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”If the very same regularity appears among diverse phenomena having

no obvious common mechanism, then chance operating through the laws of

probability becomes a plausible candidate for explaining that regularity.”

(Ijiri and Simon, 1977, p. 3 )

”At the core of the discussion is a concern as to how we can distinguish

between apparent regularities that just happen to crop up in same single data

set from those regularities whose happening reflects some underlying law.”

(Sutton, 2000, pp. 16-17)

”Less is more.”

(Ludwig Mies Van der Rohe)





Preface

It all began in Lausanne, when John Sutton invited us for a session on the

growth of firms at the European Conference of the Econometric Society.

That meeting was the beginning of a deep friendship and intense collabo-

ration. At that time, John Sutton’s work on innovation, firm growth and

industry structure, together with that of Herbert A. Simon, the founding

father of the stochastic tradition in the analysis of the growth of business

firms, was already a fundamental source of inspiration.

For more than 15 years, the four of us travelled between Boston, Lucca and

Milan, combining hard work with vibrant discussions on the most disparate

themes. Gene’s enthusiasm and generosity have sustained us to “get the

work done”, to overcome every difficulty, and to focus our gaze on “The

Book”, as if gazing on a polar star. We remember our ideas drafted on the

blackboards at the Center of Polymer Studies at Boston University, the long

conversations and collaborations with Kazuko Yamasaki, Kaushik Matia,

Dongfeng Fu, Linda Ponta, and with the great students and scholars that

animated Gene’s Laboratory at Boston University. These are all memories

of our Φιλία, to look back on with a smile and a content heart. Soon, Sergey

fell in love with the ancient town of Lucca, where he spent many months

working on the book, secluded in the ancient monasteries of San Francesco

and San Micheletto, and whose walls he encircled by jogging, thinking and

discussing with Fabio on the puzzles of preferential growth.

Sole and Stefano deserve a special mention for their hospitality at Il Mece-

nate, first under The Fig Tree in Gattaiola and then in Piazza San Francesco,

where heated discussions took place.

Gene and Sergey want to thank their colleague and coauthor Michael A.

Salinger without whose guidance it would have been impossible for them to

enter the field of economics. Gene and Sergey are also grateful to Shlomo

Havlin, their most frequent coauthor, whose interest in applying concepts
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of statistical physics to complex systems has stimulated their research for

four decades. Last, but not least, we are in debt to those who participated

in the creation of the new field of Econophysics in the late 1990s: Luis A.

Nunes Amaral, Rosario N. Mantegna, Heiko Leschhorn, Philipp Maass, and

especially Gene’s son, Michael Stanley, who was a high school student at

the time, and whose fascination with Zipf’s law ignited the interest of his

father.

Over the years, we have had the privilege to learn from exceptional col-

leagues who have influenced us with their writings, comments, caveats, cri-

tiques, and suggestions. We would like to mention here Xavier Gabaix, Didier

Sornette, Laszlo Barabasi and Angelo Maria Petroni.

Several colleagues have contributed to our research in the field, while

others have read and commented on the content of this book. Special men-

tion goes to Gianni de Fabritiis, Jakub Growiec, Alex Petersen, Orion Pen-

ner, Greg Morrison, Armando Rungi, Marco Bee, Stefano Schiavo and, for

the most recent comments, Andrea Flori, Alessandro Spelta, Salvatore di

Novo and Stefano Martinazzi. We would also like to thank Mark Buchanan,

Giorgio Gnecco, Simone Scotti, Andrea Vindigni, Stefano Gattei, Aymeric

Stamm and Daniele Regoli for their critical reading and valuable comments

to earlier versions of the manuscript.

Andrea Morescalchi and Valentina Tortolini are our young, distinguished,

coauthors of Chapter 4. Valentina has followed the entire preparation of the

manuscript, always combining research endurance with admirable patience.

The Merck Foundation supported, with a multi-year unrestricted grant,

Fabio’s and Gene’s research on innovation and industrial dynamics in phar-

maceuticals. We say a big thank you to Lou Galambos, Jeff Sturchio, Brian

Healy, Goffredo Freddi, Zoe Bell and Leslie Hardy. A special thought goes

to William Looney for his friendship and wisdom. Sarah Morrison, Wessen

Maruwge and Marina Eskin made an excellent contribution to the editing

of the manuscript.

The data that we have had access to thanks to IMS International have

been a key enabling condition for our research on the nuts and bolts of firm

growth.

The research presented in this book was also funded by the National Sci-

ence Foundation, the Italian Ministry of Education, University and Research

(Crisis Lab Project) and the CERM Foundation.

This book is dedicated to our families.
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Testing our Predictions
This Chapter has been coauthored with Andrea Morescalchi and Valentina

Tortolini

In this Chapter, we test the propositions derived from our framework along

four dimensions: the size distribution of firms, the growth rate distribution,

the relationships between firm size, and both mean and the variance of the

growth rates.

Along each dimension, we test the predictions derived from the stochastic

framework described in Chapter 3 as a Simon-Bose-Einstein-Gibrat growth

process (see Case D in Table 3.1). Products can be added to and deleted from

firms (λ > 0 and µ ≥ 0, respectively), while new firms can be created with

probability ν > 0. By assuming λ > µ ≥ 0, we consider the case in which

both the number of products and firms are growing. Furthermore, in this

specification of the model, we include two levels of aggregation. The number

of units changes according to a Bose-Einstein process, while both their size

distribution (P (ξ)ξ) and growth rate distribution (P (η)η) are lognormal.

Our framework has a multi-level structure, where firms growth is the

outcome of dynamics at the level of units and products, which are driven by

innovation and competition.

Here, in our empirical investigation of innovation through the launch of

new products and firm growth, we rely on PHID, a unique dataset that

decomposes the sales figures at the firm level into the number and the size

of constituent products. The version of PHID used for the preparation of this

book covers sales figures of over 130,000 pharmaceutical products marketed

by 4,921 companies in 21 countries between 1998 and 2008.

Within PHID, firms capture new business opportunities by launching new

products, and the size of each firm is defined as the sum of the sales of its

products: Sα(t) =
∑Kα(t)

i=1 ξi(t) = 〈ξα(t)〉Kα(t), where 〈ξα(t)〉 is the average

size of products in firm α at time t and Kα(t) is the number of products

belonging to firm α at time t.

We treat each product as the elementary unit of analysis. Innovative com-
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panies develop new chemical or biological molecules, which, after under-

going preclinical and clinical trials, can be approved as drugs for specific

therapeutic indications. As a measure of the intensity of innovation within

the industry, the number of new molecules approved by the U.S. Food and

Drug Administration and equivalent agencies in other countries is often used

(Pammolli 1996; Pammolli et al. 2002, 2011).

Pharmaceutical products have specific therapeutic properties. This fea-

ture allows us to associate products and their indications to independent

sub-markets (Sutton 1998; Bottazzi et al. 2001).

In addition to PHID, we test the predictions of our framework for the

general run of industries in the U. S. and Europe. We evaluate the robustness

of results across industrial sectors and national economies: manufacturing

firms in OECD countries1 (ORBIS); publicly-traded manufacturing firms

in the U.S. (Compustat); the universe of French firms (FICUS); the gross

domestic product (GDP) of 195 countries from 1960 to 2011 (World Bank).

According to GPG, the number of products within firms is expected to

follow a Pareto distribution with an exponential cutoff, while the size dis-

tribution of firms P (S) is expected to be lognormal with a power law right

tail. Regarding the growth rate of firms, the model predicts a tent shape

distribution P (r) with power law tails P (r) ∼ r−3. Finally, we expect that

the mean growth rate decreases with firm size, while the variance of the

growth rate obeys an approximate power law dependency on the firm size

σr ∼ S−β, with β ≤ 0.5 in a wide range of S.

We combine two different approaches, commonly used in the literature,

to challenge the consistency of a theoretical stochastic model (Hall 1987a).

The first approach consists of a comparison between the distribution de-

rived from a model and the data. The empirical distributions are fitted with

the predictions of a stochastic model. For instance, predictions of Gibrat’s

Law can be falsified by evaluating the lognormality of the empirical size

distribution. This control is often paired with the analysis of the tails of

the distribution. The analysis of the distributional properties has a long

tradition in physics, biology, population studies, and linguistics. Recently,

rigorous tests have been introduced to properly ascertain the shape of em-

pirically observed skewed distributions of size and growth.

The second approach focuses on the analysis of the determinants of firm

growth, including size, age, innovation, diversification and so on. This analy-

sis naturally involves the use of econometric techniques and has been widely

1 The Organisation for Economic Co-operation and Development (OECD) was founded in
1961. For the list of the countries, see www.oecd.org.
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used in economics. For instance, to asses the validity of Gibrat’s hypothesis,

one can test if growth rates are independent from size.

In this Chapter, we test the predictions of our stochastic framework, com-

bining both the econometric and the distributional approaches

The Chapter is structured as follows. Section 4.1 and Section 4.2 focus

on the analysis of size and growth of products and firms, respectively. The

analysis of the size distribution is performed by means of the most common

statistical tests used to detect the emergence of a Pareto tail. The analysis of

the growth distribution is performed by comparing the coherence of different

theoretical models with the empirical distribution of growth rates. In Section

4.3, we investigate the relationship between firm size and its growth in terms

of mean and variance. A statistical appendix (Appendix V) describes the

distributions and the statistical tests used in this Chapter.

4.1 Size Distributions

Firm size has been measured in multiple ways, including annual sales, cur-

rent employment and, occasionally, other measures like total assets. Some

studies have investigated the size of establishments as constituent units of

firms (Rossi-Hansberg and Wright 2007b; Henly and Sanchez 2009), whereas

products are typically considered in the literature on international trade

(Bernard et al. 2010; Arkolakis and Muendler 2010; Carsten and Neary

2010).

Here, we consider the size of products and firms in terms of annual sales

across multiple industries, countries and data sources.

Candidate distributions are Zipf, Pareto or, less frequently, lognormal dis-

tributions2. A goodness of fit analysis is typically performed in the litera-

ture. The reproducibility of results has often been an issue because of the

limitations in accessing official data. Moreover, only a few studies have inves-

tigated the universe of firms either in the U.S. (Axtell 2001; Rossi-Hansberg

and Wright 2007b; Luttmer 2010) or in other countries (see Cabral and Mata

2003 for Portugal, and Eaton et al. 2011; Garicano et al. 2013 for France).

The Size of Business Firms

In the literature, the distribution of firm size has been predicted to be

either lognormal or power law or, most likely, a lognormal distribution with

a power law right tail3. Our framework comes to a similar conclusion. Here,

2 Some recent contributions in the field of international economics took a similar approach (Di
Giovanni et al. 2011; Keith et al. 2014).

3 The lognormal and power law distributions are described in the Statistical Appendix V.
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we first compare the empirical size distribution at both the product and firm

level with a lognormal distribution using the Kolmogorov-Smirnov (KS) test

(Chakravarti et al. 1967). Then, we test the emergence of a Pareto tail for

firms.

The analysis of firm size distribution is characterized by several difficult

issues, i.e. a) the power of goodness of fit tests, which may be unreliable in

case of small sample sizes; b) if it exists, the determination of the starting

point of the power law behavior (Malevergne et al. 2009; Bee et al. 2011).

We now study the relationship between the shape of the size distribu-

tion at the product and firm level. Figure 4.1 shows that the distribution

of product sizes looks approximately lognormal, whereas the size distribu-

tion of firms shows a departure in the upper tail. The sum of lognormally

distributed random variables does not have a closed form solution, and sev-

eral approximations involving series evaluations have been proposed for the

shape of the resulting distribution (De Fabritiis et al. 2003).4 Moreover, a

lognormal distribution P (S) with parameters µ and σ behaves as a power

law between S−1 and S−2 for a wide range of its support S0 < S < S0e
2σ2,

where S0 is a characteristic scale, corresponding to the median (Sornette

2000; De Fabritiis et al. 2003).

Figure 4.2 shows the cumulative density function (CDF) of the size distri-

bution at both the product and firm level. The visual inspection is confirmed

by the KS statistics5. Here, we report only the expression of the statistics

Dn, given X1, ..Xn i.i.d. observations,

Dn = sup
−∞<t<∞

|Fn(t)− F0(t)|, (4.1)

where Fn(t) and F0(t) are the CDF of the empirical and theoretical distri-

butions, respectively. The test is performed under the null hypothesis:

H0 : F (t) = F0(t),∀t. (4.2)

The value of the KS statistics Dn and the associated p-value are reported

in Table 4.16. The value of Dn is .028 for the product size distribution

4 The problem of approximating the distribution of a sum of i.i.d. lognormals has a long
history. As mentioned, the classical approach is to approximate the distribution of a sum of
lognormals with another lognormal distribution. This approach was used by Wilkinson in
1934 and later also by Fenton (Fenton 1960). The Fenton-Wilkinson method, a central
limit-type result, can deliver inaccurate approximations of the distribution of the lognormal
sum when the number of summations is small or the dispersion parameter is high, in
particular in the tail regions. Another more recent approach is based on approximation and
simulation algorithms. For a survey, see (Gulisashvili and Tankov 2013).

5 A detailed description of the KS test (together with other non-parametric tests of goodness of
fit) is provided in Appendix V

6 The p-value, p, is defined as the probability of obtaining a result equal to or larger in absolute
value than what is actually observed when the null hypothesis is true.
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Figure 4.1 Product size distribution (⋆) and firm (△) distribution fitted
by a lognormal model. Data source: PHID.

and .046 for the firm size distribution. In both cases, the null hypothesis of

lognormality (p < .001) is rejected.

Products Firms
Dnstatistics p− value Dnstatistics p− value

0.0280 p < 0.001 0.0456 p < 0.001

Table 4.1 KS test results for product size distribution and firm size

distribution. We reject the null hypothesis of a lognormal distribution

(p < 0.001). Data source: PHID.

Given the KS test results, we move on and test the hypothesis of the

emergence of a power law (Pareto) tail.

The lognormal distribution and the power law are mathematically differ-

ent but they can be statistically distinguished only in the limit for n → ∞
(Perline 2005), so that in a finite sample size the tests often have low power.

We follow Bee and coauthors (Bee et al. 2013) and run several tests: the
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Figure 4.2 Empirical and lognormal CDF for the size of pharmaceutical
(a) products and (b) firms. Data source: PHID.

Uniformly Most Powerful Unbiased (UMPU) test developed by Del Castillo

and Puig (Del Castillo and Puig 1999) and used by Malavergne and col-

leagues (Malevergne et al. 2009), the Maximum Entropy (ME) test by Bee

and colleagues (Bee et al. 2011), the test proposed by Ibragimov and Gabaix

(Gabaix and Ibragimov 2011) (henceforth, GI) and finally, the test proposed

by Clauset and colleagues (Clauset et al. 2009). All tests are described in

Appendix V.

First, we inspect the two size distributions through the UMPU, ME and
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GI tests. According to the results reported in Table 4.2, the size distribution

at the level of products does not have a Pareto tail since the number of

observervation in the Pareto tail is lower than 1% for all the tests.

Firms Products
n=4921 n=60352

α = .05 α = .01 α = .05 α = .01
ME 900 950 310 320

(18.29%) (19.30%) (0.51%) (0.53%)
UMPU 450 650 80 130

(9.14%) (13.21%) (0.13%) (0.22%)
GI 301 406 102 139

(6.12%) (8.25%) (0.17%) (0.23%)

Table 4.2 Pareto Tail test results for two significance levels (α = .05 and

α = .01). The α-value is the predefined value of the false positive, i.e., it

represents the probability of mistakenly identifying the presence of Pareto

tail when the real distribution is lognormal. Smaller value of α = 0.01

implies less probability of the lognormal distribution, and hence longer

Pareto tails (Malevergne et al., 2009). For each test the Table reports, the

number (integer number) and the percent of observations in the Pareto tail

(in brackets). The total number of observations n, is reported for products

and firms. Data source: PHID.

As a further assesment of the robustness of our results, we apply, both

at the firm and at the product level, the method proposed by Clauset and

colleagues, (hereafter, CSN), to detect if the power law is a plausible model

for the data (Clauset et al. 2009). We first estimate with the maximum

likelihood method (ML) the scaling parameter (γ, see Equation 6.129 for

the definition of the power law) and the lower bound (Smin) of the power

law behavior. Then, by using these estimates, we generate N = 100 samples

of different sizes n, with 10 ≤ n ≤ 1000, from a power law distribution. For

each synthetic sample, we test the plausibility of the hypothesis of the power

law tail.

As before, the observed data and the synthetic samples are compared

by means of KS. The power law is a plausible hypothesis for the data if the

resulting p-value of the goodness of fit test is greater than a given significance

level (usually 0.05 or 0.01), while it is rejected otherwise.

Figure 4.3 shows the average p-value for the maximum likelihood power

law model for samples extracted from the firm size distribution as a function

of n. We do not report results for products, since, in this case, the average

p-values are always smaller than 0.001. Therefore, we can conclude that



108 Testing our Predictions

the test rejects the power law hypothesis at the product level, while the

hypothesis is not rejected for the firm size distribution (see also Figure 4.4).
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Figure 4.3 Average p-value for the maximum likelihood power law model
for samples extracted from the firms’ size distribution as a function of n.
Data source: PHID.

These results are in agreement with the predictions of GPG for the size

distributions. The methodology proposed by Clauset and coauthors is more

conservative than the ME test regarding the length of the Pareto tail for

the size distribution of firms. In all years, we find that about 11% of the

top firms follow a power law distribution and account for about 98% of the

market (see Table 4.3).

In synthesis, in agreement with the predictions of our framework, the tests

do not detect any power law behavior for the size distribution of products

(Table 4.2). Incidentally, we observe that this finding seems to contradict

the model developed by Takayasu and colleagues, which suggests that unit

sizes follow a power law distribution (Takayasu et al. 2014). Conversely, we

find a significant power law tail for the size of firms, while the length of
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Figure 4.4 The counter-cumulative distribution functions P (S) and their
maximum likelihood power law fits for size distributions of pharmaceutical
firms and products for the year 2003, for the firms the value of the slope is
γ = 0.59 . Data source: PHID.

the tail varies across the different tests and seems to be associated with a

reduction of the sample size (see Malevergne et al. 2009; Bee et al. 2013).

The Number of Units per Firm

We now study the distribution of the number of units in a firm, P (K).

Here, we identify units with products. When we consider the entry of new

firms, GPG predicts that P (K) is Pareto with an exponential cutoff7.

Again, we refer to PHID to test this hypothesis. As predicted, P (K) shows

a power law behavior in its central part with an exponential cutoff in the

upper tail (see Figure 4.5). The entry of new firms is the main driver of the

emergence of the Pareto tail. Table 4.4 shows that the distribution of the

7 The power law distribution, the Pareto distribution and the exponential distribution are
briefly described in Appendix V.
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year n 〈S〉 σ(S) Ŝmax Ŝmin τ̂ % in the tail p
1994 3 326 17.12 19.43 22.85 15.81 1.58 11.24 (98.22) 0.43
1995 3 242 17.23 19.52 22.89 15.85 1.58 11.81 (98.30) 0.36
1996 3 160 17.33 19.62 22.94 16.03 1.58 11.30 (98.18) 0.41
1997 3 342 17.37 19.70 23.00 16.26 1.62 10.74 (97.71) 0.57
1998 3 452 17.50 19.89 23.26 16.33 1.60 10.31 (97.92) 0.43
1999 4 961 17.30 19.88 23.48 16.24 1.61 8.35 (97.65) 0.69
2000 5 010 17.40 20.00 23.60 15.78 1.61 11.20 (98.43) 0.75
2001 5 139 17.51 20.14 23.74 15.80 1.59 11.23 (98.53) 0.64
2002 5 166 17.60 20.25 23.86 16.11 1.59 9.74 (98.25) 0.26
2003 5 139 17.70 20.32 23.94 15.85 1.59 12.14 (97.11) 0.58

Table 4.3 Basic parameters of the Pharmaceutical Industry Data set

(PHID), along with their power law fits and the corresponding p-value (p),

for the size of firms (P (S)), for the years 1994-2003. In the table, n is the

number of firms in the sample; 〈S〉 is the average natural logarithm of the

sales for firms in the tail; σ(S) is the standard deviatiation of the

logarithm of the sales for firms in the tail; Ŝmax e Ŝmin are the natural

logarithms of the upper and lower boundaries of the tail; τ = 1 + γ is the

exponent characterizing the PDF of the size distribtuion (see Equation

3.58); the percentage of observations and the percentage of total sales for

the firms belonging to the tail are reported in column ”% in the tail”. ML

estimates as in (Clauset et al. 2009). Non-statistically significant values,

> .05, are denoted in bold. Data source: PHID.

number of products is Pareto in all years in our sample, except for 1995 and

1996. Across all years, we notice that the fraction of products in the Pareto

tail ranges from 9.43% (2002) to 16.70 % (1997), and these products account

for a market share that varies from about 67% in 2002 up to more than 80%

in 1997. Overall, in agreement with our predictions, the number of products

per firm is approximately Pareto distributed, with some departures in the

lower and upper tails.8

Firm Sizes Across Industries and Countries

Industry concentration and turnover vary significantly across sectors and

countries (Sutton 1997). In this Section, we test the predictions of our frame-

work for a broad range of industries and countries. First, we use the Com-

pustat data, where large companies are over-represented (Hall 1987a; Axtell

2001). Second, we employ the FICUS database (Fichier complet de Système

8 A more detailed analysis of the P (K) distribution is performed in Chapter 5.
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year n 〈K〉 σ(K) K̂max K̂min τ̂ % n(S)tail p
1994 3 326 15.73 65.57 1 443 17 1.97 16.15(81.08) 0.12
1995 3 242 16.17 66.31 1 427 19 1.97 13.76(79.90) 0.02
1996 3 160 16.60 66.21 1 422 19 1.97 14.15(80.03) 0.03
1997 3 342 17.56 65.56 1 442 28 2.11 16.70(80.47) 0.11
1998 3 452 17.67 64.51 1 435 32 2.17 10.78(71.38) 0.25
1999 4 961 14.36 54.07 1 402 26 2.23 11.19(71.06) 0.56
2000 5 010 14.44 52.67 1 378 27 2.26 11.26(70.74) 0.90
2001 5 139 14.64 52.60 1 393 28 2.27 11.03(70.22) 0.94
2002 5 166 14.90 52.88 1 395 33 2.27 9.43(67.03) 0.82
2003 5 139 15.10 52.79 1 366 30 2.27 10.61(69.56) 0.72

Table 4.4 Basic parameters of the Pharmaceutical Industry Data set

(PHID), along with their power law fits and the corresponding p-value, for

the number of products by firm (P (K)), for the years 1994-2003. In the

table, n is the number of firms in the sample; 〈S〉 is the average natural

logarithm of the sales for products in the tail; σ(S) is the standard

deviatiation of the logarithm of the sales for products in the tail; Ŝmax e

Ŝmin are the natural logarithms of the upper and lower boundaries of the

tail; τ = 1 + γ is the exponent characterizing the PDF of the size

distribtuion (see Equation 3.58); the percentage of observations and the

percentage of total sales for the products belonging to the tail are reported

in column ”% in the tail”. ML estimates as in (Clauset et al. 2009).

Non-statistically significant values, > .05, are denoted in bold. Data source:

PHID.

Unifié de Statistique d’Entreprises), maintained by the French National Sta-

tistical Office (INSEE), which covers the entire population of French firms9.

We use total revenues to measure firm size and we focus on a sample of more

than 2 million firms in the year 2003 (results are not sensitive to the choice

of year). Finally, we analyze the size of manufacturing firms in the OECD

countries in the year 2010 using sales data from ORBIS-Bureau Van Dick.

Figure 4.6 shows that the lognormal fits quite well the size distribution

of Compustat companies in the body, but not in the tails. The lognormality

hypothesis is rejected by the CSN test.

The departure from lognormality in the right tail of the size distribution

has been assessed through the UMPU, GI and ME tests. The results of the

three tests are reported in Table 4.5. The three tests convey similar results

for each distribution of firm size: the distributions do not follow a power law,

9 The data are analogous to those used by Eaton and colleagues (Eaton et al. 2011) and have
been used elsewhere as well (Garicano et al. 2013; ?).



112 Testing our Predictions

K
10

0
10

1
10

2
10

3
10

4

P
r(

n
 p

ro
d

 ≥
 K

)

10
-4

10
-3

10
-2

10
-1

10
0

number of products  

PL fit (α = 2.27)

Figure 4.5 The counter-cumulative distribution function, P (K), and their
maximum likelihood power law fits for the distributions of the number of
products by pharmaceutical firms for the year 2003.

not even in the tails. Moreover, none of the aggregate distributions passes

the goodness of fit KS test between the data and the power law using the

CSN approach (p < .0001).

When we consider size distributions for specific industries, we find that

in some cases a power law emerges in the right tails. Table 4.6 shows the

results of the tests for four industrial sectors: pharmaceuticals; textile; motor

vehicles; trailers and semi-trailers (cars); computers, electronic and optical

products, electrical equipment (computers). The sales data are extracted

from ORBIS for the year 2010. In interpreting the results, one should keep

in mind that the emergence of a power law tail is influenced by industry-

specific characteristics, such as the distribution of the number of products

P (K), the variance of the product sizes and the existence of independent

sub-markets. The correspondent size distributions are presented in Figure

4.7.

Strong evidence for the emergence of the power law tail was also found for
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Figure 4.6 Firm size distribution and lognormal fitting for the year 2010.
Data source: Compustat.

the size distribution of the French firms (see Bottazzi et al. 2011 and Bee

et al. 2017)

4.2 The Distribution of Growth Rates

In this Section, we focus on the growth rate distribution. The following cases

are compared:

— A Gibrat’s process, which predicts a normal distribution for the (log)

growth rates;

— A Laplace (symmetric exponential) distribution;

— A Bose-Einstein process, which predicts a probability density function for

the growth rate with power law tails P (r) ∼ r−3 (see Equation (3.54));

— The distribution summarized in Equation (3.114) that predicts a tent

shape probability density function for the growth rate with power law

tails P (r) ∼ r−3.
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COMPUSTAT, 2000 COMPUSTAT, 2010
n=6 647 n=9 027

p=0.05 p=0.01 p=0.05 p=0.01
ME 200 210 210 230

(3.01%) (3.16%) (2.33%) (2.55%)
UMPU 100 140 170 180

(1.15%) (2.11%) (1.88%) (1.99%)
GI 114 146 135 203

(1.72%) (2.22%) (1.5%) (2.25%)
French firms ORBIS
n=2 247 547 n=386945

p=0.05 p=0.01 p=0.05 p=0.01
ME 1750 2 150 310 360

(0.08%) (0.1%) (0.08%) (0.09%)
UMPU 1600 1 650 110 180

(0.17%) (0.07% ) (0.02%) (0.05%)
GI 2 400 3 480 67 70

(0.11%) (0.15%) (0.02%) (0.02%)

Table 4.5 Pareto Tail test results for two significance levels (α = .05 and

α = .01). For each test the Table reports, the number (integer number) and

the percent of observations in the Pareto tail (in brackets). The total

number of observations n, is reported for each dataset. Data sources:

COMPUSTAT (year 2000 and year 2010), FICUS, ORBIS.

Growth rate at different levels of aggregation

As shown in Figure 4.8, the theoretical distribution summarized in Equa-

tion (3.114) performs very well for product growth rates and firm growth

rates in the pharmaceutical industry. Annual growth rates are defined as

the log-difference between sales in two consecutive years (see Equation 2.4).

Marked departures from the Gaussian model can be observed for the em-

pirical distributions. This finding is consistent with the predictions of the

GPG model with two levels of aggregation, which predicts the emergence

of a tent shape distribution with power law tails also at the product level.

The growth distribution is stable upon aggregation from products to firms,

while our framework provides a good fit (see Table 4.9) also for the growth

distributions at the industry level and for country GDP (Fu et al. 2005).

Table 4.7 shows the results of the KS and the Anderson-Darling (AD)

goodness of fit tests for the four candidate distributions listed above. Like

the KS test, the AD test quantifies the agreement of data with a given

probability distribution. As compared to the KS test, the AD test gives

more weight to observations in the tails of the distribution (see Appendix V

for a detailed description of the tests). Two level aggregation GPG frame-
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Pharmaceutical industry Textile industry
n=1 648 n=14573

α = 0.05 α = 0.01 α = 0.05 α = 0.01

ME
600 610 1400 1450

(36.41%) (37.01%) (9.61%) (9.95%)

UMPU
540 560 1150 1350

(32.77%) (33.98%) (7.89%) (9.26%)

GI
500 520 1300 1600

(30.34%) (31.55%) (8.92%) (10.98%)
Car industry Computer industry

n=5 845 n=28509
α = 0.05 α = 0.01 α = 0.05 α = 0.01

ME
350 350 800 900

(5.99%) (5.99%) (2.81%) (3.16%)

UMPU
200 250 100 180

(3.42%) (4.28%) (0.35%) (0.63%)

GI
– – – –

0% 0% 0% 0%

Table 4.6 Pareto Tail test results for two significance levels (α = .05 and

α = .01). For each test the Table reports, the number (integer number) and

the percent of observations in the Pareto tail (in brackets). The total

number of observations n, is reported for each industrial sector. Data

source: ORBIS, year 2010.

work (Equation (3.114)) is compared, at the firm level, with the Gaussian

distribution, the Laplace distribution, the Bose-Einstein model (Equation

(3.54)) and the exponential power distribution (see Buldyrev et al. 2007).

The exponential power distribution, also known as the generalized Gaussian

distribution, is a parametric family of distributions, including the normal

distribution and the Laplace distribution as particular cases (see Kotz et al.

2001). For each of the above models, the theoretical cumulative ditribution

function (CDF) (obtained by estimating the unknown parameters of the

model with the maximum likelihood method) is compared with the empiri-

cal cumulative ditribution function through the KS and AD tests.

Table 4.7 shows, for each model, the values of the estimated parameters

and the results of the KS and AD tests. Overall, the GPG outperforms the

Gaussian, the Laplace and the Bose-Einstein fits. Furthermore, the GPG

framework performs better than the exponential power distribution regard-

ing the whole distribution (as shown by the results of the KS test), while the

AD test reveals that the exponential power distribution provides a slightly

better fit in the tails.

We use the Hill estimator to investigate the tail behavior of the growth



116 Testing our Predictions

0 5 10 15 20
−10

−8

−6

−4

−2

0

log(Size)

lo
g

(1
−

C
D

F
)

Pharma

0 5 10 15 20
−10

−8

−6

−4

−2

0

log(Size)

lo
g

(1
−

C
D

F
)

Car

0 5 10 15 20
−10

−8

−6

−4

−2

0

log(Size)

lo
g

(1
−

C
D

F
)

Computer

0 5 10 15
−10

−8

−6

−4

−2

0

rank

p
−

v
a

lu
e

Textile

 

 

rank 500
(GI)

rank 1400
(ME)     

rank 1300
(ME)

Rank 1150
(UMPU)

rank 540
(UMPU)

rank 350
(ME)   

rank 200
(UMPU)

rank 900
(ME)   

rank 100
(UMPU)

rank 600
(ME)

Figure 4.7 Complementary cumulative distribution of firm size. The verti-
cal lines mark the power law cut-off identified by the GI, the ME and the
UMPU tests. Data source: Compustat, year 2010.

Distribution µ σ β K/2Vr KS AD
Gaussian -0.0564 1 − − 20.75 n.a.
Laplace 0.007 0.488 − − 8.26 58.59

Bose-Einstein − − − 6.32 3.81 0.24
exponential power 0.0203 0.0696 0.4858 − 4.08 0.11

GPG − − − 2.45 2.62 0.16

Table 4.7 Maximum Likelihood Estimates (MLE) of the yearly firm growth

distribution: µ and σ are the parameters of gaussian, Laplace and

exponential power distribution; while K/2Vr is the parameter of

Bose-Einstein model (Equation (3.54)) and GPG with two levels of

aggregation (Equation (3.114)). KS and AD columns contain the value of

Dn and An respectively (see Equation (6.171)). Data source: PHID.
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Figure 4.8 Yearly growth distributions of firms (stars) and stable products
(circles). Empirical fit of Equation (3.114). For clarity, the growth distri-
bution of firms is offset by a factor of 102. Data source: PHID.

distribution (Embrechts et al. 1997). Table 4.8 shows that the growth distri-

bution has power law tails: about 6.7% of the total growth events are power

law distributed, P (r) ∼ r−3, in accordance with our predictions.

Tail Slope xmin KS % in the tail
Positive 3.0255 2.1632 0.0644 3.3934
Negative 3.0903 0.9302 0.0494 3.2975

Table 4.8 Tail behavior of the firm growth distribution (Hill estimator)

P (r) ∼ r−3, where x = ln|r|, xmin is the starting point of the tail and KS

is the value of Dn for KS test. Data source: PHID.

In summary, GPG provides a better fit to our data than alternative candi-

date distributions. Moreover, the shape of the growth distribution is stable

upon aggregation. In order to test if our results also hold at the aggregate

level of national economies, we measure the growth rate of the gross domes-
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tic product (GDP) of 195 countries from 1960 to 2011 (World Bank data:

data.worldbank.org).

Figure 4.9 shows that the growth distribution in Equation (3.114) works

well for country GDP as well as for the collection of publicly traded firms

from multiple industries (Compustat). This must be surprising, since Com-

pustat reports only on publicly traded firms while the naive explanation of

the leptokurtic tails of the growth rate distribution is that they are created

by small undiversified firms. Marked departures from a Gaussian shape are

found at all levels of aggregation. Furthermore, while Pr(r) can be reason-

ably well approximated by a Laplace distribution for country GDP, ignoring

the few points in the tails as outliers, the distribution for firms is clearly

more leptokurtic than a Laplace distribution. Therefore, we can conclude

that, as predicted by our framework, the growth distribution has a Laplace

body and power law tails across different levels of aggregation within the

economy.

Firm Growth Across Sectors

We now present an additional investigation on the stability of the firm

growth distribution across industries. We rely on Compustat data to com-

pare the prediction of the GPG with alternative distributions (Gaussian,

Laplace and exponential power distributions).

In Figure 4.10, the growth distribution calculated on the Compustat data

is compared with four maximum likelihood distributions: a Gaussian dis-

tribution with µ = 0.0844 and σ = 0.3702, a Laplace distribution with

µ = 0.0844 and σ = 0.1854, a distribution with power law wings ∼ r−3 sum-

marized in Equation (3.54) with parameter κ(t)
2Vr

= 31.55 and a tent shape

distribution with power-law wings∼ r−3 summarized in Equation (3.114)

with parameter κ
2V = 12.65.

Figure 4.10(a) clearly shows that the Bose-Einstein model and the frame-

work summarized in Equation (3.114) outperform other distributional mod-

els, whereas they perform similarly. Therefore, as in the previous Subsection,

we performed KS and AD tests in order to compare the goodness of fit in the

two cases. The KS and AD statistics are reported in Table 4.9. The tent-

shape distribution with a laplacian cusp and power law tails P (r) ∼ r−3

described in Equation (3.114) outperforms all the other distributions. The

results of the KS test are confirmed also by a visual inspection of the fit of

the central part of the distribution (Figure 4.10, bottom panel).

Interestingly enough, the same tent shape emerges also at the level of

individual sectors. Figure (4.11) reports the empirical distributions of four
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Figure 4.9 Empirical tests for the probability density function (PDF) Pg(g)

of growth rates rescaled by
√
Vr/2K (see Equation 3.114). Country GDP

(©) and all manufacturing firms in Compustat (∗) are shown. The shapes
of Pr(r) for the two levels of aggregation are well approximated by the
PDF predicted by the model (lines). Lines are obtained based on Equation
(3.114). After rescaling, the two PDFs can be fitted by the same function.
For clarity, the manufacturing firms are offset by a factor of 104 and the
GDP data are offset by a factor of 106. Data source: World Bank, Compu-
stat.

industrial sectors (cars, computers, pharmaceuticals and textiles) together

with the theoretical distribution derived from our framework. These densities

are well described by Equation (3.114).

4.3 The Relationship Between Size, Age, Diversification, and

Growth

The Size Growth Relationship

In this Section, we study the relationship between growth and some of

the main characteristics of firms, such as size, age, innovation and diversifi-
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Figure 4.10 The growth distribution of firms (Compustat data). In the top
panel, dots represent the empirical growth rate distribution. This distribu-
tion is compared with a gaussian distribution ( µ = 0.0844 and σ = 0.3702);
b) a Laplace distribution µ = 0.0844 and σ = 0.1854 with power law tails
∼ r−3 summarized in Equation (3.54) with parameter κ

2Vr

= 24.5; c) a tent

shape distribution with power law tails ∼ r−3 summarized in Equation
(3.114) with parameter κ

2Vr

= 12.25. The bottom panel shows the fitting of
the central part of the growth rate distribution. Data source: Compustat.
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Distribution µ σ K/2Vr KS AD
Gaussian 0.0844 0.3702 − 17.1173 2.29E+79
Laplace 0.0844 0.1854 − 5.0453 1.10E+07

Bose-Einstein − − 31.55 3.7989 0.0837
GPG − − 12.65 1.6734 0.0343

Table 4.9 Maximum Likelihood Estimates (MLE) of the yearly firm growth

distribution: µ and σ are the parameters of gaussian, Laplace and

exponential power distribution; while K/2Vr is the parameter of

Bose-Einstein model (Equation (3.54)) and GPG with two levels of

aggregation (Equation (3.114)). KS and AD columns contain the value of

Dn and An respectively (see Equation (6.171)). Data source: PHID.

cation. As discussed in the previous Chapters, the growth of firms depends

on their size: smaller firms have a lower survival probability, but those firms

that survive tend to grow faster than larger firms (Mansfield 1962; Evans

1987b; Hall 1987a; Dunne et al. 1989; De Wit 2005; Rossi-Hansberg and

Wright 2007b; Growiec et al. 2018). The negative relationship between size

and growth does not hold for larger firms, whose growth rates tend to be

unrelated to past growth or to firm size.

We refer here to the non logarithmic measure of the growth rate, r′. In
order to visually inspect the relationship between growth and size we first

refer to PHID, grouping firms into consecutive size (S) bins containing the

same number of companies.

Figure 4.12 shows the negative relationship between size and average

growth. A negative dependence is observed for almost all size bins with the

notable exception of large companies (S > $106). In order to better investi-

gate the effect of product diversification on firm growth rates, in Table ??

we take a closer look at firm growth, survival probability and changes in the

number of products for mono-product and multi-product firms (K = 1, 2, 3

and K > 3).

In order to better investigate the effect of product diversification on firm

growth rates, Growiec and colleagues (Growiec et al. 2018) have taken a

closer look at firm growth, survival probability and changes in the number of

products for mono-product and multi-product firms (K = 1, 2, 3 andK > 3).

They have shown that in the pharmaceutical industry, the average growth

rate of a firm with a single unit is almost fifty times larger than the average

growth rate of a company with more than three units. Furthermore, among

companies with one unit, companies that capture new business opportunities

grow a hundred times faster than others.



122 Testing our Predictions

scaled growth rate, r

-10 -5 0 5 10

lo
g
(P

D
F

)

-10

-8

-6

-4

-2

0

2
Pharmaceuticals

scaled growth rate, r

-5 0 5

lo
g
(P

D
F

)

-10

-8

-6

-4

-2

0

2
Textile

scaled growth rate, r

-10 -5 0 5 10

lo
g
(P

D
F

)

-10

-8

-6

-4

-2

0

2
Cars

scaled growth rate, r

-10 -5 0 5 10

lo
g
(P

D
F

)

-10

-8

-6

-4

-2

0

2
Computers

Figure 4.11 Growth rate distributions for different industrial sectors. The
parameter αGPG = κ

2V is estimated with the Maximum Likelihood Es-
timation (MLE) method. For pharmaceutical αGPG = 6.27, for textile
αGPG = 9.27, for the car industry αGPG = 18.88 and for computers
αGPG = 15.11. Data source: Compustat.

In the pharmaceutical industry, this can happen for instance in the case

of new blockbuster drugs launched by biotech start-up companies with one

product serving a restricted segment of the market.Therefore rare spurs of

growth seem to correspond to innovation-driven growth.10

Survival Probability

The number of products K also affects the survival probability of firms.

Growiec and coauthors found that companies with one unit have a higher

exit probability (13.17% versus 0.20% for companies with K > 3) than com-

panies with more than one unit (Growiec et al. 2018). Qualitatively, GPG

predicts this effect but underestimates it by a factor of 3 (Figure 5.3). More-

over, in (Growiec et al. 2018), authors investigate the survival probability of

10 When the median growth rate is considered instead of the mean, the relationship is flat for all
K.
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Figure 4.12 The relationship between the logarithm of firm sales measured
in dollars (S) and its mean growth rate (r′) for pharmaceutical companies.
Data source: PHID.

firms conditional on some of the firm specific variables, such as the number of

products at time t, K(t), the age of the firm T and the average unit size 〈ξ〉.
The analysis confirms that firms with more units have a lower probability

to exit and that the average unit size has also a positive effect on the sur-

vival probability. Conversely, firms’ age is far less significant, in accordance

with the GPG framework, in which the exit probability µ is independent of

the product age and size. Though preliminary, this result suggests that the

age effect on firm survival could be mediated by the innovation process and

the capture of new business opportunities, as shown by Klette and Kortum

(Klette and Kortum 2004).

All in all, we find that the downward sloping relationship between firm

growth and size among small firms is driven primarily by innovation and se-

lection (Mansfield 1962). Therefore, we must take into account the extensive

margin of growth (i.e., variations in the number of products) and selection

when studying the relationship between firm size and its growth rate.
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The Variance of Firm Growth Rates

We now move on to the analysis of the size-variance relationship. Our

framework predicts that the relationship between size and variance crucially

depends on the partition of firm sales into units. The negative correlation

between the standard deviation of the growth rate σr and sizes of industrial

firms, S, is well documented (see e.g. Hall 1987b; Bottazzi et al. 2001; Sutton

2002; Koren and Tenreyro 2013) with a notable exception of (Perline et al.

2006). However, the specific dependence of σr(S) on S is still debated. As

was proposed in (Stanley et al. 1996; Amaral et al. 1998) the variance of the

growth rate of firms obeys the universal scaling relationship with the firm

size: σr(S) ∼ S−β, where β ≈ 0.2 is a constant. During the last twenty years,

this so called “scaling puzzle” has been at the core of a lively debate in the

literature. These observations were made for the logarithmic growth rates

(Fig. 2.8). However, the GPG framework predicts that in the presence of in-

novation, i.e. when new units can be created, there is a dramatic difference

between σr′(S) for non-logarithmic growth rates and σr(S) for logarithmic

growth rates and β = β(S) is not constant is not constant for either mea-

sures, but a slow varying function of S, which obeys different asymptotic

behavior. For non-logarithmic growth rate, β(S) is a decreasing function of

S changing from 1, for S → 0, to some value β(∞) ≤ 1/2, For some vari-

ants of the model β can become even negative, while for logarithmic growth

rates β(S) a decreasing function of S, changing in the range from 0 for small

S to a larger value βmax ≤ 1/2 for larger S, but then can decrease again

and become even negative, coinciding for large S with the behavior of non-

logarithmic β. This behavior is caused by the complex interplay between the

distribution of unit sizes Pξ, which is assumed to be lognormal with large

logarithmic variance Vξ and the distribution of number of units PK , which

can have a complex shape from an exponential distribution to a Pareto one.

Using PHID, we have tested the predictions of the GPG at the level of

firms and at the level of products. If the behavior of σr(S) for the products

is similar to that for firms, it can be regarded as an evidence in favor of the

two-level aggregation model, suggesting that products are complex entities,

consisting of several units. Figure 4.13 shows the relationship between the

average size and the variance of the logarithmic growth rates for firms (panel

a) and for products (panel b) in the pharmaceutical industry. Note that, by

definition, σr(S) is not a property which can be defined for single firm. It is

an ensemble average defined for many firms whose sizes belong to an interval

between S −∆S/2 and S +∆S/2, where ∆S is the bin size. Since S spans

many orders of magnitude, we work with logarithmic sales s = ln(S) and
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logarithmic bins [s−∆s/2, s+∆s/2] and compute the variance σ2r (s) of the

sample of annual growth rates of firms collected over the entire period of

PHID (10 years) of all firms, whose size at the beginning of each year be-

longed to this bin. Obviously, this procedure should dramatically depend on

the bin size. For small bin sizes each bin will consist of a very few observa-

tions Ns, and we can expect some noise in the data, since the standard error

analysis shows that the statistical variance of the value ln[σr(s)] – which we

report on the graph – is 1/[2(Ns − 1)]. On the other hand, if bins were too

large the data would be smooth but we would lose the resolution necessary

to determine variation in β(S), which is the local slope on the graph of

ln[σr(s)] versus s. We will determine β(S) by the least square linear fit for

the bins between smin and smax. To take into account various accuracy of

σr(s) for different bins, we minimize the sum of the squares of the residuals

normalized by the statistical variance 1/[2(Ns−1)] of each observation. This

method is identical to the ordinary least square fit in which we assume that

each bin yields Ns − 1 identical observations. The error bar of the observed

slope β can be obtained by the standard error analysis, which assumes that

the residuals are normally distributed. The scaling hypothesis of a power

law with a fixed β is rejected if the fitted line does not fall within the given

confidence intervals determined by the error bars of certain bins. We repeat

this procedure for different bin sizes to verify if our results are stable with

respect to the bin size.

Visual inspection of the data in Fig. 4.13 (a) shows that, as predicted by

GPG, in the presence of innovation we see a dramatic difference in the be-

havior of the non-logarithmic and logarithmic growth rates for small S, with

non-logarithmic growth rates sky rocketing to infinity. In order to provide a

better visualization of the data, in the non-logarithmic case we do not plot

large value of σ. This data is presented in Chapter 5 [Fig. 5.25(a)]. For large

S both methods produce similar values as predicted by GPG. Also we see

that non Logarithmic growth rates cannot be fitted by a single power law

and we observe a relatively sharp crossover at s = s∗ ≈ 10 (S =≈$20,000)

from a small β ≈ 0.06 to large β ≈ 0.2 for s > 10. In Table 4.10 we present

the values of beta and the error analysis for bins of various sizes. We can

see that the scaling hypothesis not rejected for s > 10. Moreover, the val-

ues of β observed for different bin sizes are within the correspondent error

bars. However, the scaling hypothesis is for the entire range of firm sizes is

rejected. The constancy of β from very small firms ≈$20,000 to the largest

S ≈ $30, 000, 000, 000 i.e, over six orders of magnitude, which is even better

than the GPG predicts for the reasonable values of the parameters. We will

provide a possible explanation of constancy of β(S) in Chapter 5.
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To test the two-level aggregation hypothesis we investigate the behavior

of σr(ξ) for products. In the case of products the difference between the

logarithmic and non-logarithmic growth rates is even larger than in the case

of firms. This suggests that if products consist of many units, these units are

of larger sizes comparatively to the total than in the firms. For small products

with sales ξ < $20, 000 the behavior of σr(ξ) coincides with the behavior of

σr(S) for firms, which is expected because these firms consist of essentially

one product. However, for larger products the behavior is very different

and the universal scaling hypothesis is rejected. We see a short region with

the slope ≈ −0.16, but for larger products the variance of growth rates

stays almost constant. This behavior is very similar to the one predicted

by GPG with a single aggregation level for a distribution of number of

units P (K) with small exponential cutoff and large Vξ, as seen in Fig. 3.24

(a). An interpretation is that products consist of multiple fluctuating units,

while the exponential cutoff, κ, of the distribution of their number is small

comparatively to the logarithmic variance of their sizes: κ < exp(Vξ).

Overall, we find that the data are in good agreement with the predictions

of GPG.

Data smin smax ∆s β linearity
firms 0 10 ln 2/2 = 0.35 0.06± 0.02 accepted
firms 0 10 ln 10 = 2.3 0.06± 0.02 accepted
firms 10 25 ln 2/2 = 0.35 0.23± 0.03 accepted
firms 10 25 ln 10 = 2.3 0.21± 0.02 accepted

products 0 10 ln 2/2 = 0.35 0.06± 0.02 accepted
products 0 10 ln 10 = 2.3 0.06± 0.02 accepted
products 10 25 ln 2/2 = 0.35 0.16± 0.02 rejected
products 10 25 ln 10 = 2.3 0.17± 0.02 rejected

Table 4.10 Least square estimation of β for products and firms as in Fig.

4.13 for different fitting ranges [smin, smax] and bin sizes ∆s. The linearity

hypothesis is rejected if for any bin the data is three standard error away

from the fit. (99.7% confidence level), and accepted otherwise. Data source:

PHID.

Further Tests on the Size-Growth Relationship

As have shown in the previous Sections, selection and innovation affect

the size-growth relationship simultaneously. Therefore, in this Subsection,

we study the relationship between size and growth, taking into account all

these factors.

The relationship between firm size and growth performence has been ex-
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tensively investigated in the literature (De Wit 2005; Coad 2009). In a nut-

shell, there is a general agreement on a negative size-growth relationship.

Moreover, this relationship is not observed in samples of large firms. The

predictions of GPG are consistent with these empirical findings.

In GPG, the expected growth rate for small sizes is computed as Equation

(3.92):

mr′(S) =

(
λ
exp(mξ + Vξ/2)

S
− µ

)
∆t. (4.3)

The results of the simulations presented in Figure 3.23(b) show significant

departures from the generic flat relationship predicted by the proportional

growth model. These departures are especially pronounced when K and S

are small, since the increase in firm size due to innovation (i.e., the launch

of new products) is clearly visible.

We use dynamic panel data estimation methods to test the independence

between growth and size in the PHID dataset (Wooldridge 2010; Greene

2012).11 The test is carried out by estimating the parameters of the following

equation:

ln(Si,t)− ln(Si,t−1) = g ln(Si,t−1) +

r∑

j=1

αjxj,i,t + µi + ui,t, (4.4)

where Si,t are firm annual sales, x1,i,t . . . xr,i,t is a set of explanatory variables,

µi is a time-constant, firm-specific unobserved component, and ui,t is an

idiosyncratic error. The coefficient g is the “Gibrat’s coefficient”: testing

g = 0 corresponds to test independence between growth and size. Equation

(4.4) can be rewritten as:

si,t = g̃si,t−1 +
r∑

j=1

αjxj,i,t + µi + ui,t, (4.5)

where g̃ = 1+g, and si,t = ln(Si,t). Equation (4.5) is equivalent to Equation

(4.4), as well as testing for g̃ = 1 is equivalent to testing for g = 0. The vec-

tor xj,i,t contains the following control variables: age, entry, exit, molecule,

diversification and year dummies. Age is calculated as the age of the oldest

product. Entry is defined as kini,t/ki,t−1, where k
in
i,t is the number of new prod-

ucts marketed by the ith firm in year t; exit is defined as kouti,t /ki,t−1, where

kouti,t is the number of products lost in year t; molecule is a binary variable

identifying firms that introduce new molecules (innovative products based

on new molecules) in their portfolio; diversification is the share of firm sales

11 See (Morescalchi et al. 2019) for a more detailed description of the estimation methods
employed here.
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associated to the firm principal Anatomical Therapeutic Chemical (ATC)

Classification12 class.

We estimate Equation (4.5) by employing a first-difference generalized

method of moments (Arellano and Bond 1991) to account for endogeneity.

Endogeneity arises when one or more explanatory variables are related to

the error term, which in this case comprises a time-fixed effect (µi) and an

idyosincratic component (ui,t). Possible endogeneity arising by correlation

with µi can be accommodated by removing µi from the estimand equation

with an ad-hoc transformation of the data, such as the first-difference (FD).

FD transformation is implemented by subtracting from both sides of Equa-

tion (4.5) the same components expressed in one-year lag, generating the

following estimand equation:

∆si,t = g̃∆si,t−1 +

r∑

j=1

αj∆xj,i,t +∆ui,t, (4.6)

where µi is subtracted away. However, ∆si,t−1 is necessarily correlated with

∆ui,t and, hence, ordinary least square (OLS)13 estimates of Equation (4.6)

are biased. Equation (4.6) can be consistently estimated by a GMM model

with Instrumental Variables (IV). IVs can identify the relation between ∆si,t
and ∆si,t−1 by capturing variation in ∆si,t−1 that is unrelated to ∆ui,t.

Natural IV candidates for ∆si,t−1 are ∆si,t−2, ∆xi,j,t−1 and further lags.14

Interactions between year dummies15 and the inverse Mills ratio (IMR)

are also included in xj,i,t to control for selection. The IMR is computed after

estimating year-by-year probit models for firm selection (see Wooldridge

2010 for discussion a of selection and methods to correct for it).

In Table 4.11, we report FD-GMM estimates of the size-growth equation,

either controlling or non-controlling for selection (see Morescalchi et al. 2019

for additional evidence). We insert as explanatory variables: age, entry, exit,

molecule, diversification, and year dummies. Interactions between year

dummies and the inverse Mills ratio are also included to control for selection

(see Wooldridge, 2010, for discussion on selection and methods to correct for

it). Lags of explanatory variables are also included in xj,i,t if significant. They

are denoted in Table 4.11 with a numerical subscript reflecting the number

12 In the pharmaceutical industry, the ATC System is used for the classification of drug active
ingredients. We construct the ATC-based explanatory variable considering the first four digits
of the ATC code, which correspond to the third level of the classification and indicate the
pharmacological subgroup of the drug.

13 see (Wooldridge 2010; Greene 2012) for exhaustive explanation
14 The FD transformation is generally preferred in this set-up since longer lags of the

transformed regressors remain orthogonal to the transformed error and hence they can be
used as valid IVs.

15 A dummy, also called indicator, is a variable that can assume value 1 or 0.
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of years ahead of the current year t. Both FD-GMM models suggest that

the Gibrat coefficient g̃ is significantly lower than 1, as indicated by the 95%

confidence interval. This is equivalent to a significantly negative size effect

in Equation (4.4), as captured by the coefficient g. The Gibrat hypothesis is,

hence, rejected, supporting earlier evidence that small firms grow faster than

large firms. Point estimates of the two models reported in Table 4.11 suggest

that the departure from the Gibrat law becomes stronger when selection is

controlled for. A test for the presence of a selection effect can be carried out

by testing joint significance of coefficients of the interactions between year

dummies and the IMR (see Wooldridge 2010). Since these coefficients turn

out to be jointly significant, we can reject the null hypothesis that selection

is absent. This implies that correction for selection is necessary and hence

we select the FD-GMM model correcting for it as our best model. In this

model, estimate of g̃ is equal to 0.79, corresponding to g = −0.21. This

estimate implies that, ceteris paribus, if a firm is larger than another one by

one percent sales, we expect that its logarithmic growth rate next year will

be 0.21 percentage points smaller than the logarithmic growth rate of the

smaller firm.

Coefficients of the other regressors used in our best model are plausible

in sign and magnitude. Younger firms grow faster than old ones but the age

coefficient is only close to significance, which is in line with GPG predictions.

We note that the effect of age loses significance only after correcting for

selection, consistently with the correlation between firm age and survival.

The launch of new innovative products has a long-lasting positive effect on

firm growth, with the strongest impact one year after launch. Furthermore,

the rates of product inflow and outflow have a strong positive and negative

impact on growth, respectively. The impact of inflows persists up to the

first lag (year) though it becames smaller. Therefore, the negative growth-

size relationship holds after controlling for selection bias.16

We now perform additional estimates to test the role of innovation in the

size-growth relationship. Specifically, we apply our best model to the follow-

ing three cases: (i) we remove the sales generated by new products entering

the market in t; (ii) we consider the sample of firms that keep a constant

number of products in the time frame; and (iii) we keep the complementary

sample of dynamic firms that change their number of products in at least

one year.

Table 4.12 reports estimates for the three cases. The FD-GMM estimates

of g̃ after controlling for selection are 0.95, 0.95 and 0.73, respectively. In-

16 Several tests have been carried out to asses the validity of these results. Overall, the validity
is supported (see Morescalchi et al. 2019).
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FD-GMM FD-GMM Attrition
ln(sales) Coeff 95% C.I. Coeff 95% C.I.
ln(sales)−1 0.887** 0.799 0.975 0.790** 0.657 0.923

(0.045) (0.068)
ln(age) -0.273** -0.410 -0.137 -0.155 -0.322 0.011

(0.070) (0.085)
entry 0.146** 0.062 0.230 0.148** 0.059 0.236

(0.043) (0.045)
entry−1 0.081** 0.025 0.138 0.075* 0.017 0.132

(0.029) (0.029)
exit -0.270** -0.381 -0.158 -0.302** -0.408 -0.197

(0.057) (0.054)
molecule 0.031** 0.009 0.054 0.031* 0.006 0.056

(0.011) (0.013)
molecule−1 0.066** 0.046 0.087 0.061** 0.039 0.083

(0.010) (0.011)
molecule−2 0.039** 0.022 0.057 0.035** 0.016 0.055

(0.009) (0.010)
diversification 0.342** 0.134 0.550 0.333** 0.115 0.552

(0.106) (0.111)
year dummies × IMR X

year dummies X X

Firms 2,262 2,262
Observations 11,922 11,922

Table 4.11 The relationship between firm size and growth. FD-2GMM

estimates with correction for selection. Age is calculated as the age of the

oldest product; entry is the number of new products marketed by the i− th

firm in year t; exit is the number of products lost in year t; molecule is a

binary variable identifying firms that introduce new molecules in its

portfolio; diversification is the share of firm sales associated to the firm

principal ATC class. Lags of explanatory variables are denoted with a

numerical subscript reflecting the number of years ahead of the current

year t. For each explanatory variable and for each model we report in the

columun ”Coeff” the estimated coefficient (** Significant at 1%, *

significant at 5%) and the associated standard error computed by panel

bootstrap (in brackets). The column ”95% C. I.” reports the lower bound

and the upper bound of the 95% confidence interval for each estimated

coefficient. Data source: PHID.

terestingly, we note that while the departure from Gibrat’s law is even more

remarkable for firms that do change their product portfolio, Gibrat’s law

does hold true for firms with a stable number of products as g̃ is not statis-
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tically different from 117. The main message we can draw from our estimates

is that changes in the number of products is the main driver of the observed

departures from Gibrat’s law to hold. The law holds once we remove the

contribution of product turnover, in line with the predictions of our frame-

work.

4.4 Conclusions

In this Chapter, we have tested the predictions of GPG with respect to the

Stylized Facts (I-IV) presented in the Introduction.

The hypothesis that the distribution of firm sizes is lognormal is rejected

for all the datasets that we have analyzed. We have found size distributions

with different ranges of a power law behavior, with exponents τ in agreement

with GPG, which predicts that the range of a power law behavior for firm

size distributions increases over time, while its slope depends on the rate of

entry of new firms.

We then compared the shape of the growth rate distribution of firms

against several theoretical predictions, such as lognormal, Laplace and sev-

eral alternatives proposed in Chapter 3. Our empirical tests have shown that

the best fit for the distribution of growth rates is achieved in the case de-

scribed by Equation (3.114), which was derived for the GPG with two-levels

of aggregation.

Our findings do not falsify the proposition according to which the stan-

dard deviation of growth rates σr(S) decreases with S slower than S−1/2,

being approximated by a power law dependence σr(S) ∼ S−β(S) where

β(S) exhibits a crossover from a small value β(S) ≈ −0.06 for small S

to β(S) ≈ −0.24 for large S, in agreement with GPG predictions.

Finally, we have shown that the average growth rate decreases with firm

size, after having controlled for the sample bias associated with the lower

survival rate of small firms. We also found that innovation is crucial to

explain departures from Gibrat’s Law.

17 Diagnostic tests support the validity of the three econometric models (see Morescalchi et al.
2019).
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Figure 4.13 The relationship between the average size and the variance of
the logarithmic and non-logarithmic growth rates for of firms (a) and prod-
ucts (b) in pharmaceutical industry. For estimation of the scaling exponent
β we use different fitting ranges and different bin sizes (Table 4.10). Data
source: PHID.
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All Firms but no new products Only firms without product flow Only firm with product flow

FD-GMM Selection FD-GMM Selection FD-GMM Selection
ln(sales) Coeff 95% C.I. Coeff 95% C.I. Coeff 95% C.I.
ln(sales)−1 0.942*** 0.737 1.147 0.947** 0.661 1.234 0.725** 0.583 0.867

(0.105) (0.146) (0.072)
ln(age) -0.541*** -0.874 -0.205 -0.307 -0.658 0.045 0.045 -0.160 0.250

(0.102) (0.179) (0.104)
entry 0.106 -0.029 0.051 0.147** 0.048 0.245

(0.021) (0.050)
entry−1 -0.015 -0.059 0.276 0.060* 0.007 0.113

(0.022) (0.027)
exit -0.062 -0.185 0.060 -0.275** -0.385 -0.165

(0.063) (0.056)
molecule -0.011 -0.033 0.010 0.026* 0.001 0.052

(0.011) (0.013)
molecule−1 -0.009 -0.033 0.0.16 0.066** 0.043 0.088

(0.012) (0.011)
molecule−2 -0.003 -0.033 0.016 0.035** 0.015 0.055

(-0.003) (0.010)
diversification 0.512*** 0.2157 0.808 0.589 -0.138 1.316 0.269* 0.042 0.495

(0.151) (0.371) (0.116)
year dummies × IMR X X X

year dummies X X X

firms 1,598 600 1,662
observations 7,707 2,951 8,821

Table 4.12 The size-growth relationship for three groups of firms: all firms, but

no new products; only firms with the same product portfolio; Only firms with

product turnover. Age is calculated as the age of the oldest product; entry is the

number of new products marketed by the i− th firm in year t; exit is the number

of products lost in year t; molecule is a binary variable identifying firms that

introduce new molecules in its portfolio; diversification is the share of firm sales

associated to the firm principal ATC class. Lags of explanatory variables are

denoted with a numerical subscript reflecting the number of years ahead of the

current year t. For each explanatory variable and for each model we report in the

columun ”Coeff” the estimated coefficient (** Significant at 1%, * significant at

5%) and the associated standard error computed by panel bootstrap (in brackets).

The column ”95% C. I.” reports the lower bound and the upper bound of the 95%

confidence interval for each estimated coefficient. Data source: PHID.
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VII.8. For example, if we choose the empirical value β ≈ 0.15, then Equation

(VII.129) predicts the plausible result 0.9 ≥ Π ≥ 0.7 for a range of z in the

interval 2 ≤ z ≤ 10.

V Statistical Appendix

In this section, we provide a brief description of some statistical distribu-

tions used to describe size and growth distributions. An extensive survey of

parametric statistical distributions of economic size phenomena is provided

by (Kleiber and Kotz, 2003).

Size and Growth Distributions

Power Law and Zipf’s Law

The power law distribution has been used to describe a large number of

empirical regularities in economics and finance (Gabaix, 2009b), computer

science (Mitzenmacher, 2003), physics, biology and social systems (Newman,

2005). A random variableX, forX ≥ x0 > 0 follows a power law distribution

if its complementary cumulative distribution function5 (CCDF) is a power

function of the form:

P (X > x) = Cx−γ , (VII.130)

where γ > 0, C > 0. If both x and bx are larger than x0, then a power law

distribution satisfies p(bx) = g(b)p(x), where g(b) = b−γ , i.e., it is a scale

free distribution if we ignore the cutoff x0.

A graphical inspection to see if an empirical distribution can follow a

power law behavior consists of plotting the empirical CCDF in log-log scale.

Indeed, since

log[P (X > x)] = log(Cx−γ) = log(C)− γ log(x), (VII.131)

the CCDF of a power law distribution with alpha exponent can be approx-

imated with a straight line with slope = −γ (Mitzenmacher 2003).

Among the most widespread names for the power law distributions are

the Pareto distribution and Zipf’s law (Pareto 1896; Zipf 1949).

Zipf’s law states that the size y of the r-th largest occurrence of an event

is inversely proportional to its rank r:

y ∼ r−b. (VII.132)

For example, if y is a certain income then Equation (VII.132) means that

5 The complementary cumulative distribution function is given by 1− P (X ≤ x).
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the r-th richest person has an income rb times smaller than the income of

the richest person. Remember that if Equation (VII.132) holds, then:

r ∼ y−1/b, (VII.133)

the probability that the variable Y will be equal to y is:

P (Y = y) =
dr

dy
∼ y−(1+1/b). (VII.134)

As we will see below, the expression in Equation (VII.134) represents the

PDF of a Pareto distribution.

Pareto Distribution

Italian civil engineer, economist and sociologist, Vilfredo Pareto, was the

pioneer among scholars who, over time, devoted themselves to the study of

size distributions. Pareto, in his Cours d’économie politique (Pareto 1896),

showed that the number of taxpayers (in logarithmic scale) with an income

higher than a certain threshold x and the value x (also in logarithmic scale)

were related by a relationship almost linear with a slope = −γ for some

γ > 0.

Formally:

ln(Nx) = A+ ln(x−γ), (VII.135)

where A, γ > 0.

The cumulative distribution function (CDF) of a Pareto distribution is

defined as:

F (x) = 1−
(
x

x0

)−γ
, x ≥ x0 > 0, (VII.136)

where γ is the shape parameter and x0 is the scale parameter, while the

density function is given by

f(x) =
γxγ0
xγ+1

, x ≥ x0 > 0. (VII.137)

In Equation (VII.137), γ is the parameter associated with the heaviness

of the distribution tail: the tail is heavier as γ is smaller. Furthermore,

γ = α− 1, where α is the power-law slope.

The raw k-th moment6 µ′k is given by

µ′k =
γxk0
γ − k

, (VII.138)

6 The k-th raw moment of a distribution with continuous pdf f(x) is defined as

µ′k =
∫+∞

−∞
xkf(x)dx.
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and exists only if k < γ.

The mean and variance expressions for a Pareto distribution are derived

from the raw moment (Equation VII.138). The expected value is given by:

E(X) =
γx0
γ − 1

, (VII.139)

and exists only if γ > 1 7. The variance is given by:

var(X) =
γx20

(γ − 1)2(γ − 2)
, (VII.140)

and exists only if γ > 2. However, there is a variety of distributions for which

Equation (6.123) holds asymptotically for large enough x. These distribu-

tions are said to have a power law or a Pareto tail but, technically, they are

not Pareto distributions.

If a random variable Y follows an exponential distribution, for Y > y0,

then the random variable X = exp(Y ) follows a Pareto distribution. Indeed,

if

P (Y > y) =

{
e−(y−y0)γ if y > y0,

1 if y ≤ y0.
(VII.141)

By introducing x = exp(y), x0 = exp(y0),

P (Y > y) = P (ln(X) > ln(x)) = P (X > x) =

{
e−(y−y0)γ =

(
x0
x

)γ
if x > x0,

1 if x ≤ x0,

(VII.142)

which coincides with the definition of a Pareto distribution.

Generalized Pareto Distribution

The generalized Pareto distribution (GPD) is a family of continuous prob-

ability distributions with three parameters: µ is the location parameter, σ

is the scale parameter and ξ is the shape parameter. The GPD probability

density function is given by:

f(x) =
1

σ

(
1 + ξ

x− µ

σ

)(− 1
ξ
−1)

, (VII.143)

for x > µ when ξ > 0, and for µ 6 x 6 µ − σ/ξ when ξ < 0, where µ ∈ R,

σ > 0, and ξ ∈ R. The GPD with shape ξ > 0 and location µ = σ/ξ is

equivalent to the Pareto distribution with scale x0 = σ/ξ and shape γ = 1/ξ,

7 For extremely heavy-tailed distributions of this class, other measures of location must be used
(Kleiber and Kotz, 2003).
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while if the shape ξ and location µ are both zero, the shape of the GPD is

equivalent to the exponential distribution.

The shape GPD defines three classes of models nested in the GPD family

- when the shape parameter is equal to zero, we obtain a class of distribu-

tions characterized by a tail that decreases exponentially;

- when the shape parameter is positiv, we obtain a class of distributions

characterized by a tail that decreases as a polynomial, such as the Stu-

dent’s t distribution;

- distributions whose tails are finite, such as a beta-distribution, lead to a

negative shape parameter.

Lognormal Distribution

The initial use of a lognormal distribution as size distribution is attributed

to Robert Gibrat, who observed that the size distribution of French firms

followed a lognormal distribution (Gibrat 1931).

Formally, a random variable X has a lognormal distribution if ln(X) has

a normal distribution.

The PDF of a lognormal distribution can therefore be easily derived from

the expression of the PDF of a normal distribution. In particular, remem-

bering that in the case of a normal distribution the PDF is:

N(y) =
1√
2πσ

e−
(y−µ)2

2σ2 , (VII.144)

then, the PDF of a lognormal distribution is given by:

LN(x) =
1

x
√
2πσ

e−
1

2σ2
(lnx−µ)2 , x > 0, µ ∈ R, σ > 0 (VII.145)

where µ is the mean and σ2 is the variance.

The moment generating function can be expressend in terms of the moment-

generating function of a normal distribution:

E(Xk) = E(ekY ) = ekµ+
1
2
k2σ2. (VII.146)

From Equation (VII.146) follows that the mean of a lognormal distribution

is

E(X) = e
µ+σ2

2 , (VII.147)

and the variance is

Var(X) = e2µ+σ
2
(eσ

2 − 1). (VII.148)
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The lognormal distribution has finite moments of all orders.

By exploiting the relationship between a normal and a lognormal distri-

bution, some properties of normal distributions can be applied to lognormal

distributions after an appropriate change of the parameters. For example,

since the sum of normal random variables is still a normal random variable,

it follows that the product of lognormal random variables is still a lognor-

mal random variable. Formally, if X1 and X2 are two independent random

variables with distributions X1 ∼ LN(µ1, σ
2
1) and X2 ∼ LN(µ2, σ

2
2), respec-

tively, then

X1X2 ∼ LN(µ1 + µ2, σ
2
1 + σ22). (VII.149)

Unfortunately, the sums of lognormal random variables are not easily tractable

(Kleiber and Kotz, 2003).

As we have seen, both the Pareto distribution and the lognormal dis-

tribution can be obtained from the exponential transformation of another

distribution. Moreover, the CCDF in a double-logarithmic scale of the two

distributions are very similar, sometimes indistinguishable, at least in the

right tail (Mitzenmacher, 2003).

For the Pareto distribution the behavior is exactly linear, while for the

lognormal distribution the behavior will be almost linear for a large portion

of the distribution. In fact, using the PDF, we know that for the Pareto

distribution, the log of the PDF is:

ln f(x) = (−γ − 1) ln x+ γ lnx0 + ln γ, (VII.150)

while for the lognormal it is:

ln f(x) = −(lnx)2

2σ2
+
( µ
σ2

− 1
)
lnx− ln

√
2πσ − µ2

2σ2
. (VII.151)

This fact implies that it is difficult to distinguish the Pareto distribution

from the lognormal distribution using only a visual test. Some statistical

tests used to distinguish between the two distributions will be discussed in

the following sections.

Growth Distribution

In classical models, the logarithmic growth rates are assumed to be nor-

mally distributed, where the PDF of a normal random variable is expressed

by Equation (VII.144). In reality, empirical investigation has showed that

the distribution of the growth rates is not normal but ”tent-shaped”. For

this reason, the distributions used in this book to describe the growth rate
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exhibit a ”tent shape” behavior. In particular, we used distributions belong-

ing to the exponential power family. Since the family of exponential power

distributions is a subset of the class of scale mixture of normal distributions

(Kleiber and Kotz 2003), in the first part of this section we provide a brief

description of the scale mixture of normal distributions. Then, we describe

the exponential power family and some special cases of this family.

Scale Mixture of Normal Distributions

If Y is a random variable with density fy and K is a positive random

variable with density fk, then the distribution of X = KY is called a scale-

mixture with a scale mixing density fk and its PDF is given by

fx(x) =

∫ ∞

0
fx(x|k = h)fk(h)dh =

∫ ∞

0
h−1fy(h

−1x)fk(h)dh. (VII.152)

Suppose that Y has a standard normal distribution, by substituting the

density of a standard normal in Equation VII.152 we obtain

the PDF of a scale mixture of Gaussian distributions (West, 1987). Many

unimodal and symmetric distributions can be derived from the class of the

scale mixture of normal distributions (West, 1987; Andrews and Mallows,

1974). The precise shape of the distribution depends on the mixing density

fk. In particular, if we assume that fk is exponentially distributed, we obtain

an exponential mixtures of Gaussians, given by (Buldyrev et. al 2007):

fx =

∫ ∞

0
λe−λK

1√
2πV Kψ

e
− y2

2VKψ dK, (VII.153)

where ψ is the scaling parameter. Some of the probability density func-

tions that are obtained by varying the scaling parameter are summarized

by (Buldyrev, Riccaboni, Growiec, Stanley and Pammolli, 2007) as shown

in Table VII.1.

The Exponential Power Distribution

A random variable X is said to follow an exponential power distribution8

if its density is given by

f(x) =
1

2α1/ασαΓ(1 + 1/α)
exp

(
− 1

ασαα
|x− µ|α

)
, −∞ < x <∞,

(VII.154)

where −∞ < µ <∞ is the location parameter, α > 0 is the shape parameter

8 In physics literature, it is known as a stretched exponential distribution.
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Table VII.1 Probability density functions that are obtained by varying the

scaling parameter. Φ denotes the cumulative distribution function (CDF)

of the standard normal distribution.

ψ Probability density function (PDF)
ψ > 1 Exponential power with shape parameter α ∈ (0, 1)

ψ = 1 Laplace, p(x) = 1
2

√
2λ
V exp

(
−
√

2λ
V |x|

)

0 < ψ < 1 Exponential power with shape parameter α ∈ (1, 2)

ψ = 0 Gaussian, p(x) = 1√
2πV

exp
(
− x2

2V

)

ψ < 0 Emergence of power law tails

ψ = −1 ∼ x−3, p(x) = λ
2
√
2V

(
x2

2V + λ
)3/2

ψ = −2 ∼ x−2, p(x) = λ2
√
V

2
√
πx2

(
1−

(
1− 2Φ

(
λ
√
V√

2|x|

))√
πV exp

(
λ2V
2x2

))

and σα > 0 is the scale parameter (Kleiber and Kotz, 2003), with

σα = E [|X − µ|α]1/α =

[∫ +∞

−∞
|x− µ|αf(x)dx

]1/α
. (VII.155)

This distribution was named exponential power by Box and Tiao (Box and

Tiao, 1973) but it is known under different names since it was rediscovered

several times in different contexts and with different parameterizations. The

exponential power is often named Subbotin (Subbotin, 1923), generalized

Laplace distribution, generalized error distribution or generalized normal

distribution of order p (Vianelli 1963; Kotz et al. 2001).

The exponential power is a family of unimodal and symmetric distri-

butions. The shape of the distribution depends on the α parameter. In

particular, the shape parameter α is linked to the thickness of the tails:

for 0 < α < 2, a leptokurtic distribution is obtained, while for α > 2, a

platykurtic distribution is obtained9. By substituting, in Equation VII.154,

α = 2 we obtain the PDF of a normal distribution. For α → ∞, Equation

VII.154 becomes the PDF of a uniform random variable, while, if α = 1 we

obtain

f(x) =
1

2σ
e−

1
σ
|x−µ|, (VII.156)

which is the PDF of a Laplace distribution, that will be discussed in the

next section.

Due to its symmetry, the exponential power distribution has all its odd

9 A leptokurtic distribution has a kurtosis greater than 3, while a platykurtic distribution has a
kurtosis smaller than 3.
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central moments equal to zero, while the k-th even central moment is defined

as

µk = (σαα
1/α)k

Γ((k + 1)/α)

Γ(1/α)
. (VII.157)

Laplace Distribution

The PDF of a classical Laplace distribution is given by Equation (VII.156),

a new re-parametrization of this density is obtained by replacing σ = S/
√
2:

g(x) =
1√
2S
e−

√
2|x−µ|/S , −∞ < x <∞, (VII.158)

while the PDF of a standard Laplace distribution is, by setting µ = 0 in

Equation (VII.158) and unit variance:

g(x) =
1√
2
e−

√
2|x|, −∞ < x <∞. (VII.159)

The k-th even central moment for a classical Laplace distribution with den-

sity (VII.156) is

µk = σkk!, (VII.160)

whereas the odd central moments are all equal to zero. The central absolute

moment of a classical Laplace distribution is given by

νn = σnΓ(n+ 1), (VII.161)

and, in particular, the mean is E(x) = µ, while the variance is Var(x) = 2σ2.

The Laplace distribution admits many different representations charac-

terized and summarized by Kotz and colleagues (Kotz et al., 2001), among

these we want to remark the relationship with the exponential and the Pareto

distributions. A standard Laplace distribution is also known as the law of

the difference between two exponential random variables, since if W1 and

W2 are two exponential i.i.d. random variables, then X =W1−W2 follows a

Laplace distribution. For this reason, the Laplace distribution is also known

as double exponential distribution or two-tailed exponential distribution.

Similarly, a Laplace distribution can be represented in terms of two inde-

pendent Pareto distributions. Therefore, if P1 and P2 are two i.i.d. Pareto

random variables, then X = ln(P1/P2) is a standard Laplace distribution.

The Laplace distribution can be also obtained as a mixture between a

Gaussian distribution and an exponential distribution, as we have shown in

Table (6.1).
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Statistical Test of Goodness of Fit

In this section, we describe some statistical methods to assess whether a

given distribution is suited to a dataset. In particular, we briefly introduce

the most common non-parametric tests, tests based on the likelihood and

tests for extreme values.

Non-Parametrical Tests

Statistical tests based on the empirical CDF can be divided into two

strands: the simple goodness of fit problem and the composite goodness

of fit problem (Dasgupta, 2008). In the first problem, we have X1, . . . ,Xn

observations from a distribution F and we want to test if F = F0 where F0

is a completely specified distribution. In this case, the null hypothesis is

H0 : F = F0. (VII.162)

In the composite goodness of fit problem, we want to test the hypothesis

that F belongs to a certain family of distributions. We begin with describing

the simple goodness of fit tests on the empirical CDF.

Goodness of Fit with a Completely Specified Distribution

Non-Parametrical Tests

We want to test if an empirical CDF (ECDF) Fn is equal to a given, and

completely specified, CDF F0.

Given X1, . . . ,Xn i.i.d. observations from some distribution and the cor-

responding order statistics X(1) < X(2), . . . , < X(n)
10, the empirical CDF is

given by

Fn(x) =





0, x < X(1)

k
n , X(k) ≤ x < X(k+1)

1, x ≥ X(n)

. (VII.163)

For large n, Fn is a consistent estimator of F , since Fn converges in prob-

ability to F as n → ∞. Therefore, if the null hypothesis H0 : F = F0 is

true, we should test H0 by studying the discrepancy between Fn and F0. A

large collection of discrepancy measures has been proposed in the literature

(Dasgupta, 2008), among them we report the following:

Dn = sup
−∞<t<∞

|Fn(t)− F0(t)| (VII.164)

10 Given any random variables, the order statistics are defined by sorting their realizations in an
increasing order.
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and

Qn =

∫
(Fn(t)− F0(t))

2Ψ(t)dF0(t) (VII.165)

The first test, corresponding to the discrepancy measure Dn shown in Equa-

tion (VII.164), is known as the Kolmogorov-Smirnov test, while from the

discrepancy measure Qn it is possible to obtain different tests by changing

the weight function Ψ. The Cramer-von Mises test is obtained when Ψ = 1,

∀(t) ∈ R. This test is a measure of the mean squared difference between the

empirical and the theoretical CDF. When Ψ(t) = [F0(t) (1 − F0(t))]
−1, the

Anderson-Darling test An is obtained:

An =

∫
(Fn(t)− F0(t))

2

(F0(t))(1 − F0(t))
dF0(t). (VII.166)

In this test, the tails are weighted more than the central part of the distri-

bution. It can be shown that the expressions for Dn and An are equivalent,

assuming that F0 is continuous, to:

Dn = max max
1≤i≤n

[
i

n
− F0(X(i)), F0(X(i))−

i− 1

n

]
,

An = −n− 1

n

[
n∑

i=1

(2i− 1)(ln(F0(X(i))) + ln(1− F0(X(n−i+1))

]
.

(VII.167)

Under the null hypothesis that the sample comes from the hypothesized

distribution F0, we obtain

√
nDn ⇒ sup

t∈[0,1]
|B(t)|

nAn ⇒
∫ 1

0

B2(t)

t(1− t)
dt,

(VII.168)

where B(t) is a Brownian bridge (Hida, 1980). For the fisrt case, the CDF

of the limiting distribution is given by:

lim
n→∞

PF0(
√
nDn ≤ λ) = 1− 2

∞∑

j=1

(−1)j−1e−2j2λ2 . (VII.169)

The CDF of the limiting distribution of nAn can be found as the CDF of

the infinite linear combination
∑∞

j=1
Yj

j(j+1) , where Yj are i.i.d. chi-square

random variables with one degree of freedom (Dasgupta, 2008). Tables of
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critical values11 for both distributions have been published by (Pearson and

Hartley 1972) and (D’Agostino 1986).

In the case of two samples, we can define a two-sided Kolmogorov-Smirnov

test to asses whether the two data samples come from the same distribution.

Let Xi, 1 ≤ i ≤ n iid samples with continuous CDF Fn and Yj, 1 ≤ j ≤ m,

iid samples with continuous CDF Gm. In this case, the Kolmogorov-Smirnov

statistic is

Dn,m = sup
0≤t≤1

|Fn −Gm|. (VII.170)

Under the null hypothesis H0 : Fn = Gm, the limiting distribution is

lim
n,m→∞

PH0

(√
mn

m+ n
Dm,n ≤ λ

)
= P ( sup

0≤t≤1
|B(t)| ≤ λ) = 1−2

∞∑

j=1

(−1)j−1e−2j2λ2 .

(VII.171)

The limiting distribution of the two-sample KS statistic under H0 is the

same as that of the one-sample KS statistic.

Recently, Clauset, Shalizi and Newman CSN proposed another method

based on the KS statistics (Clauset et al., 2009).

Goodness of Fit with Estimated Parameters

In the previous section, we discussed some non-parametric tests used to

asses if an empirical CDF F is equal to a certain CDF F0 that is completely

specified. Usually, it can be useful to test if an empirical CDF belongs to a

certain family Fθ, where θ represents the vector of parameters that indexs

the family. For instance, if F is the family of all the normal distributions

N(µ, σ), then θ = (µ, σ). In this case, we no longer have the null CDF F0.

In fact, if the true value of θ is θ0, the estimate of θ0 is θ̂n = θ̂n(X1 . . . Xn).

Then, F0 must be replaced by F (t, θ̂n) = P
θ=θ̂n

(Xi ≤ t).

The adjusted statistics for Dn and An are (Dasgupta, 2008):

D̃n = sup
−∞<t<∞

|Fn(t)− F (t, θ̂n)|

Ãn =

∫
(Fn(t)− F (t, θ̂n))

2

F (t, θ̂n))(1 − F (t, θ̂n))
dF (t, θ̂n)

(VII.172)

When the estimate θ̂ is computed from the same sample, the critical values

obtained from the limiting distribution in Equation (VII.169), determined

11 The critical value is defined as the value of the test statistic beyond which we would reject
the null hypothesis. The critical value is set so that the probability that the test statistic is
beyond the critical value is at most equal to the level of significance if the null hypothesis is
true.
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for the case of a completely specified distribution, are not longer valid (Lil-

liefors, 1969). The limiting distributions of the statistics obtained under the

null hypothesis H0 are affected by a number of factors: the number of esti-

mated parameters, the estimation method and the type of estimated param-

eters (Lemeshko et al., 2010). In such cases, Monte Carlo or other approaches

may be required to find the critical values (Kac et al. 1955; Stephens 1955;

Durbin 1975; D’Agostino 1986), but tables have been prepared for recurrent

typical usual cases (Lilliefors, 1969; Pearson and Hartley, 1972).

The Likelihood Ratio Test

Suppose that a distribution F1 depends on a set a parameters θ. Another

distribution F2 is said to be nested with F1 if it is possible to transform F1

in F2 by imposing a set of constraints on the parameters. F1 is called unre-

stricted model and F2 is called restricted model. The likelihood ratio test is

a method to compare the goodness of fit of two nested models. For instance,

the normal distribution and the Laplace distribution are both nested with

an exponential power distribution, since they can be derived from an expo-

nential power PDF (shown in Equation VII.154) by setting the parameter

α equal to 2 or 1, respectively.

The likelihood ratio test is based on the likelihood function. If xi, (i =

1 . . . n) are n observations drawn from a parameterized family of distribu-

tions f(xi|θ), then the likelihood function is the probability that (x1, ..., xn)

are drawn from this family given a specific value of θ:

L(θ|x1...xn) = f(x1...xn|θ). (VII.173)

If xi are independent and identically distributed, then Equation (VII.173)

can be rewritten as:

L(θ|x1...xn) =
n∏

i=1

f(xn|θ). (VII.174)

In many cases, it is easier to work with the so called log-likelihood given by

l(θ|x1...xn) = ln(L(θ|x1...xn)) =
n∑

i=1

ln f(xi|θ). (VII.175)

The likelihood ratio is given by:

∆(x) =
supθ∈Θ0

L(θ|xi)
supθ∈Θ L(θ|xi)

. (VII.176)

Under the null hypothesis that θ lies in a specified lower dimensional sub-

space Θ0 of the total parameter space Θ, for n → ∞, the statistic −2 ln∆
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will be asymptotically distributed as a χ2
r , where the number r of degrees of

freedom will be equal to the difference in the dimensionality of Θ and Θ0. In

order to perform a likelihood ratio test, we need to estimate the parameters

of both the unrestricted and the restricted model, and then calculate the

log-likelihoods of the two models. If l and l∗ are the log-likelihood of the

unrestricted and the restricted model, respectively, then we can write the

test statistic as follows:

D = −2 ln∆ = −2l∗ + 2l = 2(l − l∗). (VII.177)

Since the unrestricted model (with more parameters) will always have a

greater log-likelihood than the restricted one, we are interested in deter-

mining if the difference between the two estimated log-likelihood functions

is significantly large. If the difference is not significantly large, then the

restricted model will be preferred over the more complex one.

Extreme Value Tests

The extreme value theory (EVT) is used to consider probabilities associ-

ated with extreme (and, thus, rare) events. EVT studies the statistical prop-

erties of the distributions of higher order statistics (Beirlant et al., 2006),

which is equivalent to studying the behavior of the tail of a distribution.

It is known that the extreme value distribution belongs to the domain of

attraction of one of three family distributions, namely Fréchet, Gumbel or

Weibull (Embrechts et al., 1997; Kotz and Nadarajah, 2000). The Type 1,

Fréchet-type, distribution is defined as:

P [X ≤ x] =




0, x < µ

exp
[
−
(x−µ

σ

)−ǫ]
, x ≥ µ

, (VII.178)

where σ > 0, ǫ > 0 and µ ∈ R, the Type 2, Weibull-type, distribution is

defined as:

P [X ≤ x] =




0, x < µ

exp
[
−
(x−µ

σ

)ǫ]
, x ≥ µ

, (VII.179)

and the Type 3, Gumbel-type, distribution is defined as:

P [X ≤ x] = exp[−e(x−µ)/σ ]. (VII.180)

The Fréchet-type distributions and the Weibull-Type distributions are

well identified by the respective definitions of the tails: heavy-tailed for the
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distibution of the Fréchet ”family” and light-tailed for the distributions be-

longing to the Weibull ”family”. For the Gumbel’s-Type distributions, the

classification based on the tails is a bit more complicated, since they fall

into the same domain of distributions characterized by tails that are usually

defined as ”heavy” (such as the lognormal distribution), and distributions

with tails usually defined as light (like the normal distribution). This clas-

sification is all made more complicated by the fact that there are different

definitions of heavy-tailed distributions (Embrechts et al. 1997).

The unifying feature across these distributions is the shape parameter ǫ,

capturing the weights of the tail in the distribution of the variable X.

The three type of distributions can be represented as members of a gener-

alized family of distributions (the Generalized Extreme Value Distribution)

with the cumulative distribution function

P [X ≤ x] =

[
1 + ǫ

(
x− µ

σ

)−1/ǫ
]
, (VII.181)

where 1 + ǫ
(x−µ

σ

)−1/ǫ
> 0, −∞ < ǫ < ∞, and σ > 0. The distribution in

Equation (VII.181) is a Fréchet-type distribution for ǫ > 0 and a Weibull-

type distribution for ǫ < 0. When ǫ → ∞ or ǫ → −∞, the distribution in

Equation (VII.181) is a Gumbel-type distribution.

The EVT is the methodological reference for discriminating between a

power law (Pareto) and a lognormal tail behavior.

Asymptotically, the behavior of a Pareto distribution is different from

that of a lognormal distribution. The former converges to a Fréchet distri-

bution while the latter converges to a Gumbel distribution, causing the two

distributions to be mathematically distinguishable, at least asymptotically.

As highlighted by Perline, however, the slow convergence of the lognormal

distribution often causes the behavior of the two distributions to be indis-

tinguishable for samples of a finite size (Perline 2005).

Various tests have therefore been proposed in the literature to distinguish

between the Pareto and the lognormal behavior of a random variable. We

mention here the Hill estimator (Hill, 1975), the Uniformly Most Powerful

Unbiased (UMPU) test based on the clipped sample coefficient of variation

developed by (Del Castillo and Puig, 1999) and used by (Malevergne et al.,

2009), the Maximum Entropy (ME) test by (Bee et al., 2011) and a test

proposed by Gabaix and Ibragimov (Gabaix and Ibragimov, 2011).

The Hill Estimator

One of the most popular estimators for the tail index ǫ > 0 was proposed
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by Hill (Hill, 1975). The Hill estimator is the conditional maximum likeli-

hood estimator for a Pareto distribution with CCDF P (X > x) = Cx−γ ,
conditioning to x ≥ xmin for some fixed xmin > 0. This estimator can be

applied to a wide variety of distributions, such as Type 2 extreme value

distributions, whose tails are approximately Pareto (Hall, 1982). Consider a

random sample X1 . . . Xn and its order statistic X(1) ≤ . . . ≤ X(n). The Hill

estimator, based on the k + 1 upper order statistic, is defined as

γ̂−1
k,n =

1

k

k∑

i=1

ln
X(i)

X(k+1)

Ĉk,n =
k

n
X
γ̂k,n
(k+1),

(VII.182)

where γk,n and Ck,n are estimates of the parameters of the empirical dis-

tribution, γ and C, respectively. The primary weakness of this estimator is

that we need to determine the size of the tail a priori.

Alternatively, as illustrated by Embrechets, since only observations larger

than some unknown threshold xmin follow the Pareto distribution, it is pos-

sibile to estimate the treshold using a two-step procedure (Embrechts et al.

1997).

The importance of the choice of xmin is well illustrated by (Clauset et al.,

2009) who show that a wrong choice of the threshold will result in a biased

estimate for the scaling parameters. We discuss the methodology proposed

by Clauset and his coauthors to avoid this problem in the following section.

Clauset Test

The methodology used by Clauset and colleagues to estimate the lower

bound xmin consists in choosing the value x̂min of xmin that minimize the

difference (distance) between the probability distribution of the measured

data and the best-fit power law model (Clauset et al., 2009). Here the KS

statistic is used as a measure to quantify the distance between the two

probability distributions (but it is possible to use other measures as well).

If S(x) is the CDF of the data for observations x ≥ xmin, and P (x) is the

CDF for the power law model that best fits the data in the region x ≥ xmin,

then our estimate x̂min is the value xmin that minimizes the KS statistic D

defined as:

D = maxx≥xmin | S(x)− P (x) | . (VII.183)

Once we provide estimates for the scaling parameter and for xmin we

cannot, however, say if the power-law fitting is plausible. To overcome this
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problem, (Clauset et al., 2009), follow a semi-parametric approach. The idea

is to sample many synthetic data sets from a power law distribution with

parameters α̂ and x̂min and then compare these samples with the data.

Uniformly Most Powerful Unbiased Test

Suppose we sample from a population with a distribution that is com-

pletely specified except for the value of a parameter θ ∈ Θ, and we test the

null hypothesis H0 : θ ∈ Θ0 against the alternative hypothesis H1 = θ ∈ θ1,

with Θ0 ∪ Θ1 = Θ and Θ0 ∩ Θ1 = ø. Let d be the decision function (test

statistic) for an α-level test. Then, the power function12 will be

πd ≤ α, ∀θ ∈ Θ0. (VII.184)

A test statistic d is a uniformly most powerful (UMP) test at the significance

level α if d is indeed a level test and if for any other α level statistic d∗
πd∗(θ) ≤ πd(θ) ∀θ ∈ Θ1. (VII.185)

As highlighted by Bee and coauthors, the main problem of the UMPU

testing lies in the fact that the reliability of this test depends to a large

extent on the generating process of the data being tested, in particular from

the sampling variation coefficient (Bee et al. 2011).

The Maximum Entropy Test

The maximum Entropy (ME) test was developed by Bee and colleagues

(Bee et al. 2011). The test entails maximizing the Shannon’s information

entropy under k moment constraints µi = µ̂i (i = 1, . . . , k), where µi =

E[T (x)i] and µ̂i = 1
n

∑
j T (xj)

i are the i-th theoretical and sample mo-

ments, n is the number of observations and T is the function defining the

characterizing moment. It can be shown that the Pareto distribution is a

ME density with k = 1, whereas the lognormal distribution is a ME with

k = 2 (Bee et al. 2011).

For a complete description of the test and a discussion of the test perfor-

mance when the distribution tested is neither Pareto nor Normal, refer to

the article by Bee and coauthors (Bee et al. 2011).

Rank-1/2 Test

Gabaix and Ibragimov (Gabaix and Ibragimov, 2011) proposed a method

(GI test) to estimate the Pareto exponent γ by running an OLS on a Zipf

12 The power of a statistical test is defided as the probability that the test will reject the null
hypothesis when the null hypothesis is false.
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size-rank log-log plot. Recently, (Bee et al., 2017) proposed a modification of

the original GI test, according to which one must perform the OLS regression

with two parameters γ and q:

ln

(
r − 1

2

)
= constant − γ ln(X(r)) + q[ln(X(r))− α]2, (VII.186)

where γ is the Pareto shape, q is a parameter associated with the quadratic

deviation from a Pareto distribution, r is the rank, X(r) is the r-th order

statistic13 and

α
def
= Cov((ln(X(r)))

2, ln(X(r)))/2Var(ln(X(r))) (VII.187)

is a recentering term needed for guaranteeing that γ is the same whether

the quadratic term is included or excluded. Asymptotically, for the Pareto

distribution, q = 0, and, therefore, a large value of |q| points toward re-

jection of the null hypothesis of power law. (Gabaix and Ibragimov, 2011)

show that, under the null hypothesis, the data follows a Pareto distribution

and the statistics
√
2nq(n)/ξ2 converges for n → ∞ to a standard normal

distribution, which can therefore be used to find the critical points of the

test.

13 If X1, ...,Xn is a random sample drawn from a certain distribution X, X(1), ...,X(n) are
called order statistics if X(1) < X(2), .., < X(r) <, ... < X(n)



Illustrations

2.1 Number of publicly-traded manufacturing companies (a) and
numbers of companies entering and exiting the market (b) in
the U.S. from 1950 to 2010. Data source: Compustat. 13

2.2 (a) Probability density of the logarithm of the sales for publicly-
traded manufacturing companies (with standard industrial clas-
sification index of 2000-3999) in the U.S., every four years from
1950 to 2010. From 1950, sales are deflated by the Gross National
Product (GNP) price deflator. Solid circles show the average over
the 60 years, while the black line represents the lognormal fitting.
(b) Normalized probability density of the logarithm of sales for
all of the manufacturing companies, for the companies entering
the market, and for the companies leaving the market averaged
over the time period from 1950 to 2010. (c) Plot of the fraction
of “dying” companies by size. We define this probability as the
yearly ratio of dying companies of a given size over the total
number of companies of that size. Panels (a), (b) and (c) are in-
spired by panels (a) and (b) in Figure 2 in (Amaral et al. 1997)
taking a longer observation period. Data source: Compustat. 15

2.3 The distribution of firm sizes in the pharmaceutical industry.
The size distribution of all firms includes all pharmaceutical
firms that were active in the years 1994-2003. Stable firms are
long-lived firms which have been active for at least 10 years.
The distribution of stable firms approaches a lognormal shape
(a parabola in double-log scale). New firms are new-born com-
panies in their first year. The size distribution of new firms is
shifted to the left with smaller mean and variance and larger
skewness as compared to long-lived firms. Finally, exiting firms
are companies in the year preceding their exit. Just before their
exit, companies are considerably smaller than long-lived firms.
Data Source: PHID. 16
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2.4 The figure shows the yearly firm growth rate minus the average
firm growth rate (about 0.11) (r− 〈r〉) versus log-size (Log(S)),
for manufacturing firms in U.S. during the years 2009-2010;
USD, thousands. Data source: Compustat. 18

2.5 (a) Probability density p(r|s) of the growth rate r ≡ ln(St+1/St)
for all publicly-traded manufacturing firms in the U.S. present
in the Compustat with Standard Industrial Classification index
of 2000–3999. The distribution shows all annual growth rates
observed during the 60-year period between the years 1950 and
2010. Data for three different groups of firms are shown: small,
medium and large firms. (b) Same as in (a), but with a magnified
scale near the peak. The solid lines are Laplace fits to the em-
pirical data close to the peak. Visual inspection shows that the
tails are somewhat “fatter” than what is predicted by Equation
2.5. Data source: Compustat. 21

2.6 Probability density function of scaled growth rate by industrial
sectors. The scaled growth rate is calculated as rscal = [r −
r̄]/σ(r). Data source: Compustat. 22

2.7 Average growth rate over a 60 years period r̄, for different mea-
sures of firm size: sales, assets, cost of goods sold, employees,
plant property and equipment against firm size. The figure is
inspired by Figure 3 in (Amaral et al. 1997). Data source: Com-
pustat. 23

2.8 Standard deviation of the annual growth rates for different defi-
nitions of firm size as a function of the initial size. Least squares
power law fits were made for all quantities leading to the es-
timates of β: 0.18 ± 0.06 for “assets”, 0.17 ± 0.07 for “sales”,
0.17 ± 0.03 for “number of employees”, 0.16 ± 0.06 for “cost of
goods sold”, and 0.17 ± 0.03 for “plant, property and equip-
ment”. The straight lines are guides for the eye and have a slope
of 0.17. Figure is inspired by Figure 4 in (Amaral et al. 1997).
Data source: Compustat. 24

3.1 A schematic representation of the model of proportional growth
(reproduced from (Fu et al., 2005)). At time t = 0, there are
N(0) = 2 firms (�) and n(0) = 5 units (©) (Assumption 1).
The area of each circle is proportional to the size ξ of the unit,
and the size of each firm is the sum of the areas of its constituent
units (see Assumption 5). At the following time step, t = 1, a
new unit is created or deleted. With probability ν, each existing
unit can create a new unit, which is assigned to a new firm, firm
3 in this example, (Assumption 4). The size of the new unit is
taken from the distribution of the existing units (Assumption
7). With probability λ, each existing unit can create a new unit
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which is assigned to the same existing firm. (Assumption 2). In
this example, due to the fact that the numbers of existing units
in firms 1 and 2 are 3 and 2, respectively, given the new unit
is created, it will be assigned to firm 1 with probability 3/5 or
to firm 2 with probability 2/5. Each unit can be deleted with
probability µ. Given that one unit is deleted, it will be deleted
from firm i with a probability proportional to its number of units
Ki(t). Finally, at each time step, each circle k grows or shrinks
by a random factor ηk (Assumption 6). The figure is reproduced
from Figure 1 in (Fu et al., 2005). 34

3.2 The distribution Pk(R) when ν = 0 (no new firm entry), α =
0.25, R = n(t)/n0 = 21 for the case when initially all firms have
exactly 3 units: N = N3 = 100, n0 = 300, and for the case when
initially all firms have 1 unit: N = N1 = 100, n0 = 100. For the
case N = N3, exponential decay with a slope ln(1 − 1/κ(t)) =
ln[(R−1)/(R−α)] = −0.037, is preceded by a power law increase,
while for the case N = N1 we see a pure geometric distribution
characterized by the same slope. The simulations are averaged
over 106 realizations of the stochastic process. 44

3.3 (a) The dependence of the average growth rate on firm size for
the pure Bose-Einstein process with λ = 0.1, µ = 0.09, ∆t = 1
for logarithmic and non-logarithmic growth rates. The logarith-
mic growth rate is non-constant due to the non-linear behavior of
the logarithm, but the limiting values for logarithmic and non-
logarithmic growth rates converge for large S to a theoretical
prediction (λ− µ)∆t. (b) The size-variance relationship for the
pure Bose-Einstein process with λ = 0.1, µ = 0.09, ∆t = 1 for
logarithmic and non-logarithmic definitions of the growth rates.
Both definitions are well approximated by σr =

√
(λ+ µ)/S,

which gives β = 1/2. 45
3.4 The growth rate distribution for κ = 104, µ = 0.08, λ = 0.1

and ∆t = 1 given by Equation (3.54) and results of computer
simulations with 105 realizations of the Bose-Einstein process. 46

3.5 The distribution of the number of units P(K) for the preferential
attachment model with new firm entries ν > 0, λ > 0: Classical
Simon-Zipf case (A2) given by Equation (3.64) for t→ ∞, b→ 0,
α = 0 (dashed line); Growing Simon case (A2t): α = 0.9, b = 0.1,
n(t)/n0 = 1101 (bold line); Stable Simon case (A3): α = 1.001,
b = −1, nν(t)/n0 = 10 (dashed-dotted line). In all cases, the
system initially consists of N(0) = 100 firms with 1 unit each.
The new firms always consist of 1 unit. 55

3.6 (a) The dependence of the average growth rate on firm size for
the pure Simon process with the same set of parameters as in
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Figure 3.5 and for the case of a stable economy with λ = 0.1
and µ = 0.1001, for logarithmic and non-logarithmic growth
rates. The logarithmic growth rate is non-constant due to the
non-linear behavior of the logarithm, but the limiting values
for logarithmic and non-logarithmic growth rates converge for
large S to the theoretical prediction (λ − µ)∆t. (b) The size-
variance relationship for the Simon process with the same set
of parameters for logarithmic and non-logarithmic definitions of
the growth rates. Both definitions are very well approximated
by σr =

√
(λ+ µ)/S, which gives β = 1/2. 55

3.7 The distribution of the firm growth rates for the growing and
stable Simon cases with the same set of parameters as in Figure
3.5, in comparison with the Bose-Einstein process. The irregu-
larities of the distribution present in all three cases, especially
pronounced for growing and stable Simon cases, are not due to
small number of reaizations but are the consequences of adding
units to, or subtracting units from, the small firms consisting of
a few units. The resulting growth rate distribution consists of
discrete values corresponding to ln 1/2, ln 2/3, ln 2/1, ln 3/2, ...
etc. 56

3.8 (a) The convergence of the sum of K = 2n lognormal random
variables with variance Vξ = 5 (normalized by its mathematical
expectation, Kµξ,) to a Gaussian distribution. One can see that
for small K, the peak of the distribution is achieved at small S
and the width of the peak is narrow. In fact, the distribution is
not concentrated because its right tail decreases very slowly. As
K increases, the peak shifts to the right and broadens. However,
the right tail vanishes and the distribution starts to resemble
a Gaussian distribution. When K > exp(Vξ) = 148, the peak
starts to become narrower again and the distribution starts to
concentrate near Kµξ. (b) The behavior of the width of the peak
in panel (a), σ and its position µ in panel (a) for Vξ = 5 and
Vξ = 10. For both cases, the width of the peak approaches 0 and
its position approaches S = Kµξ for K → ∞, but for Vξ = 5 the
convergence is much faster than for Vξ = 10. However, in both
cases, the distribution starts to concentrate for K > exp(Vξ). 58

3.9 Firm size distribution for (a) the Bose-Einstein-Gibrat model
with no entries ν = 0, case (C1) and (b) the Simon-Gibrat model
with entries ν > 0, b = 0.001 case (C2). (a) As the scale of
the exponential distribution κ increases, the distribution changes
from the lognormal distribution with Vξ = 5 and mξ = 0 to an
exponential distribution, which in a double logarithmic scale has
a functional form y = x− lnκ− exp(x− lnκ), characterized by a
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straight line with slope 1 for small x and an exponential cut-off
for large scales. (b) As the logarithmic variance of the unit size
distribution Vξ decreases, the firm size distribution converges
from the lognormal distribution to a distribution with a right
power law tail S−2−b, which is characterized by a straight line
y = (−1 − b)x in the double logarithmic plot. Here, we use
b=0.001, hence, the slope is very close to -1. 59

3.10 The distribution of the logarithm of firm sizes for the three cases
of PK : the Bose-Einstein process (C1), (PK as in Figure 3.9 with
κ = 1000, the Simon growth process (C2), (PK as in Figure 3.5
with α = 0.9) and the Simon stable process (C3), (PK as in
Figure 3.5). Vξ = 5, a value that has been found in several
empirical databases. 60

3.11 (a) Dependence of the Gini index on R for the Simon model,
[case (A2t)] with different values of b. (b) Dependence of the
Gini index on Vξ for the GPG model with different values of b
and R. 61

3.12 Normalized distribution P (r|K) for different values of K when
entry and exit of units is not considered (λ = µ = 0). For K = 1,
the distribution P (r|K) coincides with the distribution of ln ηi,
which is Gaussian by our assumption. As K increases, the de-
parture from the Gaussian increases and reaches its maximum
for K ≈ 103. At this value of K the distribution develops a tent
shape. For K = 106 the distribution again slowly approaches a
Gaussian distribution as predicted by the Central Limit Theo-
rem. The parameters of the simulations Vξ = 5.13, mξ = 3.44,
Vη = 0.36 and mη = 0.016 are taken from the PHID data base
(see Chapter 4 and Riccaboni et al. 2008). We also assume that
the change in the number of products in the firm during time
interval ∆t is negligible: ∆t(λ−µ) → 0. The figure is reproduced
from Figure 4 in (Buldyrev, Pammolli, Riccaboni, Yamasaki, Fu,
Matia and Stanley, 2007). 64

3.13 The behavior of the standard deviation of the growth rate σ2r(K)
as a function of K. Here, a crossover from approximate power
law σ2r (K) ∼ K−0.38 for smallK to a limiting behavior predicted
by Equation (3.81), for which σ2r(K) ∼ K−1. Solid line shows fit
σ2r = Vr/(K + cK2β), where c = Vr(exp(Vη) − 1)/Vη , β = 0.19.
Here, we use values Vξ = 5 and Vη = 0.3, which are typical for
empirical data bases, and mη = 0. Also shown are mr −mr(k),
standard deviation for the non-logarithmic growth rate σ2r′ and
H-index, respectively. 66

3.14 The dependence of the average growth rate on firm size for the
cases of geometric (B1), power (B2) and logarithmic (B3) PK for
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logarithmic (a) and non-logarithmic (b) definitions. For the non-
logarithmic definition, all cases are in good agreement with the
theoretical prediction exp(mη + Vη/2) − 1. Small irregularities
of the graphs are due to statistical errors for finite number of
realizations of the processes. 68

3.15 (a) A comparison of the decay of cumulative lognormal distri-
bution of unit sizes Pξ(ξ > S) (mξ = 0, Vξ = 5) with the de-
cay of cumulative distributions of the number of units PK(K >
KS)/〈K〉, where KS = S/µξ and µξ = exp(Vξ/2) ≈ 12.2. We use
two exponential distributions with κ = 104 and κ = 103, and two
power law distributions with τ = 2.1 and τ = 3. (b) Simulated
behavior of σ2r(S) for the four PK distributions shown in panel
(a) over a sample of N firms. For the exponential distributions
N = 105 and for the power law N = 107. Panel (a) shows that
for the exponential distribution with κ = 103, PK(K > KS)/〈K〉
becomes smaller than Pξ(ξ > S) for S = 114000, KS = 9300.
The y coordinate of the crossing point gives (〈K〉N) = 10500,
which means that for any sample of firms with N > 10500
a spurious peak will be observed in the behavior of σ2r(S) for
S > 114000 shown in Panel (b). For κ = 104, the intersection
occurs only at S = Sσ = 1.8×106, N = Nσ = 1.7×106. Since in
our simulation shown in panel (b) N is also 105, we do not ob-
serve the increase of σ2r (S) at large S but only a slow crossover to
1/S behavior, which for a wide range of S can be approximated
by a power law S−2β. Power law PK/〈K〉 for τ = 2.1 is always
greater than Pξ for S > S∗ and, hence, σ2r(S) must approach the
asymptotic behavior σ2r(S) ∼ 1/S for large S. In contrast, power
law PK〈K〉 with τ = 3 becomes smaller than Pξ for S > 2000,
hence, no crossover is observed at 1/S behavior in panel (b) but
rather a shallow minimum at S ≈ 100. 71

3.16 Size-variance relationship for the cases of exponential PK (κ =
1000), power law PK with exponential cutoff (τ = 2.1) and loga-
rithmic PK α = 1.1, for logarithmic (a) and non-logarithmic (b)
definitions. For all cases, Vξ = 5 and Vη = 0.3. 72

3.17 A comparison of two types of approximations for the growth rate
distribution for the case of combined Bose-Einstein preferential
attachment of units with the Gibrat growth of unit sizes, for var-
ious κ/Vr. Thin lines correspond to approximation (3.94), which
predicts the infinite range of the power law behavior. Thick lines
correspond to approximation (3.97), which predicts the crossover
to a Gaussian behavior for |r −mr| >

√
Vr. 74

3.18 Simulation of the growth rate distribution for the case of Bose-
Einstein proportional growth of number of units resulting in
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the geometric distribution PK(K) (3.44) with κ = 1000, com-
bined with the Gibrat growth of unit sizes with Vη = 0.3, Vξ =
5 (circles). Solid line represents poli-logarithmic fit with κ =
16, Vr = 0.146, while the dashed line represents the distribution,
obtained by summation of Gaussians with variable σ2r(K) =
Vr(K + cK2β), where Vr = exp(Vξ)(exp(Vη)− 1),c = Vr/Vη − 1,
Vξ = 5, Vη = 0.3, andβ = 0.2. The figure represents Case (B1). 75

3.19 Approximation of the behavior of the growth rate distribution
Pr(r) for the case of new entries with b = 1, b = 0.1 and b→ 0,
given by Equation (3.100) and the approximation of Equation
(3.98). The Figure represents Case (B2). 77

3.20 Approximation of the behavior of the growth rate distribution
Pr(r) for the case of stable economy ν + λ − µ = 0 and sev-
eral values of α = µ/λ given by Equation (3.102).The Figure
represents Case (B3) 78

3.21 Simulation of the behavior of the growth rate distribution Pr(r)
for the case of a stable economy ν+λ−µ = 0 and several values
of α = µ/λ for Vξ = 5 and Vη = 0.3. The figure represents Case
(B3). The Gaussian asymptotic behavior for r−mr is shown by
the dashed bold line. The power law behavior for α− 1 = 10−5

is shown by a thin solid line. The tent shape behavior of the
simulated distribution starts to evolve when α ≤ 1.001. 79

3.22 Simulated distribution of the firm growth rate for the three cases
of PK used in Figure 3.10 for Vξ = 5, Vη = 0.3,mη = 0, and
λ∆t = µ∆t = 0: the geometric PK with κ = 1000, power law
PK with τ = 2.1 and logarithmic PK with α = 1.1. 80

3.23 The dependence of the average growth rate on firm size for the
three cases of PK(K) (C1 - Bose-Einstein), (C2 - Simon with
overall growth, λ−µ > 0) and (C3 - stable Simon, λ−µ+ν = 0)
used in Figure 3.10 when the change in the number of products
in a firm cannot be neglected (λ∆t = 0.1 and λ∆t = 0.09)
for logarithmic (a) and non-logarithmic (b) definitions. We use
Vξ = 5, mξ = 0, Vη = 0.3 and mη = 0. For the non-logarithmic
definition, the results diverge for small S because the smallest
value of the non-logarithmic growth rate for a firm consisting of a
single small product is -1 when the firm loses this product, while
the largest value has no bound because this firm can launch a
second product that is significantly larger than the first one. The
larger is Vξ, the stronger is this effect. A thin smooth line gives
a theoretical lower bound estimate r = λ exp(mξ +Vξ/2)/S −µ. 81

3.24 The size variance relationship for the three cases (C1), (C2)
and (C3) described in Figure 3.23 for logarithmic (a) and non-
logarithmic (b) definitions. 82
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3.25 The distribution of firm growth rates for the three cases (C1),
(C2) and (C3) described in Figure 3.23 for Vξ = 5, Vη = 0.3,mη =
0 and λ = 0.1, µ = 0.09 in cases (C1) and (C2) and λ = 0.1, and
µ = 0.1001 in case (C3). 82

3.26 Computer simulations of Pr for power law PK = B(2,K) for
Case (C2). The distribution of units, Pξ, and their growth rates,
Pη, are lognormal with Vξ = 5, mξ = 0, Vη = 0.3 and mη = 0.
The new units are drawn from the same lognormal distribution
as the existing units with probability λ∆t = 0.1. The existing
units are removed with probability µ∆t = 0.09. The distribu-
tion in the central part can be well approximated by the distri-
bution corresponding to λ∆t = µ∆t = 0, which can be fitted
by Equation (3.100), while the tails of the distribution can be
well approximated by the pure Bose-Einstein process (Vη = 0)
for non-equal units with Vξ = 5, with λ = 0.1 and µ = 0.09.
For small r, this distribution can be approximated as C±/|r|,
where C± is some constant linearly depending on λ and µ with
different proportionality coefficients for positive and negative r. 83

3.27 (a) The distribution of the number of units within firms ob-
tained by simulating the Sutton process with λ = 0.1, µ = 0.1,
ν = ν ′ = 0.001 and pλ = pµ = 0.0, 0.1, 0.2 and 0.3. In each
simulation, n0 = N(0) = 10 and nλ(t) = 105. (b) The growth
rate distribution for the system of firms with PK distributions
obtained in panel (a), and lognormal distributions Pξ and Pη
with Vξ = 5, η = 0.3. 85

3.28 The growth rate distribution of firms for two-level aggregation
models. (a) The Simon process has been used to generate the
distribution of the number of composite units M in the firm
P2(M) = 1/[M(M + 1)], and the Bose-Einstein-Gibrat process
to generate the growth rate distribution Pr,1(r) of composite
units with the geometric distribution P1(L) (κ = 1000) of the
number of elementary units, L, and lognormal ξ (Vξ = 5) and
η (Vη = 0.3) of elementary units. Pr,1(r) of composite units de-
velops a tent shape, as in Figure 3.18, while the second level
of aggregation of composite units into firms with a power law
distribution P2(M) transforms Pr,1(r) into the distribution of
the growth rates of firms, Pr,2(r), leaving the tails of Pr,1(r) un-
changed, but creating a Laplacian cusp in the center of Pr,2(r).
(b) Analytical approximation of the growth rate distribution
of firms in the two-step Simon-Bose-Einstein-Gibrat model, in
which the firms consist of M composite units, where M has a
power law distribution (see Equation (3.109)) and the compos-
ite units consist of L elementary units, where L has a geometric
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distribution, Equation (3.108), with κ = 100 (solid and dashed
lines) and κ = 10 (dot-dashed and dotted). The growth rate
distribution Pr(r|K) is approximated by Equation (3.79) with
Vr = 1. Solid and dot-dashed lines are the exact summations
given by Equation (3.115). Dashed and dotted lines are contin-
uous approximations given by Equation (3.114), in which sum-
mation from K = 1 to ∞ is replaced by integration from K = 0
to ∞. (c) P1(L) is the discretized lognormal distribution given
by Equation (3.116) with VL = 10, mL = 2, and Vr = 100. The
shape of the graph does not strongly depend on the parameters.
(d) is the same as in (c) but in double logarithmic scale. We also
plot the derivative of lnPr(r) vs. ln r, which shows a continuous
change of the slope from -1 to -3. 87

3.29 The two-level aggregation model. (a) Firm size distribution for
the Simon-Bose-Einstein-Gibrat model with two levels of ag-
gregation. The Simon growth process generates the distribu-
tion of the number of composite units in the firm PM (M) =
1/[M(M + 1)], while the Bose-Einstein-Gibrat process gener-
ates the growth rate distribution Pr(r) of composite units (e. g.
products) with geometric PK(K) (κ = 1000) and lognormal ξ
(Vξ = 5) and η (Vη = 0.3). The same parameters as those in
Figure 3.28 (a) are used. (b) Size variance relationships in the
two-level aggregation model for composite units and firms with
the same set of parameters as in panel (a). 89

4.1 Product size distribution (⋆) and firm (△) distribution fitted by
a lognormal model. Data source: PHID. 105

4.2 Empirical and lognormal CDF for the size of pharmaceutical (a)
products and (b) firms. Data source: PHID. 106

4.3 Average p-value for the maximum likelihood power law model for
samples extracted from the firms’ size distribution as a function
of n. Data source: PHID. 108

4.4 The counter-cumulative distribution functions P (S) and their
maximum likelihood power law fits for size distributions of phar-
maceutical firms and products for the year 2003, for the firms
the value of the slope is γ = 0.59 . Data source: PHID. 109

4.5 The counter-cumulative distribution function, P (K), and their
maximum likelihood power law fits for the distributions of the
number of products by pharmaceutical firms for the year 2003. 112

4.6 Firm size distribution and lognormal fitting for the year 2010.
Data source: Compustat. 113

4.7 Complementary cumulative distribution of firm size. The vertical
lines mark the power law cut-off identified by the GI, the ME
and the UMPU tests. Data source: Compustat, year 2010. 116
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4.8 Yearly growth distributions of firms (stars) and stable prod-
ucts (circles). Empirical fit of Equation (3.114). For clarity, the
growth distribution of firms is offset by a factor of 102. Data
source: PHID. 117

4.9 Empirical tests for the probability density function (PDF) Pg(g)

of growth rates rescaled by
√
Vr/2K (see Equation 3.114). Coun-

try GDP (©) and all manufacturing firms in Compustat (∗) are
shown. The shapes of Pr(r) for the two levels of aggregation are
well approximated by the PDF predicted by the model (lines).
Lines are obtained based on Equation (3.114). After rescaling,
the two PDFs can be fitted by the same function. For clarity, the
manufacturing firms are offset by a factor of 104 and the GDP
data are offset by a factor of 106. Data source: World Bank,
Compustat. 119

4.10 The growth distribution of firms (Compustat data). In the top
panel, dots represent the empirical growth rate distribution. This
distribution is compared with a gaussian distribution ( µ =
0.0844 and σ = 0.3702); b) a Laplace distribution µ = 0.0844
and σ = 0.1854 with power law tails ∼ r−3 summarized in Equa-
tion (3.54) with parameter κ

2Vr
= 24.5; c) a tent shape distribu-

tion with power law tails ∼ r−3 summarized in Equation (3.114)
with parameter κ

2Vr
= 12.25. The bottom panel shows the fitting

of the central part of the growth rate distribution. Data source:
Compustat. 120

4.11 Growth rate distributions for different industrial sectors. The pa-
rameter αGPG = κ

2V is estimated with the Maximum Likelihood
Estimation (MLE) method. For pharmaceutical αGPG = 6.27,
for textile αGPG = 9.27, for the car industry αGPG = 18.88 and
for computers αGPG = 15.11. Data source: Compustat. 122

4.12 The relationship between the logarithm of firm sales measured
in dollars (S) and its mean growth rate (r′) for pharmaceutical
companies. Data source: PHID. 123

4.13 The relationship between the average size and the variance of
the logarithmic and non-logarithmic growth rates for of firms
(a) and products (b) in pharmaceutical industry. For estimation
of the scaling exponent β we use different fitting ranges and
different bin sizes (Table 4.10). Data source: PHID. 132

5.1 The behavior of the total number of firms N(t), the total num-
ber of products n(t) and the total sales S(t) in the US dollars
at the industry level for the pharmaceutical industry as a func-
tion of time, measured in years. The average number of products
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produced by a firm, 〈K〉, is approximately 17 and does not sig-
nificantly change with time. Data source: PHID. 136

5.2 (a) The behavior of λ and µ as a function of time. (b) The
behavior of λ and µ as functions of the number of products, K,
in a firm. The average values are 〈λ〉 = 0.82,〈µ〉 = 0.78. Data
source: PHID. 137

5.3 Comparison of a simulated distribution of the number of prod-
ucts in a firm with constants λ = 0.1, µ = 0.09 and ν =
0.001 and a simulated distribution with variable λ(t) = 0.1[1 +
cos(2πt/10, 000)], µ(t) = 0.09[1 − cos(2πt/10, 00)] and ν(t) =
0.001[1 + cos(2πt/1000)]. In both simulations, nλ(t) = 400, 000,
nµ = 360, 000, n0 = 1, 000 and N0 = 1, 000. Initially, all firms
consist of one product, while all the new firms sell one product.
Data source: simulations. 137

5.4 The dependence of ν and ν ′, as well as χ and χ′, on time. Data
source: PHID. 138

5.5 Distributions of the number of products in new and exiting firms.
Data source: PHID. 138

5.6 Comparison of the empirical exit probability of a firm with K
products with the predictions of the GPG. Data source: PHID. 139

5.7 Fitting the cumulative distribution of the number of products in
pharmaceutical firms with the prediction of the GPG, assuming
that λ and µ are independent of K. The justification of the pa-
rameters is presented in the main text: λ = 0.0793, µ = 0.0739,
ν ′ = 0.00112, P1(0) = 1, N(0) = 20, P ′

1 = 10/11, P ′
15 = 1/11

and t = 200, 000. Data source: PHID. 140
5.8 The distributions of the logarithm of products and firm sizes.

Data source: PHID. 142
5.9 The cumulative distribution of products sales in a double loga-

rithmic scale together with lognormal fits with various parame-
ters. Data source: PHID. 142

5.10 (a) The dependence of the average logarithmic product size on
the number of products in a firm. Also shown, the average loga-
rithmic size of a new product, added to a firm with K products.
(b) The dependence of average number of products 〈K〉(S) and
the product size 〈ξ〉(S) on the firm size, S. The product of these
two quantities is exactly S. Data source: PHID. 145

5.11 The distributions of product sizes for companies with a different
number of products. Data source: PHID. 145

5.12 The distribution of the logarithms of product sales with different
history: all products, new products, exiting products and stable
products. Data source: PHID. 146

5.13 (a) The dependence of the mean logarithm of new and exiting
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products on time from their launch or exit in comparison to
stable products. (b) The time-dependence of the variance of the
same quantities. Data source: PHID. 146

5.14 (a) The dependence of the logarithm of the survival probability
of products and firms as a function of time elapsed since their
entry. (b) The average logarithmic product/firm size as function
of time after their entry in comparison to the average logarithmic
product size of the product/firm removed from the market as a
function of time prior to its removal. Here, we take into account
only the long-standing products/firms which survive for 9 years
after entry or 9 years prior to exit. Data source: PHID. 148

5.15 (a) The dependence of the probability of a product of size ξ to
exit during the following year. (b) The dependence of the prob-
ability of a firm with sales S to exit during the following year.
This probability is related to the rate of the firm exit, χ′, pre-
sented in Figure 5.4. Since χ′ is normalized by the total number
of products, n(t), but the probability of firm exit is normalized
by the number of firms,N(t), the probability of firm exit is equal
to χ′〈K〉, where 〈K〉 is the average number of products in a firm.
Data source: PHID. 149

5.16 (a)The dependence of the average sales of new products and the
exit products on firm size. The averages size of products that
exit is always much smaller than the average size of new prod-
ucts. The slope on the graph indicates exponent δ′ of Equation
(5.10). (b) The average non-logarithmic growth rate of firms as
a function of their sales. The slope of the graph, -0.56, coincides
with δ′ − 1. A crossover point, S = SM ≈ 106, above which the
average growth rate is almost constant, is clearly visible. Data
source: PHID 150

5.17 The dependence of the Gini index of firms and products on time
for the pharmaceutical industry. Data source: PHID. 151

5.18 The distributions of product sizes for pharmaceuticals for differ-
ent years. Data source: PHID. 152

5.19 (a) The distribution of the growth rates of all packs, products
and firms. (b) The distribution of the growth rates of stable
packs, products and firms. Data source: PHID. 152

5.20 (a) The distribution of the growth rates of all packs, products
and firms versus ln |r|. (b) Distribution of the growth rates of sta-
ble packs, products and firms versus ln |r|. Data source: PHID. 153

5.21 The distribution of the growth rates of stable products with fits
predicted by GPG. Data source: PHID. 153

5.22 (a) The dependence of the mean and variance of the growth rates
of the products that survived for 10 years as a function of the
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time interval ∆t versus ln |r|, plotted against the predictions of
the Central Limit Theorem. (b) The distribution of the growth
rates of these products for ∆t = 1 and ∆t = 9 compared with
the distribution of the sum of 9 randomly selected annual growth
rates. Data source: PHID. 156

5.23 (a) The dependence of the average non-logarithmic growth rate
of the products and its standard deviation on the product sales.
The PDF of the logarithmic product sizes is also shown. (b) The
same analysis as in panel (a), performed for packs. Data source:
PHID. 156

5.24 (a) The dependence of the average logarithmic growth rate of
the products and its standard deviation on the product sales.
The PDF of the logarithmic product sizes is also shown. (b) The
same analysis as in panel (a), performed for packs. Data source:
PHID. 157

5.25 (a) The dependence of the non-logarithmic growth rate of the
firms and its standard deviation on the firm sales. The PDF of
the logarithmic firm sales is also shown. (b) The same analysis
as in panel (a), performed for logarithmic growth rates. Data
source: PHID. 158

5.26 The dependence of the H-index, at the level of individual firm,
computed using sales of products or packs, on the firm sales. We
also show a result of computer simulations of the GPG model for
the lognormal distribution of the product sizes with Vξ = 7.2,
which is obtained from the fit of the right tail of the product size
distribution and the empirical distribution of number of products
PK . Data source: PHID. 159

5.27 The PDF of the logarithm of the annual growth events at the
firm level over 10 years covered by PHID. To analyze separately
positive and negative events we compute the value x = sign[S(t+
1) − S(t)] ln(|S(t + 1) − S(t)|). One can see that both negative
and parts resemble the distribution of the firm sizes (Figure 5.8)
reflected with respect to x = 0, but with slightly different slopes.
The negative part has a slope 0.74, while the positive part has
a slope –0.42. Data source: PHID. 161

5.28 The dependence of the weighted average correlation coefficient
of the product growth rates on the average annual sales at the
firm level. Data source: PHID. 164

VII.1 (a) The distribution Pk(R) for the case ν = 0 (no new classes),
α = 0.25, R = n(t)/n0 = 21 for the case when initially all classes
have exactly 3 units: N = N3 = 100, n0 = 300. The exponen-
tial decay with a slope ln θ = ln[(R − 1)/(R − α)] = −0.037 is
preceded by a power law increase. The simulations are averaged
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over 106 realizations of the stochastic process. (b) The distri-
bution Pk(R) for the case b = 0.05 (new classes are created),
α = 0.8, R = (n(t)/n0)

1/(1+b) = 1458, for the case when all of
the initial classes have exactly one unit N = N1 = 100 and all of
the newly created classes also have only one unit P ′

1 = 1. Due to
the magnitude of statistical noise, the results of simulations aver-
aged over 105 realizations are shown not by individual points but
by hatched areas, where the points are located. The simulation
results for old (verticaly hatched area) and new classes (horizon-
tally hatched area) to the total Pk(t) (diagonally hatched area)
are shown separately. The theoretical results for different types
of classes are shown by different line styles: old (dot-dashed), new
(dashed) and all (dotted). The slope of the straight line behavior
for the new classes gives an exponent 2 + b = 2.05. As k → ∞,
the distribution is dominated by the exponential distribution of
the old classes: θk, where θ = (R− 1)/(R − α) = 0.99986284. 172

VII.2 (a) The behavior of the average logarithmic growth rates mr(K)
and their standard deviations σ2r (K) as a function of K for
λ = 0.1, µ = 0.08, ∆t = 1 and ∆t = 10. One can see a non-
monotonic behavior of mr caused by renormalization of the dis-
tribution by 1− (αθ)m and by the asymmetry of the logarithm,
which decreases much faster for K ′ < K than it increases for
K ′ > K. A similar behavior is observed for actual firms. (b)
Same graphs as in (a), but versus 1/K, which test the limit-
ing behavior of mr(K) and σr(K) for K → ∞ according to
Equations (VII.72) and (VII.73). The horizontal lines show the
limiting values [(R− 1)(1+α)][R(1−α)] for both ∆t = 1 (small
value) and ∆t = 10 (large value). (c) The distribution Pr(r|K)
for λ = 0.1, µ = 0.08, ∆t = 1 and several values of K (symbols).
The lines show the Skellam distribution which agrees well with
the exact distribution for large K. 191

VII.3 (a) Simulation results forH(K), in the case of lognormal Pξ with
different Vξ plotted against K in a double logarithmic scale. One
can see that for large Vξ, lnH(lnK) can be well approximated
by straight lines. (b) Successive slopes of the lines, plotted in
panel (a), reveal a broad maximum, which gives an approximate
value of the power law dependence H(K) ∼ K−2βmin. 199

VII.4 (a) The dependence of the inverse minimal value of β(K) on Vξ
can be well approximated by a linear function. (b) The range of
K, for which β(K) is within 10% of its minimal value, increases
with Vξ. 199

VII.5 (a) Simulation results for σ2(K) in the case of lognormal Pξ and
Pη and different Vξ and Vη, plotted on a universal scaling plot



Illustrations 241

as a function of a scaling variable z = ln(K) − f(Vξ, Vη). (b)
The shift function f(Vξ, Vη). The graph shows that f(Vξ, Vη) ≈
fξ(Vξ)+fη(Vη). Both fξ(Vξ) and fη(Vη) (inset) are approximately
linear functions. The Figure is reproduced from Figure 4 in (Ric-
caboni et al. 2008). 200

VII.6 (a) The effective exponent β(z), obtained by the differentiation
of σ2(z), plotted in Figure VII.5 (a). Solid lines indicate the least
square fits for the left and right asymptotes. The graph shows
significant deviations of β(K,Vξ , Vη) from a universal function
β(z) for small K, where β(K) develops minima. (b) The depen-
dence of the minimal value of βmin on Vξ. One can see that this
value practically does not depend on Vη and is inversly propor-
tional to the linear function of Vξ. The Figure reproduced from
Figure 5 in (Riccaboni et al. 2008) 202

VII.7 The hierarchical-tree model of a company. As an example, we
represent a company as a branching tree with a branching factor
z = 2. Here, the head of the company makes a decision about
the change in the size of the lowest level units by a factor η0.
This decision is propagated through the tree, however, it is only
followed with a probability Π, pictured in the figure as a full
link. With probability (1−Π) a new growth rate ηi taken from
the same distribution is defined, pictured as a slashed link. We
see that at the lowest level, there are clusters of values ηi for
the changes in size. The number of links connecting the nodes
in a real company may vary from level to level and from node to
node. We assume, however, that the results of our simple model
are still valid if z represents some “typical” numbers of links. The
figure is reproduced from Figure 1 in (Buldyrev et al., 1997). 204

VII.8 A phase diagram of the hierarchical tree model. Each pair of
values of (Π, z) specifies a value of β. The plotted isolines corre-
spond to several values of β. In the shaded area, marked “Un-
correlated,” the model predicts that β = 1/2, i.e., the units of
the company are uncorrelated. Our empirical data suggests that
most companies have values of Π and z, close to the curve for
β = 0.2. The Figure is reproduced from Figure 2 in (Buldyrev
et al., 1997). 209
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3.1 The summary of the main analytical and numerical results of
the GPG framework. The cases denoted by A1-C3 correspond
to the most important cases illustrated by the figures. GPG∗ is
a variant of GPG in which the changes in the number of units
in a firm, during an observation period ∆t, are neglected when
growth rates are computed. The case of stable economy is treated
in (Klette and Kortum 2004) who investigate zero net growth
ψ = λ + ν − µ = 0. In the cases (B1), (C1) and (D) marked
by ∗∗ , the exponent β, describing the size-growth rate variance
relationship σr ∼ S−β, weakly depends on S but in a large range
of S can be approximated by Equation (3.116), which, for empir-
ically reasonable width of unit-size distribution, Vξ takes values
in between 0.1 and 0.3 93

4.1 KS test results for product size distribution and firm size distri-
bution. We reject the null hypothesis of a lognormal distribution
(p < 0.001). Data source: PHID. 105

4.2 Pareto Tail test results for two significance levels (α = .05 and
α = .01). The α-value is the predefined value of the false posi-
tive, i.e., it represents the probability of mistakenly identifying
the presence of Pareto tail when the real distribution is lognor-
mal. Smaller value of α = 0.01 implies less probability of the
lognormal distribution, and hence longer Pareto tails (Malev-
ergne et al., 2009). For each test the Table reports, the number
(integer number) and the percent of observations in the Pareto
tail (in brackets). The total number of observations n, is reported
for products and firms. Data source: PHID. 107

4.3 Basic parameters of the Pharmaceutical Industry Data set (PHID),
along with their power law fits and the corresponding p-value (p),
for the size of firms (P (S)), for the years 1994-2003. In the table,
n is the number of firms in the sample; 〈S〉 is the average natural
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logarithm of the sales for firms in the tail; σ(S) is the standard
deviatiation of the logarithm of the sales for firms in the tail;
Ŝmax e Ŝmin are the natural logarithms of the upper and lower
boundaries of the tail; τ = 1 + γ is the exponent characterizing
the PDF of the size distribtuion (see Equation 3.58); the percent-
age of observations and the percentage of total sales for the firms
belonging to the tail are reported in column ”% in the tail”. ML
estimates as in (Clauset et al. 2009). Non-statistically significant
values, > .05, are denoted in bold. Data source: PHID. 110

4.4 Basic parameters of the Pharmaceutical Industry Data set (PHID),
along with their power law fits and the corresponding p-value,
for the number of products by firm (P (K)), for the years 1994-
2003. In the table, n is the number of firms in the sample; 〈S〉
is the average natural logarithm of the sales for products in the
tail; σ(S) is the standard deviatiation of the logarithm of the

sales for products in the tail; Ŝmax e Ŝmin are the natural loga-
rithms of the upper and lower boundaries of the tail; τ = 1 + γ
is the exponent characterizing the PDF of the size distribtuion
(see Equation 3.58); the percentage of observations and the per-
centage of total sales for the products belonging to the tail are
reported in column ”% in the tail”. ML estimates as in (Clauset
et al. 2009). Non-statistically significant values, > .05, are de-
noted in bold. Data source: PHID. 111

4.5 Pareto Tail test results for two significance levels (α = .05 and
α = .01). For each test the Table reports, the number (integer
number) and the percent of observations in the Pareto tail (in
brackets). The total number of observations n, is reported for
each dataset. Data sources: COMPUSTAT (year 2000 and year
2010), FICUS, ORBIS. 114

4.6 Pareto Tail test results for two significance levels (α = .05 and
α = .01). For each test the Table reports, the number (integer
number) and the percent of observations in the Pareto tail (in
brackets). The total number of observations n, is reported for
each industrial sector. Data source: ORBIS, year 2010. 115

4.7 Maximum Likelihood Estimates (MLE) of the yearly firm growth
distribution: µ and σ are the parameters of gaussian, Laplace and
exponential power distribution; while K/2Vr is the parameter of
Bose-Einstein model (Equation (3.54)) and GPG with two levels
of aggregation (Equation (3.114)). KS and AD columns contain
the value ofDn and An respectively (see Equation (6.171)). Data
source: PHID. 116

4.8 Tail behavior of the firm growth distribution (Hill estimator)
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P (r) ∼ r−3, where x = ln|r|, xmin is the starting point of the
tail and KS is the value of Dn for KS test. Data source: PHID. 117

4.9 Maximum Likelihood Estimates (MLE) of the yearly firm growth
distribution: µ and σ are the parameters of gaussian, Laplace and
exponential power distribution; while K/2Vr is the parameter of
Bose-Einstein model (Equation (3.54)) and GPG with two levels
of aggregation (Equation (3.114)). KS and AD columns contain
the value of Dn and An respectively (see Equation (6.171)). Data
source: PHID. 121

4.10 Least square estimation of β for products and firms as in Fig.
4.13 for different fitting ranges [smin, smax] and bin sizes ∆s. The
linearity hypothesis is rejected if for any bin the data is three
standard error away from the fit. (99.7% confidence level), and
accepted otherwise. Data source: PHID. 126

4.11 The relationship between firm size and growth. FD-2GMM esti-
mates with correction for selection. Age is calculated as the age
of the oldest product; entry is the number of new products mar-
keted by the i− th firm in year t; exit is the number of products
lost in year t;molecule is a binary variable identifying firms that
introduce new molecules in its portfolio; diversification is the
share of firm sales associated to the firm principal ATC class.
Lags of explanatory variables are denoted with a numerical sub-
script reflecting the number of years ahead of the current year
t. For each explanatory variable and for each model we report
in the columun ”Coeff” the estimated coefficient (** Significant
at 1%, * significant at 5%) and the associated standard error
computed by panel bootstrap (in brackets). The column ”95%
C. I.” reports the lower bound and the upper bound of the 95%
confidence interval for each estimated coefficient. Data source:
PHID. 130

4.12 The size-growth relationship for three groups of firms: all firms, but

no new products; only firms with the same product portfolio; Only

firms with product turnover. Age is calculated as the age of the oldest

product; entry is the number of new products marketed by the i− th

firm in year t; exit is the number of products lost in year t; molecule is

a binary variable identifying firms that introduce new molecules in its

portfolio; diversification is the share of firm sales associated to the

firm principal ATC class. Lags of explanatory variables are denoted

with a numerical subscript reflecting the number of years ahead of the

current year t. For each explanatory variable and for each model we

report in the columun ”Coeff” the estimated coefficient (** Significant

at 1%, * significant at 5%) and the associated standard error computed

by panel bootstrap (in brackets). The column ”95% C. I.” reports the
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lower bound and the upper bound of the 95% confidence interval for

each estimated coefficient. Data source: PHID. 133
VII.1 Probability density functions that are obtained by varying the

scaling parameter. Φ denotes the cumulative distribution func-
tion (CDF) of the standard normal distribution. 216
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