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Abstract—fMRI is used to investigate brain functional 
connectivity after removing nonneural components by General 
Linear Model (GLM) approach with a reference ventricle-
derived signal as covariate. Ventricle signals are related to low-
frequency modulations of cardiac and respiratory rhythms, 
which are nonstationary activities. Herein, we employed an 
adaptive filtering approach to improve removing physiological 
noise from BOLD signals. Comparisons between filtering 
approaches were performed by evaluating the amount of 
removed signal variance and the connectivity between 
homologous contralateral regions of interest (ROIs). The 
global connectivity between ROIs was estimated with a 
generalized correlation named RV coefficient. The mean ROI 
decrease of variance was 52% and 11%, for adaptive 
filtering and GLM, respectively. Adaptive filtering led to 
higher connectivity between grey matter ROIs than that 
obtained with GLM. Thus, adaptive filtering is a feasible 
method for removing the physiological noise in the low 
frequency band and to highlight resting state functional 
networks. 

Keywords: Principal Component Analysis; Adaptive 
Filtering; Nonstationarity Test; RV coefficient, fMRI BOLD 
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I.  INTRODUCTION  
Low frequency fluctuations of Blood Oxygenation Level-

Dependent (BOLD) signal in functional Magnetic Resonance 
Imaging (fMRI) experiments were firstly noticed by Biswal 
and coworkers as synchronous oscillations between brain 
regions belonging to the motor network, both within and 
across hemispheres at rest [1]. This coherence of the 
spontaneous activities among spatially remote brain areas 
(i.e. functional connectivity [2]) were proved to be mostly 
limited to frequencies less than 0.1 Hz [3] and it represents 
the metabolic dynamic of the intrinsic neuronal activity of 
the brain. 

Unfortunately, the BOLD signal contains both neuronal 
and nonneuronal components in the low frequency band: 
main sources of the latter (the so-called physiological noise) 
are related to the low-frequency modulation of cardiac 

rhythm [4, 5], respiratory rate [6] and slow variations of 
arterial carbon dioxide [7]. Very often, instead of considering 
additional recordings of reference signals of these noise 
sources (e.g., by means of photoplethysmographs or 
pneumatic belts), an estimate of these nuisance signals is 
obtained from BOLD signal itself in nonneural regions such 
as ventricles (where no neural activity is expected), by means 
of signals averaging or by using the Principal Component 
Analysis (PCA). 

The contribution of this nonneural confound is typically 
removed from the functional connectivity estimates by 
means of linear regression which, in this case, is specifically 
called “nuisance variable regression” [8]: in practice, the 
physiological noise signal estimate is included as a regressor 
in a General Linear Model (GLM) analysis so as to remove 
its contribution from the selected time course [9]. 

Aim of this study is to explore the time-frequency 
characteristics of the physiological noise as estimated from 
ventricles voxels. Moreover, it was verified whether a more 
suitable method to remove the physiological noise 
contribution could be setup. Thus, an adaptive filtering 
technique - which best deal with nonstationary signals - was 
employed and compared to the standard GLM approach in 
order to evaluate their effects on BOLD resting state 
analyses. Finally, a generalized measure of connectivity 
between ROIs is also introduced and employed. 

 

II. METHODS 

A. Data Acquisition 
A 1.5 Tesla GE scanner (General Electric, Milwaukee, 

WI) was used to acquire basal resting state data (1970 time 
points) in eight subjects with a GR-EPI sequence (FOV = 24 
cm, TR/TE= 300/40 msec, FA = 90°, resolution = 64×64 
pixels, voxel size 3,75×3,75×5 mm, REPS = 2000). Four 
slices aligned to the anterior/posterior commissural line were 
acquired. 

A TR = 300 msec was chosen as sampling time in order 
to avoid aliasing of cardiac (~1 Hz) and respiratory (0.15-
0.40 Hz) components in the low frequency band (<0.1 Hz) 
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[10]. However, the putative effects of a so short TR was 
verified by means of several ad hoc scan sessions performed 
with a simple motor task (i.e. finger tapping) at different TR 
(2000, 500, 300 and 100 msec) and with the same FA, TE 
and resolution. No significant differences were found in 
signal change during the tasks across different TR 
conditions. 

For each subjects, a set of high resolution T1 weighted 
spoiled gradient recall images (1.2 mm thick axial slices; TR 
= 12.1 ms, TE = 5.22 ms, FA = 20°, FOV = 24 cm, 
resolution = 256×256 pixels) were also acquired. 

Regions of Interest (ROIs) of grey matter were drawn 
according to available literature suggesting a role in different 
resting state functional networks [11]. Those included 
Middle PreFrontal Cortex - MPFC - and insula (default mode 
network), DorsoLateral PreFrontal Cortex - DLPFC - (dorsal 
attentional network), Superior Temporal Sulcus - STS - and 
cuneus (ventral attentional network), white matter (anterior 
part of the semioval center) and lateral ventricles. 

 

B. Image Preprocessing 
Functional data were processed using the Analysis of 

Functional Neuroimaging (AFNI) software package [12]. 
This included the compensation of slice-dependent time shift 
for aligning separate slices to the same temporal origin. 
Neither spatial smoothing nor motion correction tasks were 
performed because, for the latter, the maximum displacement 
of subject head during scan sessions was below 0.7 mm. 
Data were normalized to stereotaxic coordinates of Talairach 
and Tournoux atlas [13] and resampled to 1-mm cubic 
voxels. 

 

C. BOLD Signals Preprocessing 
 
BOLD signals were detrended and filtered for removing 

cardiac and respiratory physiological components along with 
ultra-low frequency drifts due to hardware instability. The 
detrending task consisted in fitting and subtracting 
polynomials up to eight order while a low-pass Butterworth 
filter with a cutoff frequency of 0.1 Hz was employed to 
remove high frequency spurious components. The filter 
order was set to 10 and a zero-phase digital filtering was 
obtained by processing the time course in both the forward 
and reverse directions. 

 

D. Extraction  of a Reference Signal for the Physiological 
Noise 
 
The filtering in the preprocessing allowed the removing 

of cardiac and respiratory components at their fundamental 
frequencies. However, other nonneural contributions such as 
those related to heart beat variability [5] or breath variations 
[6] were still present in the filtered time courses. 

In order to highlight these nuisance components, 
Principal Component Analysis (PCA) [14] was conducted in 
order to extract the most representative pattern of the 

ventricle time courses. The first principal component of the 
PCA (which was based on the covariance matrix) was 
estimated and taken as the reference signal (REF) for the 
nonneural confound in the slow band.  

 

E. Nonstationarity Test of Reference Signals 
 
For each subjects, REF time course was tested for 

nonstationary properties using time-frequency surrogates 
[15, 16]. Namely, for each REF time course, the standard 
deviation (SD) of signal envelope (derived with the Hilbert 
transform) was calculated and compared to the SD 
distribution of 10000 envelope surrogates. Each surrogate of 
the REF signal was obtained by a phase randomization. 
Since time-frequency surrogates were proved to be stationary 
signals [17], the 95th percentile of their SD distribution was 
used as a threshold to test for REF stationarity, i.e., if REF 
SD was greater than the 95th percentile of the surrogates 
distribution, REF time course was considered as 
nonstationary. 

 

F. Removal of Physiological Noise 
 
Two different methods were employed and compared for 

removing the physiological noise on the basis of the REF 
signal: 

• a standard GLM approach (the gold standard); 
• a novel approach based on the adaptive filtering 

technique. 
 
For the GLM approach [18] in this fMRI context, a 

nuisance variable regression analysis [8] was used 
considering each voxel time course as dependent variable 
and the REF signal as the only covariate in the model. The 
estimated values from GLM were then subtracted from the 
initial time course so as to obtain a filtered version. 

On the other hand, REF time course were fed into an 
adaptive filter as reference signal. The adaptive filter used a 
Finite Impulse Response (FIR) and transversal structure 
(tapped delay line) with 20 taps and normalized Least Mean 
Squared (nLMS) adaptation algorithm [19]. Several runs 
were conducted to estimate the step size in order to achieve 
the convergence of the algorithm; in addition, the initial filter 
coefficients were set to zero values. 

 

G. Functional Connectivity 
 

For each subject, the functional connectivity [2] among 
brain regions was conducted using all filtered time courses 
belonging to grey matter (GM) and white matter (WM) 
regions. Specifically, the correlation between contralateral 
pairs of ROI (i.e. voxels in right vs. left hemispheres) was 
assessed to highlight the filtering method which best 
discriminate among white and grey matter synchronizations, 
namely, higher (lower) coupling in grey (white) matter, 
respectively. 
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To this purpose, the RV coefficient [20] was used to 
quantify the strength of coupling between ROI pairs as a 
multivariate generalization of Pearson’s correlation 
coefficient. 

 Given X and Y the signal matrices of right and left 
hemisphere (X and Y have the same time points, i.e. same 
number of rows, and different number of voxels, i.e. 
different columns) of a specified ROI whose rows are time 
points and columns are voxels, RV coefficient (ranging 
from 0 to 1) is defined as: 

 ( )

( ) ( )

T T

T T

trace XX YY
RV

trace XX trace YY
=

⋅

 

where trace is the sum of diagonal elements of a square 
matrix.  

This multivariate index of correspondence between 
signal matrices has been already employed in fMRI context 
to measure the similarity of brain scans between subjects 
[21] or within subject [22]. 

 

H. Statistical Analysis 
 
Repeated measures analysis of variance (ANOVA) was 

employed to assess differences between filtering methods 
(GLM and adaptive filtering) and among ROIs. 

Objects of the ANOVA were: 1) the variance of the 
filtered signals; 2) the RV coefficients calculated between 
contralateral ROIs.  

The variance values have been logarithmic transformed 
so as to correct the skewness of this variable. 

Preliminary tests were conducted to check for data 
normality and homogeneity of variances using Kolmogorov-
Smirnov and Levene’s tests, respectively.  

Post hoc comparisons using the Bonferroni correction of 
significance were conducted after a significant ANOVA 
result; eta squared ( 2) index was employed to quantify the 
effect size in ANOVA model. A p-value less than 0.05 was 
considered statistically significant. Data are presented as 
mean ± SEM or mean ± SD as indicated. 

 

III. RESULTS 

A. Extraction of physiological noise estimate 
 
In the eight subjects group, the first principal component 

(i.e. REF signal) of ventricle time courses explained 46.0% ± 
18.7% (mean ± SD) of the global signals variance in that 
region. Figure 1 shows the first 10 eigenvalues of single 
subject PCA with their 95% confidence interval: no error bar 
belonging to the first eigenvalue overlap with those related to 
the second element (p<0.05). These results indicate that the 
first principle component can be considered a good 
estimation of the physiological noise of ventricle signals. 

 

 
Figure 1. Scree plot of single subject PCA. Error bars of each eigenvalue 

were drawn from its 95% confidence interval [14]. 

B. Time-frequency analysis of REF signals 
 
For each subject, the SD of REF envelope was computed 

and compared to those obtained from 10000 time-frequency 
surrogates: in all subjects, the SD of REF time course was 
greater than the 95th percentile of distribution of its 
surrogates, proving that REF signal is a nonstationary signal 
(Table 1). 

TABLE I. PCA AND NONSTATIONARITY TEST  RESULTS OF REF TIME 
COURSE 

Subject 
N° of 

Ventricle 
Voxels 

Exp. Variance 
of 1° PC (%) 

SD of 1° 
PC 

Envelope 

95° Percentile of 
Surrogates SD 
Distribution 

AV 87 31.0 11.72 9.96 

BM 76 60.0 64.39 45.06 

CP2 107 39.8 22.94 18.66 

FJ 74 23.9 15.83 12.05 

RC 133 76.2 72.76 55.11 

RP 122 39.1 53.46 44.99 

SR 73 65.3 31.63 29.29 

SS 62 32.8 28.29 17.23 

C. Filtering based on REF time course 
REF time course was employed as either the only 

covariate in the GLM analysis or as the reference signal in 
the adaptive filtering algorithm. For each voxel time course, 
the difference between signal variances before and after the 
filtering stage was computed and normalized to pre-filtering 
value (Δvar%).  

Figure 2 shows Δvar% for the selected ROIs after 
removing REF contribution from each time course with both 
methods. As expected, the greatest reduction was noticed for 
ventricle voxels which were filtered with their 1° PC (i.e. the 
REF signal). Adaptive filtering (blue line) shows a larger 
reduction of signals variance with respect to GLM analysis 
(green line) The comparison between filter methods 
performed with the ANOVA yielded a significant mean 
global decreases of 52% and 11%, respectively with 
p<0.001 and 2 = 63%. 

Figure 3 shows post-filtering residual variance after 
GLM and adaptive filtering approaches. In both approaches, 
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white matter variance was lower than that of grey matter 
regions (Bonferroni adjusted p<0.05): in particular, variance 
of cuneus voxels were the most greater among neural ROIs 
(adj. p<0.05). Furthermore, for each method the variance of 
BOLD signals belonging to ventricles was still greater than 
those observed in white and grey matter regions (adj. 
p<0.001) according greater initial variance of these signals 
(Table 1). 

 

 
Figure 2. Reductions of BOLD signal variance using REF time course. 

 

 
Figure 3. Post-filtering BOLD signal variance for each selected ROIs. 

D. Functional connectivity 
 
The functional connectivity of contralateral ROIs in the 

eight subjects was quantified by the RV coefficient. It was 
calculated in three conditions: using the pre-filtered only 
time courses (orange line); after GLM filtering (green lines) 
and after adaptive filtering (blue line) (Figure 4). 

On average, adaptive filtering showed mean RV 
coefficients greater than the other conditions. (adj. p<0.05). 
In addition after adaptive filtering of REF signal, ventricles 
spurious coupling was lower than the other measures while 
GM functional connectivity was higher than within WM 
(with the exception of cuneus and STS). Furthermore, 
adaptive filtering provides a better contrast among ROIs ( 2 
= 29%) than GLM filtered ( 2 = 25%) and pre-filtered only 
signals ( 2 = 12%). 

 

 
Figure 4. Mean RV coefficients of contralateral ROIs in eight subjects. 

IV. CONCLUSIONS 
 
Time courses obtained from PCA of ventricles in the low 

frequency band were proved to be nonstationary signals. For 
this reason, an adaptive filtering approach could take into 
account this time-frequency properties and better removed 
the physiological noise from other voxels in the brain at rest. 
Indeed, the adaptive filtering technique removed a greater 
amount of signal variance in each ROIs than the standard 
GLM filtering ( 52% and 11%, respectively); in addition, 
the functional connectivity estimated by using RV 
coefficient on contralateral ROIs showed that adaptive 
filtering led to higher coupling in grey matter ROIs than 
those obtained with GLM analysis.  

These results suggest that adaptive filtering may be a 
feasible approach for removing the physiological noise in the 
low frequency band and to highlight resting state functional 
networks. 
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