2 Vehicle
1: loop
2: Estimate current state xi,0, Get synchronized time t
3: if Central node sends new time-slot to apply then
4: Receive T ∗i
5: T locali = T ∗i − t
6: end if
7: Solve (41) with (xi,0, T locali)
8: Apply optimal ui,0 to vehicle
9: if Central node request i(Ti) then

10: Receive Ti, tK , r
11: T̃i

local = Ti − tK
12: if r == 0 then
13: Store xi,K from prediction at tK − t computed

on Line 7
14: Solve LPs for Lin(xi,K) and U in(xi,K)
15: end if
16: Solve LPs (18), (17) and evaluate ℎi(T̃i

local),
∇Tiℎi(T̃i

local), ∇2Tiℎi(T̃i
local).

17: Compute i(T̃i
local) through (27).

18: Solve QP (11) with (xi,K ,i(T̃i
local)) and com-

pute V (xi,K ,i(T̃i
local)), ∇TiV (xi,K ,i(T̃i

local)) and
∇2TiV (xi,K ,i(T̃i

local)).
19: Sendi(T̃i

local) andi(i(T̃i
local)) to central node.

20: end if
21: end loop

4.4 Test Platform
The coordination controller was tested at the Asta Zero proving ground outside Gothenburg, Sweden. The test platform consisted
of the three different Volvo vehicles shown in Figure 3 a: One Volvo S60 T5 Petrol turbo sedan, one Volvo S60 D5 Turbo
Diesel sedan and one Volvo XC90 T6 Petrol turbo SUV. All cars were equipped with automatic gearboxes and an interface
for external control of the longitudinal motion. In particular, all vehicles were commanded by supplying a desired longitudinal
acceleration to a controller, which thereafter sent the appropriate commands to the engine, gear-box and friction brakes. The
vehicles had an on board senor suite consisting of wheel encoders, inertial measurement units and Real-Time Kinematic (RTK)
GPS receivers. The latter was capable of providing positioning estimates where the measurement error standard deviation were
as low as �GPS = 0.05 m as well as global-time synchronization. To improve the positioning estimates and handle sporadic GPS
outages, Extend Kalman Filters based on that presented in36 were used in all vehicles to fuse the available sensor data. The one-
dimensional position pi,k was constructed by first projecting the estimate of the global-position onto a reference path along the
road and then taking pi,k as the geodesic distance along the path from the projected point to the start of the intersection.
Moreover, each vehicle was equippedwith ITSG5 compliant vehicle-to-vehicle communication equipment fromRENDITS37.

On each vehicle, the experiment software ran on two computational units: one MicroAutoBox II (MABx) real-time prototyping
platform, interfacing with the vehicle, sensors and communication equipment which ran the algorithm logic and state estimation,
and one laptop on which the QPs and LPs were solved. The hardware setup in one of the vehicles is shown in Figure 3 b.

AUTHOR ONE ET AL 15

(a)

V2V Gateway

MABx

3G Router

RTK GPS

(b)

FIGURE3 Photos of the experimental hardware platform. (a) Shows the three vehicles used, (b) Shows the hardware installation
in one of the vehicles. The 3G router was used to provide an IP link for the RTK corrections used by the GPS receiver

Finally, the experimental setup included a central coordinating unit which consisted of a laptop and a vehicle-to-vehicle
communication device. The central coordinating unit was used to control and monitor the experiments and executed the central
parts of the SQP.

Prediction model, Objective and Parameters
The prediction model used during the experiments was a simple double integrator, p. i(t) = vi(t), v̇i(t) = ui(t), where the accel-
eration is the input and xi(t) = (pi(t), vi(t)). For this dynamical system pdi (t, wi) = pi,k + (t − kts)vi,k +

1
2
(t − kts)2ui,k, with

k = floor(t∕Ts). Furthermore, we employed the objective function

J di (wi) = (vi,N − vrefi)
2Qf

i +
N−1
∑

i=0
(vi,k − vrefi)

2Qi + Riu2i,k, (43)

where the desired speed vrefi , and the objective function weights Qi > 0 and Ri > 0 were varied between different instances
of the experiment. The state and control were constrained to vi,k ≥ 0 and ui,k ∈ [−4, 1.6] m∕s2, where the latter was due to
limitations in the vehicle actuation interfaces. The vehicle-level control loops were closed with ts = 0.1 s and the horizon length
was set to N = 200. The objective and prediction model were chosen due to their simplicity. In particular, the dynamics does
not include any parameters to identify, and the objective enables an intuitive understanding of how the solution will change with
variations to the penalty weights. However, we want to emphasize that these choices are not restrictive and that other linear-
quadratic models are possible. For instance, in? a prediction model based on a linearization of a non-linear vehicle model is
used together with a quadratic approximation of an economic objective function obtained through the method presented in38.

5 RESULTS

In this section, we present and discuss results from the experimental campaign, which demonstrates the performance of the
semi-distributed SQP and both the converged and 1-step intersection-level controllers. In total, more than 80 experiments were
performed, where the initial conditions, objective function weights and other parameters were varied. In all experiment instances,
the vehicles were first controlled to a predefined starting state, typically one where a collision would occur if no action was taken,
before the bi-level controller was initialized. The experiments were performed in two different modes: in an actual intersection,
as illustrated in Figure 4 a and in a parallel configuration where the approaching roads were laid out next to each other and the
intersection was represented by a segment on the road, as illustrated in Figure 4 b. The latter was used to enable evaluation of
the controller without a risk of collision, and is the primary source of the data reported in this section. However, the interested
reader can find video material from experiments performed in the crossing configuration at39.
For comparison, some simulation results of the closed-loop system are also provided in this section. In these cases, the vehicles

were simulated with the nominal model.

16 AUTHOR ONE ET AL

V1 : XC90

V2 : S60 1

V3 : S60 2

Coordinator

(a) Aerial photo of the crossing configuration used in the experimental valida-
tion. The white lines before the square representing the intersection illustrates the
different safety margins employed.

pinipouti

Coordinator

(b) Photo of the parallel configuration used in the experimental validation. The
white lines mark the beginning and end of the intersection, pini and pouti , and colli-
sions are thereby avoided when only one vehicle is between the two white lines at a
given time

FIGURE 4 Photos of the two different configurations used in the experimental validation.

5.1 Evaluation of the semi-distributed SQP
In this subsection we present and analyze data from the implementation of the semi-distributed SQP used in the experiment. We
focus on a experimental scenario with the objective function weights Qi = 1, Ri = 10, the reference speed vrefi = 50 km∕h, ∀i,
and where all vehicles are initiated at pi,0 = −200 with vi,0 = 50 km∕h. Data from the first SQP instance, where the problem
is solved from xi,0 = (pi,0, vi,0),∀i, is presented in Figure 5 . In particular, Figure 5 a and Figure 5 b show the solutions to
the vehicle-level problems corresponding to the iterates T (c) of the SQP. The two horizontal lines in Figure 5 a represent the
beginning and end of the intersection, i.e. collisions are avoided when at most one trajectory is between the lines at all times,
and the primal iterates T (c) are shown as vertical lines.
In this case, the solver is initialized at the uncoordinated solution, where all vehicles keeps vrefi and therefore occupy the

intersection simultaneously. As can be seen in Figure 5 a, the time-slots T satisfy the order constraints ℎi(T) ≥ 0 already after
the first iterate, whereby a collision free solution is available. The subsequent two iterations retains feasibility and improve the
solution. Full steps (� = 1) are taken in all iterates.
The algorithm progress measure shown in Figure 5 c further illustrates this fact: the feasibility is reached after the first iterate.

Note the relatively loose convergence threshold " = 10−3, which is selected in relation to the properties of the physical system.
In particular, the GPS provides measurements with a positioning error standard deviation around �GPS = 0.05 m. The standard
deviation of the error between the commanded time-slot Ti and that resulting from the closed-loop application of (11) using Ti
will therefore be above one millisecond4 for speeds around 50 km∕h. Enforcing constraint satisfaction or changes to the primal
variables below 10−3 [s] will consequently have no noticeable effect on the physical system.
The small impact of small changes in Ti on the vehicle trajectories is further illustrated in Figure 5 a and Figure 5 b, where

the solutions of (11) corresponding to iteration 2 and 3 are indistinguishable. In fact, the difference in ūi,0 between iteration 2
and 3 is below the resolution of the actuation interface, i.e. the applied control command ūi,0 after iteration 2 and 3 would be
interpreted as identical by the vehicle.

Solution time analysis
The mean computation time was 1.664 ms with � ≈ 1.263 ms (n = 52736) for the LPs, and 1.607 ms with � ≈ 1.107 ms
(n = 246132) for the vehicle-level QPs . Since the SQP normally only required a few iterations to converge to a relevant threshold,
a solution to (7) should have been found within a few hundreds of a second. However, due to a rudimentary implementation and
hardware limitations this was not the case in during the experiments. Instead, the average time required to solve the SQP was
1.740 s with � ≈ 0.406 s (n = 130).
An example of how this time is spent is provided in Figure 6 which shows a timeline from the SQP instance shown in

Figure 5 . In Figure 6 , the width of the bars represent the time spent solving the LPs (18), (17) and the QP (11) for the

4This is true for the otherwise ideal case. In realty, other uncertainties are present as well and the performance is in practice therefore even worse.

AUTHOR ONE ET AL 17

12 13 14 15 16 17

-20

-15

-10

-5

0

5

10

15

20

Iterate 0
Iterate 1-2
Iterate 3

Predicted time t s

p̄
i,
k
m

pin

pout tin
1

tout
3

(a)

0 5 10 15 20

45

50

55

0 5 10 15 20

-0.5

0

0.5

Predicted time t s

v̄
i,
k
k
m
∕
h

ū
i,
k
m
∕
s2

(b)

0 1 2 3

10
−6

10
−4

10
−2

10
0

SQP iteration

P
ro
g
re
ss

M
ea
su
re

||∇
T
(T)||∞

||ΔT ||∞
||ℎ−

s
(T)||∞

(c)

FIGURE 5 Example of the progression of the SQP algorithm in one instance from the experimental campaign. (a) Shows the
primal iterates T (c)i as vertical bars and the position trajectory p̄i,k for the solutions to (11) corresponding to the primal iterates,
(b) shows the corresponding velocity v̄i,k and input ūi,k sequences and (c) the corresponding algorithm progress measure, where
the dashed line is the termination tolerance. The data from the different vehicles in (a) and (b) are differentiated by color.

vehicles, corresponding to Lines 16 and 18 of Algorithm 2, and the time spent solving the QP-subproblem 23 in the central node,
corresponding to Line 9 of Algorithm 1. As the figure illustrates, only 55 ms, corresponding to 1.6% of the total time 2.723 s, is
spent on computation. The time required for the other operations relevant for the SQP in Algorithms 1 and 2 is negligible, and
the remaining 98.4%, i.e. the white gaps of Figure 6 a, is primarily spent in the waiting states of Lines 7 and 12 in Algorithm 1.
Possible explanations for the long waits are inefficient buffer handling in the communication modules of the MABx and packet
drops in the wireless links. To a smaller extent, the delays are due to the low communication frequency used and the lack of
synchronization between the vehicles and the central node, discussed in Section 4.3. The impact of the slow update rate can be
seen in a comparison between the computations of vehicle 1 and 2: in iteration 1, occurring around t = −1.5 s in Figure 6 a,
vehicle 1 and 2 perform their computations simultaneously. in iterations 0, 2 and 3, on the other hand, there is delay of ts = 0.1 s
between the vehicles. The explanation is that a message is processed by Algorithm 2 at a time (k+1)ts or kts depending on when
it is received relative to the ticks of the local clock. Small variations in the the reception time can therefore cause a variation of
ts = 0.1 s in the relative time between the processing of a message in two cars. Moreover, the lack of synchronization can be
observed when vehicle 2 and 3 are compared: the computations of vehicle 3 consistently occur around 0.07 s before those of
vehicle 2. We want to highlight that the long time required to solve the SQP therefore is almost entirely related to our specific
implementation, and that it is likely that performance would improve dramatically with a few improvements.
For comparison, we provide an example of the time-line for a more efficient implementation of the SQP in Figure 6 b. In this

case, the long and unnecessary waits have been removed and the algorithm is synchronized between the vehicles, but everything
else kept unchanged. The time marked as required by communication is taken from36, where an empirical study is presented on
the time performance of the communication system used during the experiment.With such an implementation, the same problem
instance would be solved in 0.074 s, where 48% would be spent on communication, 38.5% on the solution of the vehicle-level
LPs and QP, and 13.5% on solving the QP-subproblem (23).
Finally, it is reasonable to expect even lower solution times with improvements to both problem formulation and equipment.

For instance, the use of the re-formulation of the QP-subproblem and its solution with HPMPC would, as discussed in 4.2,
significantly reduce the time required for the central computations. Furthermore, solving the two LPs (18), (17) in parallel
on each vehicle would shorten the time required for the vehicle-side computations. Finally, while the general purpose V2V
equipment requires around 4 ms for each transmission, a tailored communication protocol could be made significantly faster.
For instance, it is reported in40 that the time to transmit data using the 802.11 p physical layer could be as low as tcom =
40 + ceil

(

(ndata bits + 22)∕48
)

8 μs. Since all vehicles could use different channels and transmit their data to the central node
simultaneously, sending 12 floats per vehicle in double precision would thereby take 176 �s. The time-line for a solution of the
same SQP instance in this hypothetical setting is shown in Figure 6 c, where the solution would be found in 0.0256 s.

18 AUTHOR ONE ET AL

0 0.5 1 1.5 2 2.5 3 1.42 1.44 1.46 1.48 1.5 1.52

Iteration 0 Iteration 1 Iteration 2 Iteration 3

(a)

0 0.5 1 1.5 2 2.5 3 0 0.02 0.04 0.06 0.08

V2V
Vehicle 1
Vehicle 2
Vehicle 3

It. 0 It. 1 It. 2 It. 3

Central Node

(b)

0 0.5 1 1.5 2 2.5 3 0 0.02 0.04 0.06 0.08

0 1 2 3

(c)

FIGURE 6 Illustration of the time spent on computation in the of the SQP instance shown in of Figure 5 , The width of the
bars corresponds to the time spent for the different parts of Algorithms 1 and 2. For the vehicles, it consists of the time required
to solve (18), (17) and (11) sequentially, and for the central node it consists of the time required to solve (23) with MATLABs
quadprog. The bars are shown with different heights to ease visualization. Subfigure (a) shows the timings recorded during the
experiment, (b) shows the likely timings of an improved implementation and (c) illustrates the timings of an hypothetical ideal
implementation which uses a tailored communication protocol.

5.1.1 Consistency
The algorithm consistently exhibited the same behavior as in Figure 5 , with almost immediate feasibility followed by a few
optimality-improving iterations. The algorithm progress measures of a selection of the SQP instances are provided in Figure 7
for illustration. In particular, the convergence to " was achieved in 2 iterations in 7% of the instances, in 3 iterations in 50%, in
4 iterations in 28% and in 5 iterations in 15%.
Finally, we have noticed that reduced steps (� < 0) are required only in "hard" scenarios. Examples of "hard" scenarios include

those where the coordination is initiated very close to the intersection for the initial vehicle velocity, and those where a large
number of vehicles need to cross the intersection simultaneously. For practical reasons we were not able to perform sufficiently
hard scenarios during the experimental campaign, due to which full steps were taken in all experimental SQP instances. For
illustration purposes, the progress measures of a 3-vehicle scenario where reduced steps were taken is given in Figure 7 c. This
scenario was particularly hard, since p1,0 = −45 m, vi,0 = 45 km∕h while p2,0 = p3,0 = −40 m, v2,0 = v3,0 = 50 km∕h, such
that the first and last vehicles were forced perform very aggressive maneuvers to avoid collision.

5.1.2 A Larger Example
To further demonstrate the behavior of the semi-distributed SQP, we present simulated results from a larger problem instance
in Figure 8 . In this scenario, 12 vehicles are randomly generated at distances between 50 and 200 m from the intersection at 50
km∕h. As Figure 8 b illustrates, the algorithm exhibits the same behavior as in the smaller scenarios: feasibility, and thereby
collision avoidance is reached rapidly, in this case after the second iterate, and thereafter small adjustments towards optimality
are performed.
While the implementation of the SQP used in the experiments would require prohibitively long time to solve the problem,

it would be solved in 0.224 s with the improved implementation of Figure 6 b, and attain feasibility in 0.037 s. Moreover, the
problem would be solved in 0.089 s with the ideal implementation discussed in Section 5.1, where a feasible solution would be
available in 0.015 s.

AUTHOR ONE ET AL 19

1 2 3 4 5

10
−6

10
−4

10
−2

10
0

10
2

||
(∇

T

(T

),
ℎ
− s
(T

))
||
∞

SQP iteration

(a)

1 2 3 4 5

10
−6

10
−4

10
−2

10
0

10
2

||
(Δ

T
,ℎ

− s
(T

))
||
∞

SQP iteration

(b)

0 5 10 15

10
−5

10
0

10
5

0

0.2

0.4

0.6

0.8

1

1.2

T
er
m
in
at
io
n
cr
it
er
ia

�

SQP iteration

(c)

FIGURE 7 Subfigure (a) and (b) shows the development of the progress measure in a selection of SQP instances from the
experimental campaign. In both figures, the stars indicates cases when the algorithm was terminated due to only one progress
measure reaching the threshold. Subfigure (c) shows the progress measure in a case where reduced steps are taken. Here, black
plot show �, and the remaining colors follow Figure 5 c. In (a), (b) and (c), the dashed line is the tolerance " = 10−3.

0 5 10 15 20

-200

-150

-100

-50

0

t s

p
i,
k
m

ep

(a)

0 2 4 6 8 10 12 14

10
−4

10
−2

10
0

10
2

0

500

1000

1500

2000

2500

SQP iteration

P
ro
g
re
ss

m
ea
su
re

#
F
lo
at
s
C
o
m
m
u
n
ic
at
ed

||∇
T
(T)||∞

||ΔT ||∞
||ℎ−

s
(T)||∞

||T − T
∗||∞

Cumulative Com.

(b)

FIGURE 8 Example scenario consisting of 12 cars in a four-way intersection. The positions of the vehicles are shown in (a),
where the different colors differentiate different lanes. In (b), the algorithm performancemeasures are displayed together with the
cumulative number of floating point numbers passed in the two-way communication between the central node and the vehicles.

5.2 Evaluation and comparison of controllers
In this subsection we present and analyze both simulated and experimental data on the performance of the bi-level closed-
loop controller In particular, we provide comparisons between the converged and 1-step formulations of the intersection-level
controller and study their ability to reject large perturbations.

5.2.1 Vehicle Level Control Loop
Regardless of how the time-slots T are computed, the accuracy with which the vehicles conform to the time-slots determines
whether or not the closed-loop system is collision free. Even though a very simple dynamic model was used in the vehicle-
level MPC during the experiment, the ability of the closed-loop system to satisfy the position constraints (41e) and (41f) was
remarkable. In particular, even though several non-modeled nonlinearities were present the difference between the commanded
(Ti) and actual (T Actuali) time-slot was small in most cases. A total of 450 experimental evaluations of this difference were
performed, consisting of both tini

Actual− tini and touti
Actual− touti for all three vehicles and all experiment runs. The error was on the

dangerous side, i.e. when the vehicle enters the intersection too early (tin Actuali < tini) or when it leaves the intersection too late

20 AUTHOR ONE ET AL

0 0.01 0.02 0.03 0.04

0

0.05

0.1

0.15

%
o
f
to
ta
l
ca
se
s
m

Magnitude of dangerous error s

(a)

-0.1 -0.05 0 0.05 0.1

-1

-0.5

0

0.5

1

t − tin
i
s

p
i,
k
−
p
in i
m

(b)

-0.1 -0.05 0 0.05 0.1

-1

-0.5

0

0.5

1

t − tout
i

s

p
i,
k
−
p
o
u
t

i
m

(c)

FIGURE 9 Illustration of the vehicle-level MPC performance. Statistics on the difference between the commanded and actual
tini and touti is shown in (a). In particular, only dangerous violations such that tin Actuali < tini or tout Actuali > touti is considered.
The corresponding position trajectories are shown in (b) and (c). Trajectories that satisfy and violate (41e) and (41f) are colored
green and red respectively. The gray area in (a) and (b) corresponds to the constraints (41e) and (41f), and are consequently not
crossed by safe trajectories. The data is obtained from all three vehicles during 75 experiments and all trajectories are shifted in
pi,k and t to ease visualization.

(tout Actuali > touti), in 43.3% of the cases. The distribution of the error is given in Figure 9 a, and we emphasize that for more than
90% of the potentially dangerous constraint violations, the errors were below 0.03 s. To illustrate how this small error translates
to collision risks, the corresponding trajectories in the time-position space is given in Figure 9 b and Figure 9 c for tini and touti
respectively. As can be seen in Figure 9 c, the magnitude of the violation is such that a few decimeters of the leaving vehicle is
inside the intersection when the next vehicle enters. A constraint tightening is discussed in23 using which collision avoidance
can be guaranteed for the closed-loop system even with potentially dangerous constraint violations.
As shown in Figure 9 c, most dangerous constraint violations occur for the out time constraint (41f), i.e, they are such that the

vehicles leaves the intersection too late. This is likely due to the (non-modeled) actuator dynamics being faster in deceleration
than in acceleration (c.f. friction brakes and internal combustion engine). Successful compensation of errors due to measurement
noise and prediction model inaccuracies can therefore be made closer to the intersection when these cause the vehicle to enter
early rather than leave late. It is expected that all constraint violations could be decreased by using amore sophisticated prediction
model in (41), more accurate sensors and a higher update frequency ts.

5.2.2 Intersection Level Control Loop
To enable comparison, the same experiments were performed using both the converged and 1-step controller. Data from the
application of both controllers to one experimental scenario is presented in Figure 10 , where the scenario parameters were as
in Section 5.1. As the figure illustrates, the difference between the two controllers is very small: the acceleration and velocity
profiles in Figure 10 b show a high degree of similarity, and the position trajectories in Figure 10 a are almost indistinguishable.
The differences are perhaps most clearly seen in the lower plot of Figure 10 c, which shows the changes in tini compared to
the first coordinated solution at t = 0. Here, the smaller but more frequent changes to T by the 1-step controller are clearly
differentiated from the less frequent but larger adjustments performed by the converged controller. Note that, while updates are
more frequent for the 1-step controller, they are still significantly slower than the vehicle-level update frequency of 10 Hz. The
reason is that each adjustment first requires all vehicles to send the relevant information to the central node, which thereafter
can solve the QP subproblem (23) and send the updated time-slot back to the vehicles. The process thereby involves the same
type of waiting and delays as discussed in Section 5.1.
Note also that for both controllers, the initial time-slot schedule T is continuously pushed to later times. This is likely caused

by inaccuracies in the prediction model which cause the real system to lag slightly behind the predictions. This explanation is
consistent with the nature of the constraint violations discussed in Section 5.2.1, in particular those shown in Figure 9 c. The
use of a more accurate prediction model would likely affect the behavior.
Wewant to highlight that themagnitude of the input commands and acceleration as well as the resulting changes in velocity are

all small. For comparison, experiments have shown that human drivers decelerate with down to −1.9 m∕s2 during intersection
approaches without stops (light switching from red to green) and down to −4.5 m∕s2 for solid red lights41.

AUTHOR ONE ET AL 21

0 5 10 15

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

t s

p
i,
k
m

Converged
1 − step

(a)

0 5 10 15

45

50

55

0 5 10 15

-0.5

0

0.5

t s
v
i,
k
k
m
∕
h

a
i,
k
m
∕
s2

(b)

0 5 10 15

-0.5

0

0.5

1

0 5 10 15

0

0.05

0.1

0.15

0.2

u
i,
k
m
∕
s2

t s

ti
n i
−
ti
n i

0
s

(c)

FIGURE 10 Data from two experimental runs using the 1-step and converged intersection-level controllers, where Qi = 1,
Ri = 10, vrefi = 50 km∕h, ∀i. The position trajectories are shown in (a) and the velocity and acceleration trajectories in (b).
The upper plot of (c) shows the output of the vehicle-level MPC controllers whereas the lower plot illustrates the output of
the intersection-level controller. To promote visibility, the lower plot in (c) shows only changes in tini with respect to the initial
schedule tini

0, which is the same for both controllers. For both controllers, the time-slot schedule is frozen at t ≈ 10 s. Due to
substantial noise levels, the acceleration data in (b) has been smoothened with a non-causal filter to promote visibility. Finally,
the noise in the control signals of vehicle 2 and 3 seen in (c), is due to a GPS problem. The issue is thoroughly discussed in23.

0 5 10 15

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

t s

p
i,
k
m

Converged
1 − step

(a)

0 5 10 15

45

50

55

0 5 10 15

-0.5

0

0.5

t es

v
i,
k
k
m
∕
h

a
i,
k
m
∕
s2

(b)

0 5 10 15

-0.5

0

0.5

0 5 10 15

-2

-1

0

1

×10
−3

u
i,
k
m
∕
s2

t s

ti
n i
−
ti
n i

0
s

(c)

FIGURE 11 Results from simulations where the converged and 1-step intersection controllers were used. Plots as in Figure 10 .

To illustrate the effects of using a simple implementation and deploying the controller on a real system, results from a simu-
lation of both controllers and the same scenario is provided in Figure 11 . Since one iteration of the SQP requires less than 20
ms in the ideal case, including 2-way communication, the 1-step updates are computed with the same frequency as the vehicle-
level controllers (0.1 s) in simulation. The differences between the controllers are not surprisingly even smaller in the simulated
case, and is again seen most clearly in the control output plot of Figure 11 c.

22 AUTHOR ONE ET AL

0 2 4 6 8 10 12 14 16 18

0

0.2

0.4

0 2 4 6 8 10 12 14 16 18

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16 18

40

45

50

55

t s

u
i,
k
m
∕
s2

�
ti
n i
s

v
i,
k
k
m
∕
h

(a)

0 2 4 6 8 10 12 14 16 18

0

0.1

0.2

0.3

0 2 4 6 8 10 12 14 16 18

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16 18

35

40

45

50

55

t s

u
i,
k
m
∕
s2

�
ti
n i
s

v
i,
k
k
m
∕
h

(b)

FIGURE 12 Data from experimental scenarios with parameters Q1 = 10, R1 = 100, Q2 = Q3 = 1,, R2 = R3 = 10 and
vrefi = 50 km∕h where the driver of the first vehicle press the brake. To ease visualization, the data from Vehicle 2 has been
removed from the presentation. Subfigure (a) shows the response using the converged intersection-level controller and (b) the
response using the 1-step controller. The plots show from top to bottom the velocity, the acceleration commanded by the vehicle-
level MPC and the change between consecutive computations of tini , �t

in
i . In all plots, the gray bar illustrates the time during

which the automated system of the first vehicle is overridden by the driver. The dashed lines in the acceleration plots shows the
MPC’s open loop prediction at the time where the automated system is suspended. The noise in control command of Vehicle 3
around t ≈ 17 is due to a GPS issue, which is discussed throughly in23 but omitted here for brevity.

5.2.3 Rejection of Perturbations
To investigate the ability to counteract large perturbations, experimental scenarios were performed where the drivers of the
vehicles overrode vehicle-level controllers for short periods of time by pressing the brake or accelerator pedals. Data from two
such experiments where the driver of the first vehicle presses the brake pedal is given in Figure 12 . For comparison, Figure 12
also shows the open-loop predictions made on the onset of the perturbation, which gives an indication of what the unperturbed
trajectories would look like.
Rejection of the perturbations should be handled by both feedback loops, i.e. both the action of the vehicles and the time-

slot schedule should be adjusted as a consequence. In particular, when the velocity of the first vehicle is reduced due to the
perturbation, the time-slot schedule should be adjusted so that the intersection entry of all vehicles are postponed. Indeed, this
is also what occurs in both the Converged and 1-step cases, shown in Figure 12 a and Figure 12 b respectively, where the size
of the adjustments in tini is shown in the lower plots and the perturbation is represented by the gray slab. Note that since the
perturbations are introduced manually by the driver, they differ in length and magnitude between Figure 12 a and Figure 12 b .
The benefit of the bi-level control structure is made visible in the middle plots of Figure 12 a. Here it is clearly shown that

the application of a recomputed time-slot at t ≈ 7 reduces the magnitude of the control command of vehicle 1 and increases that
of vehicle 2, which effectively distributes the effort required to counter the perturbation among the two vehicles.
A similar behavior, however smaller in magnitude, can be observed for the 1-step controller in Figure 12 b, which causes

the jagged behavior in the middle plot. Note that as predicted in Section 3.4, the reaction of the intersection-level control loop
is delayed for the converged controller, and the large adjustment to T is not performed until 2.5 s after the perturbation. As
discussed in Section 3.4.1, this is due to the usage of a predicted future state as the basis for the solution of the SQP.
A perturbed scenario was also simulated to further highlight the benefits of the bi-level control structure and to enable better

comparison between the different intersection-level controllers. The result is presented in Figure 13 , where we also include the

AUTHOR ONE ET AL 23

0 2 4 6 8 10 12 14 16 18

-0.06

-0.04

-0.02

0

0 2 4 6 8 10 12 14 16 18

40

50

60

t s

d
i
m

v
i,
k
k
m
∕
h

Constant T
Converged 3 s

Converged 0.1 s
1 − step

(a)

0 2 4 6 8 10 12 14 16 18

0

0.05

0.1

0.15

0 2 4 6 8 10 12 14 16 18

-1

0

1

t s

u
i,
k
m
∕
s2

�
ti
n i
s

(b)

FIGURE 13 Data from simulated scenarios with large perturbations where different versions of the intersection-level controller
has been applied. Besides the controllers used in the experiments, the case where the time-slot schedule is kept constant and
the case where the SQP is solved to convergence every 0.1 s is shown for comparison. The colors differentiate Vehicle 1 (blue)
from Vehicle 3 (red). In the lower plot of subfigure (a), di denotes the difference between the position pi,k resulting from the
1-step controller and the controller where the SQP is solved to convergence every 0.1 s. The perturbation is taken from the
experimental scenario of Figure 12 a.

case where the time-slots are not adjusted and a highly idealized, unrealistic controller in which the SQP is solved to convergence
every ts = 0.1 s at the current state to serve as benchmarks.
Note in particular the trajectories corresponding to the casewhere the time-slot schedule is kept constant. In this case, the entire

effort of perturbation rejection is placed on the first vehicle, with higher transient accelerations and velocities as a consequence.
A similar behavior is observed between the time-slot updates when the SQP is solved to convergence every tTs = 3s. While the
effort of rejecting the disturbance is re-distributed among the vehicles with re-computed time-slots, large acceleration levels are
observed in Vehicle 1 between t = 3 and t = 6.
With the 1-step controller, the transient velocities and accelerations are lower as the effort to counter the perturbation is

continuously distributed between the vehicles. As can be seen in Figure 13 b, the size of the time-slot adjustments in the 1-step
case is very small, and their application results in no rapid changes in the control command. This is due to the higher update
frequency, which allows a gradual adjustment of the intersection-level controller to the disturbance.
Finally, the difference between the positions resulting from the the 1-step controller and the idealized case where the SQP

solved to convergence every 0.1 s is shown in the lower plot of Figure 13 a. As can be seen, the difference is at most in the order
of the accuracy of the positioning system. For most of the time, the difference would not be distinguishable from measurement
noise. This is a strong indication that here is no major benefit of solving the SQP to a higher accuracy this fast, further motivating
the use of the 1-step controller. We note that the corresponding accumulated difference in tini is around 50ms at most, and settles
around 1 ms.
Note that the trajectories for the case where the SQP is solved to convergence every t = 0.1 s are drawn in all plots of

Figure 13 , but are indistinguishable from the trajectories corresponding to the 1-step controller.

6 DISCUSSION AND CONCLUSION

This paper addressed the development and experimental validation of a semi-distributed algorithm for optimal coordination of
automated vehicles at intersections. In particular, we described a bi-level MPC, where an upper control layer allocates collision
free intersection occupancy time-slots by solving a NLP, and a lower control layer computes the optimal control commands by
solving QPs. We detailed a semi-distributed SQP method used to solve the NLP, and described a practical implementation of the
controller, including the integration of the state-of-the art QP solver HPMPC.We demonstrated the applicability of the controller
and computational scheme through an extensive experimental campaign. In particular, even though there were substantial issues

24 AUTHOR ONE ET AL

with the implementation, the method was shown to reject large perturbations efficiently and satisfy the collision avoidance
constraints to a relevant accuracy.
We want to highlight that the issues observed during the experimental campaign were entirely due to implementation defi-

ciencies and design choices and not inherent to the control formulation or algorithm. On the contrary, the performance observed
despite the issues is an indication of the scheme’s applicability to real scenarios. For instance, while the ITS-G5 standard has 6
service channels42, and therefore has the potential to let 6 vehicles communicate simultaneously, larger scenarios would require
sequential communication with the current technology. The actual communication time would thereby increase and a delay
would be induced: in a scenario with, e.g., 42 cars, at least 7 rounds where 6 vehicles communicate in parallel would be required.
With the equipment used during the experiment, the wait on Line 12 of Algorithm 1 would increase with at least 24 ms. Even
though a lager scenario likely requires more SQP iterations to converge, as indicated by the results of Section 5.1.2, the time
required to solve the problem would still be much smaller than that observed in the experiments, and equal or better performance
could be expected. It should also be noted that, even in a non-ideal communication environment where some vehicles possibly
need to re-send their data due to packet drops, the added delay is small compared to that experienced during the experiments
and would likely not affect the controller performance significantly.
We also want to emphasize the complete parallelizability of the vehicle-level QPs and LPs. Due to this, the time-per-iterate

in the SQP will practically be independent of the number of vehicles, and the computational time decided solely by the number
of iterates, use of reduced steps, and the time required to solve the QP sub-problems. In terms of computation, the algorithm
therefore scales well with an increased number of vehicles.
We should also point out that the central part of the algorithm could be performed at a physically remote location, e.g. in the

"cloud". In this case, the coordinating unit would only be required to provide an access point to the V2V network. Moreover, the
ability to function with rather large delays could also motivate the use of cellular communication rather than direct radio-links.
With a cellular communication solution, no dedicated intersection infrastructure would be needed at all.
As evidenced by both experimental and simulated results, the bi-level controller successfully managed to handle both large

and small perturbations. In particular, by closing the upper control loop, we showed that the controller distributed the effort of
rejecting perturbations among the involved vehicles. With such a system, the actuation capacities of all involved vehicles can
be used to prevent a collision, should it be necessary, which is an important safety feature. Moreover, the 1-step variation of
the intersection-level controller was shown to have comparable performance. Indeed, as indicated by the simulation results, the
difference between solving the SQP to full convergence and applying the 1-step scheme are on a scale which makes it irrelevant
to the application. As the 1-step scheme requires significantly less communication, faster feedback is thereby enabled in the
intersection control loop.While this indicates that the 1-step controller is superior to the Converged controller in the tested cases,
further studies are required before general conclusions can be drawn.

Future Work
We aim to generalize the method to include scenarios with more than one oncoming lane per road, allow turning vehicles and
explicitly account for rear-end collisions between vehicles on the same lane. While rear-end collision avoidance constraints are
easy to formulate and include in the centralized setting of Problem (6), they create additional couplings between the vehicles and
complicates the application of the decomposition method used in this paper. We are currently working on schemes which allows
both rear-end collision avoidance constraints and distributed computation. Finally, we will address the combinatorial problem
of finding the optimal crossing order in future work.

ACKNOWLEDGMENTS

This research was funded by The Swedish Research Council under Grant No. 2012-4038, Vinnova under grants 2015-04849
(Copplar project) and 2015-03075 (AstaZero program). The Authors would like to thank Albin Severinson for help with the
V2V communication equipment, and express our gratitude towards the following individuals for help with equipment for the
experimental validation: Arpit Karsolia and Fredrik von Corswant at Chalmers REVERE-lab, Wojciech Mostovski at Halmstad
University, Henrik Lind at Volvo Cars and Alessandro Colombo at Politechnico di Milano. The authors further wish to thank
Moritz Diehl for supporting the cooperation between the research groups at Chalmers University and Freiburg University. We
also want to thank our colleagues Giuseppe Giordano, Ankit Gupta and Johan Karlsson as well as Marco di Vaio and Gabriel

AUTHOR ONE ET AL 25

de Campos, who acted as drivers and helpers during the experiments. Finally, we want to thank Fengco Real Time Control and
Leica Geosystems for technical assistance with the hardware.

References

1. Hult R., Campos G. R., Steinmetz E., Hammarstrand L., Falcone P., Wymeersch H.. Coordination of Coopera-
tive Autonomous Vehicles: Toward safer and more efficient road transportation. IEEE Signal Processing Magazine.
2016;33(6):74-84.

2. Colombo A., Del Vecchio D.. Efficient Algorithms for Collision Avoidance at Intersections. Proceedings of the 15th ACM
International Conference on Hybrid Systems: Computation and Control. 2012;:145–154.

3. Steinmetz E., Hult R., Campos G. R.,WildemeerschM., Falcone P., Wymeersch H.. Communication analysis for centralized
intersection crossing coordination. Proceedings of the 11th International Symposium on Wireless Communications Systems
(ISWCS). 2014;:813-818.

4. Chen L., Englund C.. Cooperative Intersection Management: A Survey. IEEE Transactions on Intelligent Transportation
Systems. 2016;17(2):570-586.

5. Rios-Torres J., Malikopoulos A. A.. A Survey on the Coordination of Connected and Automated Vehicles at Intersections
and Merging at Highway On-Ramps. IEEE Transactions on Intelligent Transportation Systems. 2017;18(5):1066-1077.

6. Dresner K., Stone P.. Multiagent traffic management: a reservation-based intersection control mechanism. Proceedings of
the Third International Joint Conference on Autonomous Agents and Multiagent Systems. 2004;:530-537.

7. Dresner K., Stone P.. A Multiagent Approach to Autonomous Intersection Management. Journal of Artificial Intelligence
Research. 2008;31(1):591–656.

8. Kowshik H., Caveney D., Kumar P. R.. Provable Systemwide Safety in Intelligent Intersections. IEEE Transactions on
Vehicular Technology. 2011;60(3):804-818.

9. Gregoire J., Frazzoli E.. Hybrid centralized/distributed autonomous intersection control: Using a job scheduler as a plan-
ner and inheriting its efficiency guarantees. Proceedings of the 55th IEEE Conference on Decision and Control (CDC).
2016;:2549-2554.

10. Tallapragada T, Cortés J.. Coordinated intersection traffic management. IFAC-PapersOnLine. 2015;48(22):233 - 239. 5th
IFAC Workshop on Distributed Estimation and Control in Networked Systems NecSys 2015.

11. Lee J., Park B.. Development and Evaluation of a Cooperative Vehicle Intersection Control Algorithm Under the Connected
Vehicles Environment. IEEE Transactions on Intelligent Transportation Systems. 2012;13(1):81-90.

12. Campos G. R., Falcone P., Sjöberg J.. Autonomous cooperative driving: A velocity-based negotiation approach for inter-
section crossing. Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC).
2013;:1456-1461.

13. Campos G. R., Falcone P., Wymeersch H., Hult R., Sjöberg J.. Cooperative receding horizon conflict resolution at traffic
intersections. Proceedings of the 53rd IEEE Conference on Decision and Control (CDC). 2014;:2932-2937.

14. Kim K. D., Kumar P. R.. An MPC-Based Approach to Provable System-Wide Safety and Liveness of Autonomous Ground
Traffic. IEEE Transactions on Automatic Control. 2014;59(12):3341-3356.

15. Miculescu D., Karaman S.. Polling-systems-based control of high-performance provably-safe autonomous intersections.
Proceedings of the 53rd IEEE Conference on Decision and Control (CDC). 2014;:1417-1423.

16. Qian X., Gregoire J., La Fortelle A., Moutarde F.. Decentralized model predictive control for smooth coordination of
automated vehicles at intersection. Proceedings of the European Control Conference (ECC). 2015;:3452-3458.

26 AUTHOR ONE ET AL

17. KamalM.A. S., Imura J., Hayakawa T., Ohata A., Aihara K.. AVehicle-Intersection Coordination Scheme for Smooth Flows
of Traffic Without Using Traffic Lights. IEEE Transactions on Intelligent Transportation Systems. 2015;16(3):1136-1147.

18. Murgovski N., Campos G. R., Sjöberg J.. Convex modeling of conflict resolution at traffic intersections. Proceedings of the
54th IEEE Conference on Decision and Control (CDC). 2015;:4708-4713.

19. Zhang Y. J., Malikopoulos A. A., Cassandras C. G.. Optimal control and coordination of connected and automated vehicles
at urban traffic intersections. Proceedings of the American Control Conference (ACC). 2016;:6227-6232.

20. Jiang Y., Zanon M., Hult R., Houska B.. Distributed Algorithm for Optimal Vehicle Coordination at Traffic Intersections.
IFAC-PapersOnLine. 2017;50(1):11577 - 11582. 20th IFAC World Congress.

21. Katriniok A., Kleibaum P., Joševski M.. Distributed Model Predictive Control for Intersection Automation Using a
Parallelized Optimization Approach. IFAC-PapersOnLine. 2017;50(1):5940 - 5946. 20th IFAC World Congress.

22. Hult R., Campos G. R., Falcone P., Wymeersch H.. An approximate solution to the optimal coordination problem for
autonomous vehicles at intersections. Proceedings of the American Control Conference (ACC). 2015;:763-768.

23. Hult R., Zanon M., Gros S., Falcone P.. Optimal Coordination of Automated Vehicles at Intersections: Theory and
Experiments https://arixiv.2018.

24. Hult R., Zanon M., Gros S., Falcone P.. Primal Decomposition of the Optimal Coordination of Vehicles at Traffic
Intersections. Proceedings of the 55th IEEE Conference on Decision and Control (CDC). 2016;:2567-2573.

25. Zanon M, Gros S., Wymeersch H., Falcone P.. An Asynchronous Algorithm for Optimal Vehicle Coordination at Traffic
Intersections. IFAC-PapersOnLine. 2017;50(1):12008 - 12014. 20th IFAC World Congress.

26. Frison G., Sorensen H.B., Dammann B., Jorgensen J.B.. High-performance small-scale solvers for linear Model Predictive
Control. Proceedings of the European Control Conference (ECC). 2014;:128-133.

27. Diehl M.. Real-Time Optimization for Large Scale Nonlinear Processes Fortschr.-Ber. VDI Reihe 8, Meß-, Steuerungs-
und Regelungstechnik, vol. 920: . Düsseldorf: VDI Verlag; 2002. Download also at: http://www.ub.uni-
heidelberg.de/archiv/1659/.

28. Nocedal J., Wright S.J.. Numerical Optimization. Springer Series in Operations Research and Financial Engineer-
ingSpringer; 2 ed.2006.

29. Büskens C., Maurer H.. Online Optimization of Large Scale Systemsch. Sensitivity Analysis and Real-Time Optimization
of Parametric Nonlinear Programming Problems, :3–16. Berlin, Heidelberg: Springer Berlin Heidelberg 2001.

30. DiehlM., Findeisen R., Schwarzkopf S., et al. An Efficient Algorithm for NonlinearModel Predictive Control of Large-Scale
Systems. Part I: Description of the Method. Automatisierungstechnik. 2002;50(12):557–567.

31. Findeisen R., Allgöwer F.. Computational Delay in Nonlinear Model Predictive Control Proc. Int. Symp. Adv. Control of
Chemical Processes, ADCHEM2003.

32. Chen W., Ballance D.J., O’Reilly J.. Model Predictive Control of Nonlinear Systems: Computational Delay and Stability.
IEEE Transactions on Automatic Control. 2000;147(4):387–394.

33. Fletcher R.. Practical Methods of Optimization. Chichester: Wiley; 2nd ed.1987.

34. Axehill D.. Controlling the level of sparsity in MPC. Systems & Control Letters. 2015;.

35. Diehl M., Ferreau H. J., Haverbeke N.. Nonlinear model predictive control Lecture Notes in Control and Information Sci-
ences, vol. 384: ch. Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation, :391–417. Springer
2009.

36. Hult R., Sancar E., Jalalmaab M., et al. Design and experimental validation of a cooperative driving control architecture for
the Grand Cooperative Driving Challenge 2016. Transactions on Intelligent Transportation Systems. 2017;. to Appear.

AUTHOR ONE ET AL 27

37. RENDITS http://www.rendits.com/Accessed: 2016-11-05; .

38. Zanon M., Gros S., Diehl M.. A Tracking MPC Formulation that is Locally Equivalent to Economic MPC. Journal of
Process Control. 2016;.

39. Hult R., Zanon M., Gros S., Falcone P.. Optimal coordination of three cars approaching an intersection
https://youtu.be/nYSXvnaNRK4Accessed: 2017-03-03; .

40. Fernandez J. A., Borries K., Cheng L., Kumar B. V. K. Vijaya, Stancil D. D., Bai F.. Performance of the 802.11p Physical
Layer in Vehicle-to-Vehicle Environments. IEEE Transactions on Vehicular Technology. 2012;61(1):3-14.

41. Rittger L., Schmidt G., Maag C., Kiesel A.. Driving behaviour at traffic light intersections. Cognition, Technology & Work.
2015;17(4):593–605.

42. European Telecommunications Standards Institute . ETSI EN 302 663: Access layer specification for Intelligent Transport
Systems operating in the 5 GHz frequency band. 2012.

	Experimental Validation of a semi-distributed SQP method for optimal coordination of automated vehicles at intersections
	Abstract
	Introduction
	Problem Formulation
	Modeling
	Optimal Control formulation
	Decomposition
	Discretization
	Problem Properties

	Receding horizon implementation

	A Semi-Distributed SQP method
	SQP
	Hessian Approximation
	Step size selection

	Calculation of derivatives
	Schematic algorithm
	Real time implementation of the intersection-level controller
	Alternative 1: Solving the intersection-level NLP to convergence from a predicted state
	Alternative 2: Approximate the intersection-level NLP in a RTI-fashion

	Experimental Validation
	Practical implementation of the Vehicle-level Control-loop
	Efficient Solution of the Quadratic and Linear Programs
	Algorithm
	Test Platform

	Results
	Evaluation of the semi-distributed SQP
	Consistency
	A Larger Example

	Evaluation and comparison of controllers
	Vehicle Level Control Loop
	Intersection Level Control Loop
	Rejection of Perturbations

	Discussion and Conclusion
	Acknowledgments
	References

