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A Supplemental file
We here collect the technical results and details that, for the sake of sim-
plicity, have not been included in the main body of the paper. Specifically,
in Subsection A.1 we describe the asymptotic behavior of the total num-
ber of features along time and we show some analytic findings regarding the
asymptotic behavior of the mean number of edges in the actions-features bi-
partite network; in Subsection A.2 we provide some statistical tools in order
to estimate the parameters of the model; finally, Subsection A.3 contains the
cleaning procedure used for the IEEE and arXiv datasets.

A.1 Some asymptotic results for the model
We here illustrate some asymptotic properties of the model.

A.1.1 Asymptotic behavior of the total number of features

The random variable Lt = ∑t
j=1 Nj, that represents the total number of

features present in the system at time-step t, has the following asymptotic
behavior as t→ +∞:

a) for β = 0, we have a logarithmic behavior of Lt, that is Lt/ ln(t) → α
almost surely;

b) for β ∈ (0, 1], we obtain a power-law behavior, i.e. Lt/tβ → α/β almost
surely.

The proof of these two statements is exactly the same as in [1], since the
weights do not affect Lt.
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A.1.2 Asymptotic behavior of the mean number of edges in the
actions-features network

We here analyze the asymptotic behavior, as t → +∞, of µe(t) = E[e(t)],
where e(t) is the total number of edges in the actions-features network at
time-step t, that is the total number of ones in the matrix F until time-step
t. A first remark is that we have

e(t) =
t∑

u=1

∑
k:Tk=u

dk(t), (1)

where we denote by Tk the arrival time-step of feature k and

dk(t) =
t∑

j=1
Fj,k = 1 +

t∑
j=Tk+1

Fj,k (2)

is the degree of feature k at time-step t. Hence, we can write

E[e(t)|Tk ∀kwith Tk ≤ t] =
t∑

u=1
card(k : Tk = u)E[dk(t)|Tk = u]

=
t∑

u=1
NuE[dk(t)|Tk = u],

(3)

where we recall that Nu is Poi(λu)-distributed with λu = α/u1−β. In the
following subsections, we go further with the computations in the two extreme
cases δ = 1 and δ = 0 since the behavior for a general δ is a mixture of the two
behaviors in the extreme cases. A graphical representation of the evolution
of µe(t) in the considered cases is provided in Figure A.1 (the values are
averaged over a sample of R = 100 simulations).

The case δ = 1

In this case the inclusion probability of a feature k at time-step t simply is
Pt(k) = 1

2. Therefore, since (2), we have

E[dk(t)|Tk = tk] = 1 + t− tk
2 ∼ t/2.

Hence, by (3) and the above approximation, we can approximate µe(t) by
the quantity

t

2

t∑
u=1

λu = αt

2

t∑
u=1

uβ−1 ∼ αt1+β

2β . (4)
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The case with δ = 0 and the weights equal to a constant

Let us assume δ = 0 and Wt,j,k equal to a constant w ∈]0, 1] for all t, j, k, so
that the inclusion probability of a feature k at time-step t is

Pt(k) = dk(t− 1)
t

w.

Let us set 〈dk(t)〉 = E[dk(t)|Tk = tk] and observe that we have

〈dk(t)〉 =1 + w
t∑

τ=tk+1

〈dk(τ − 1)〉
τ

=1 + w

 t−1∑
τ=tk+1

〈dk(τ − 1)〉
τ

+ 〈dk(t− 1)〉
t


=1 + w

t−1∑
τ=tk+1

〈dk(τ − 1)〉
τ

+ w

t

1 + w
t−1∑

τ=tk+1

〈dk(τ − 1)〉
τ


=
(

1 + w

t

)1 + w
t−1∑

τ=tk+1

〈dk(τ − 1)〉
τ


= · · ·

=
(

1 + w

t

)(
1 + w

t− 1

)
· · ·

(
1 + w

tk + 1

)
=tk!
t! · (t+ w) · (t− 1 + w) · · · (tk + 1 + w)

=tk!
t! ·

(t+ w) · (t− 1 + w) · · · (tk + 1 + w) · (tk + w) · · · (w + 1) · w
(tk + w) · · · (w + 1) · w .

Using the properties of the Γ-function, we can write

〈dk(t)〉 =tk!
t!

Γ(t+ w + 1)!
Γ(tk + w + 1)! = Γ(tk + 1)

Γ(t+ 1)
Γ(t+ w + 1)!
Γ(tk + w + 1)! ∼

(
t

tk

)w
. (5)

Therefore, by (3) and the above approximation, we can approximate µe(t)
by the quantity

t∑
u=1

λu
tw

uw
= αtw

t∑
u=1

uβ−w−1 ∼


αtβ ln(t) if w = β,

α

β − w
(tβ − tw) ∼ αtmax{w,β}

|w − β|
if w 6= β.

(6)
Remark: It is worthwhile to note that in the case of weights of the form
Wt,j,k = Wt for all t, j, k, where the random variables Wt take values in [0, 1],
are identically distributed with mean value equal to µW , and each of them
is independent of all the past until time-step t− 1, we get for µe(t) the same
asymptotic behavior as above, but with w = µW .

3



The case with δ = 0 and the weights depending only on k

Let us assume δ = 0 and Wt,j,k = Wk for all t, j, k, where the random
variables Wk take values in [0, 1], are independent and identically distributed
with probability density function ρ, and each of them independent of the
arrival time-step Tk of the feature. Moreover, we focus on the case β < 1,
that is more interesting then the case β = 1. In this case the inclusion
probability is

Pt(k) = dk(t− 1)
t

Wk.

Using the same computations done above, we get

E[dk(t)|Tk = tk, Wk] ∼
(
t

tk

)Wk

and so we can approximate E[dk(t)|Tk = tk] by
∫ 1

0

(
t

tk

)w
ρ(w) dw. Hence,

using (3), we can approximate µe(t) by

t∑
u=1

λu

∫ 1

0

(
t

u

)w
ρ(w)dw =

∫ 1

0
tw

t∑
u=1

λuu
−wρ(w)dw =

α
∫ 1

0
tw

t∑
u=1

u−(w−β+1)ρ(w)dw = αtβ
∫ 1

0

tw−β − 1
w − β

ρ(w)dw.
(7)

Therefore the asymptotic behavior of µe(t) depends on the asymptotic
behavior of the above integral. In the sequel we analyze the case of the
uniform distribution and the one of the “truncated” exponential distribution.
To this purpose, we employ the Exponential integral

Ei(y) = −
∫ +∞

−y

e−x

x
dx =

∫ y

−∞

ev

v
dv,

which has the property limy→+∞
ey

yEi(y) = 1.

Example 1 (Uniform distribution on [0, 1])
If ρ(w) = 1, ∀w ∈ [0, 1] and equal to zero otherwise, we can compute the
above integral and approximate µe(t) by

αtβ
{∫ (1−β) ln(t)

−β ln(t)

ev

v
dv −

∫ 1−β

−β

1
v
dv

}
= αtβ

{
Ei[(1−β) ln(t)]−Ei[−β ln(t)]+ln

(
β

1− β

)}
(8)
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Using the asymptotic properties of the Exponential integral, we find that the
above quantity behaves for t→ +∞ as

αt

(1− β) ln(t) .

Example 2 (Exponential distribution on [0, 1])
If ρ(w) = e1−w/(e − 1) for w ∈ [0, 1] and equal to zero otherwise, the com-
putation of the above integral leads to the approximation for µe(t) given
by

αe1−β

(e− 1)t
β

{
−
∫ 1−β

−β

e−x

x
dx+

∫ (1−β)(ln(t)−1)

−β(ln(t)−1)

ev

v
dv

}

= αe1−β

(e− 1)t
β
{

Ei[β]− Ei[−(1− β)] + Ei[(1− β)(ln(t)− 1)]− Ei[−β(ln(t)− 1)]
}
.

(9)

Using the asymptotic properties of the Exponential integral, we find that the
asymptotic behavior for t→ +∞ of the above quantity is given by

αt

(e− 1)(1− β) ln(t) .

A.2 Estimation of the model parameters
We here provide some statistical tools in order to estimate the parameters
of the model: α, β and δ. If we observe a number of T actions, let {F1 =
f1, F2 = f2, . . . , FT = fT} be the observed actions-features matrix rows and
let {N1 = n1, N2 = n2, . . . , NT = nT} be the observed numbers of new
features introduced by each of the observed actions.

The parameters α and β

The parameters α and β can be estimated using a maximum likelihood
method, that is maximizing the probability to observe {N1 = n1, N2 =
n2, . . . , NT = nT}. Since all the random variables Nt are assumed inde-
pendent and Poisson distributed with parameter α for t = 1 and λt = α/t1−β

for t ≥ 2, we have

P (N1 = n1, . . . , NT = nT ) = Poi(α){n1}
T∏
t=2

Poi (λt) {nt}. (10)
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Hence, we choose as estimates the pair (α̂, β̂) that maximizes the function
(10), or equivalently its log-likelihood expression

ln (Poi(α){n1}) +
T∑
t=2

ln (Poi (λt) {nt}) .

Remark: From the result stated in Subsection A.1.1, we get that ln(Lt)/ ln(t)
is a strongly consistent estimator for β. Indeed:

a) if β = 0, then we have Lt a.s.∼ α ln(t) as t → +∞, so ln(Lt) a.s.∼ ln(α) +
ln(ln(t)) and hence ln(Lt)/ ln(t) a.s.→ 0 = β;

b) if β ∈ (0, 1], then we have Lt a.s.∼ (α/β)tβ as t → +∞, so ln(Lt) a.s.∼
ln(α/β) + β ln(t), and hence ln(Lt)/ ln(t) a.s.→ β.

The parameter δ

An estimate for the parameter δ is obtained maximizing the probability to
observe {F1 = f1, F2 = f2, . . . , FT = fT}. More precisely, we have

P (F1 = f1, . . . , FT = fT ) = P (F1 = f1)
T∏
t=2

P (Ft = ft|F1, . . . , Ft−1) =

P (N1 = n1)
T∏
t=2

P (Ft,k = ft,k for k = 1, . . . , Lt−1, Nt = nt|F1, . . . , Ft−1) =

Poi (α) {n1}
T∏
t=2

Poi (λt) {nt}


Lt−1∏
k=1

Pt(k)ft,k (1− Pt(k))1−ft,k

 ,
where Pt(k) is the inclusion probability defined in the main body of the
paper. Since many terms in the previous equation do not depend on δ,
the problem simplifies into the choice of the value of δ̂ that maximizes the
following function

T∏
t=2

Lt−1∏
k=1

Pt(k)ft,k (1− Pt(k))1−ft,k (11)

or, equivalently, taking the logarithm,

T∑
t=2

Lt−1∑
k=1

ft,k ln (Pt(k)) + (1− ft,k) ln (1− Pt(k)) . (12)
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A.3 Data cleaning procedure
For the arXiv and IEEE datasets, the data preparation procedure has been
carried out using the Python package NodeBox 1, that allows to perform
different grammar analyses on the English language. We use the library to
categorize (as noun, adjective, adverb or verb) each word in all title’s or
abstract’s sentences, with the final purpose of selecting nouns and adjec-
tives only. Then, all selected words are modified substituting capital letters
with lowercases and transforming all plurals into singulars, again using the
NodeBox package. Finally, we also remove special words such as “study”,
“analysis” or “paper”, that may often appear in the abstract text but are not
relevant for the description of the topic and for the purpose of our analysis.
Authors names are similarly treated. Indeed, from each name we replace cap-
ital letters with lowercases and we modify it by considering only the initial
letter for each reported name and the entire surname. To make an exam-
ple, names such as “Peter Kaste” or “P. Jacob” are respectively transformed
into “p.kaste” and ”p.jacob”. One drawback of this kind of analysis is that
authors with more than one names who reported all of them or just some
in different publications cannot be distinguished. Indeed, in this situation
they would appear as distinct. For example “A. N. Leznov”, “A. Leznov”
or “Andrey Leznov” may probably identify the same person who reported
respectively two initials, one initial or the full name in different papers. How-
ever, with this transformation they appear as two distinct authors, since they
are respectively represented by the abbreviations “a.n.leznov” and “a.leznov”.
Despite this fact, no further disambiguation is performed on the names, since
it would be computationally very expensive and outside the scope of this re-
search work [2].
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Figure A: Evolution of µe(t), i.e. the mean number of edges along time. From
top-left to bottom-right we have the cases: δ = 1 and weights equal to 1;
δ = 0 and weights equal to a constant w (the blue triangles represent the
case with w 6= β, while the red dots show the case w = β); δ = 0 and weights
depending only on t with uniform distribution on [0, 1] (the blue triangles
show the case with the mean value µW 6= β, while the red dots describe the
case with µW = β); δ = 0 and weights depending only on k, considering the
two different distributions of the provided examples (uniform and truncated
exponential distribution) for the weights: the continuous lines refer to the
values of the integrals (8) and (9), respectively, while the dashed lines show
the final approximations. All simulations have been performed with α = 30
and β = 0.6 (unless otherwise specified in the legend).8
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