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A. Some technical results

In all the sequel, given (an)n, (bn)n two sequences of real numbers with bn ≥ 0, the notation an = O(bn)
means |an| ≤ Cbn for a suitable constant C > 0 and n large enough. Therefore, if we also have a−1n = O(b−1n ),
then C ′bn ≤ |an| ≤ Cbn for suitable constants C,C ′ > 0 and n large enough. Moreover, given (zn)n, (z

′
n)n

two sequences of complex numbers, with z′n 6= 0, the notation zn = o(z′n) means limn zn/z
′
n = 0.

A.1. Asymptotic results for sums of complex numbers

We start recalling an extension of the Toeplitz lemma (see Linero and Rosalsky (2013)) to complex numbers
provided in Aletti, Crimaldi and Ghiglietti (2017), from which we get useful technical results employed in
our proofs.

Lemma A.1. (Aletti, Crimaldi and Ghiglietti, 2017, Lemma A.2) (Generalized Toeplitz lemma)
Let {zn,k : 1 ≤ k ≤ kn} be a triangular array of complex numbers such that

i) limn zn,k = 0 for each fixed k;

ii) limn

∑kn
k=1 zn,k = s ∈ {0, 1};

iii)
∑kn
k=1 |zn,k| = O(1).

Let (wn)n be a sequence of complex numbers with limn wn = w ∈ C. Then, we have limn

∑kn
k=1 zn,kwk = sw.

From this lemma we can easily get the following corollary, which slightly extends the generalized version
of the Kronecker lemma provided in (Aletti, Crimaldi and Ghiglietti, 2017, Corollary A.3):

Corollary A.1. (Generalized Kronecker lemma)
Let {vn,k : 1 ≤ k ≤ n} and (zn)n be respectively a triangular array and a sequence of complex numbers such
that vn,k 6= 0 and

lim
n
vn,k = 0, lim

n
vn,n exists finite,

n∑
k=1

|vn,k − vn,k−1| = O(1)
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2 Aletti, Crimaldi and Ghiglietti

and
∑
n zn is convergent. Then

lim
n

n∑
k=1

vn,kzk = 0.

Proof. Without loss of generality, we can suppose limn vn,n = s ∈ {0, 1}. Set wn =
∑+∞
k=n zk and observe

that, since
∑
n zn is convergent, we have limn wn = w = 0 and, moreover, we can write

n∑
k=1

vn,kzk =

n∑
k=1

vn,k(wk − wk+1) =

n∑
k=2

(vn,k − vn,k−1)wk + vn,1w1 − vn,nwn+1.

The second and the third term obviously converge to zero. In order to prove that the first term converges to
zero, it is enough to apply Lemma A.1 with zn,k = vn,k − vn,k−1.

The above corollary is useful to get the following result for complex random variables, which again slightly
extends the version provided in (Aletti, Crimaldi and Ghiglietti, 2017, Lemma A.3):

Lemma A.2. Let H = (Hn)n be a filtration and (Yn)n a H-adapted sequence of complex random variables
such that E[Yn|Hn−1]→ Y almost surely. Moreover, let (cn)n be a sequence of strictly positive real numbers
such that

∑
nE

[
|Yn|2

]
/c2n < +∞ and let {vn,k, 1 ≤ k ≤ n} be a triangular array of complex numbers such

that vn,k 6= 0 and

lim
n
vn,k = 0, lim

n
vn,n exists finite, lim

n

n∑
k=1

vn,k
ck

= η ∈ C, (A.1)

n∑
k=1

|vn,k|
ck

= O(1),

n∑
k=1

|vn,k − vn,k−1| = O(1). (A.2)

Then
∑n
k=1 vn,kYk/ck

a.s.−→ ηY .

Proof. Let A be an event such that P (A) = 1 and limnE[Yn|Hn−1](ω) = Y (ω) for each ω ∈ A. Fix ω ∈ A
and set wn = E[Yn|Hn−1](ω) and w = Y (ω). If η 6= 0, applying Lemma A.1 to zn,k = vn,k/(ckη), s = 1 and
wn, we obtain

lim
n

n∑
k=1

vn,k
E[Yk|Hk−1](ω)

ckη
= Y (ω).

If η = 0, applying Lemma A.1 to zn,k = vn,k/ck, s = 0 and wn, we obtain

lim
n

n∑
k=1

vn,k
E[Yk|Hk−1](ω)

ck
= 0.

Therefore, for both cases, we have
n∑
k=1

vn,k
E[Yk|Hk−1]

ck

a.s.−→ ηY.

Now, consider the martingale (Mn)n defined by

Mn =

n∑
k=1

Yk − E[Yk|Hk−1]

ck
.

It is bounded in L2 since
∑n
k=1

E[|Yk|2]
c2k

< +∞ by assumption and so it is almost surely convergent, that
means ∑

k

Yk(ω)− E[Yk|Hk−1](ω)

ck
< +∞
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for ω ∈ B with P (B) = 1. Therefore, fixing ω ∈ B and setting zk = Yk(ω)−E[Yk|Hk−1](ω)
ck

, by Corollary A.1,
we get

lim
n

n∑
k=1

vn,k
Yk(ω)− E[Yk|Hk−1](ω)

ck
= 0

and so
n∑
k=1

vn,k
Yk − E[Yk|Hk−1]

ck

a.s.−→ 0.

In order to conclude, it is enough to observe that

n∑
k=1

vn,k
Yk
ck

=

n∑
k=1

vn,k
Yk − E[Yk|Hk−1]

ck
+

n∑
k=1

vn,k
E[Yk|Hk−1]

ck
.

We conclude this subsection recalling the following well-known relations for a ∈ R:

n∑
k=1

1

k1−a
=


O(1) for a < 0,

ln(n) +O(1) for a = 0,

a−1 na +O(1) for 0 < a ≤ 1,

a−1 na +O(na−1) for a > 1.

(A.3)

More precisely, in the case a = 0, we have

dn =

n∑
k=1

1

k
− ln(n) = d+O(n−1) (A.4)

where d denotes the Euler-Mascheroni constant.

A.2. Asymptotic results for products of complex numbers

Fix γ = 1 and c > 0, and consider a sequence (rn)n of real numbers such that 0 ≤ rn < 1 for each n and

nrn − c = O
(
n−1

)
. (A.5)

Obviously, we have rn > 0 for n large enough and so in the sequel, without loss of generality, we will assume
0 < rn < 1 for all n.

Let x = ax + i bx ∈ C and y = ay + i by ∈ C with ax, ay > 0 and c(ax + ay) ≥ 1. Denote by m0 ≥ 2 an
integer such that max{ax, ay}rm < 1 for all m ≥ m0 and set:

pm0−1(x) := 1, pn(x) :=

n∏
m=m0

(1− xrm) for n ≥ m0 and Fk+1,n(x) :=
pn(x)

pk(x)
for m0 − 1 ≤ k ≤ n− 1.

We recall the following result, which has been proved in Aletti, Crimaldi and Ghiglietti (2017).

Lemma A.3. (Aletti, Crimaldi and Ghiglietti, 2017, Lemma A.4) We have that

|pn(x)| = O
(
n−cax

)
and |p−1n (x)| = O (ncax) .

Inspired by the computation done in Aletti, Crimaldi and Ghiglietti (2017); Crimaldi et al. (2019), we
can prove the following other technical result:
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4 Aletti, Crimaldi and Ghiglietti

Lemma A.4. (i) When c(ax + ay) = 1, we have

lim
n

n

ln(n)

n−1∑
k=m0

r2kFk+1,n(x)Fk+1,n(y) =

{
c2 if bx + by = 0,

0 if bx + by 6= 0;
(A.6)

while when c(ax + ay) > 1, we have

lim
n
n

n−1∑
k=m0

r2kFk+1,n(x)Fk+1,n(y) =
c2

c(x+ y)− 1
,

lim
n
n

n−1∑
k=m0

r2k ln
(n
k

)
Fk+1,n(x)Fk+1,n(y) =

c2

(c(x+ y)− 1)2
,

lim
n
n

n−1∑
k=m0

r2k ln2
(n
k

)
Fk+1,n(x)Fk+1,n(y) =

2c2

(c(x+ y)− 1)3
.

(A.7)

(ii) Moreover, for any u ≥ 1, we have:
when c(ax + ay) = 1

n−1∑
k=m0

r2uk
|pn(x)|u|pn(y)|u

|pk(x)|u|pk(y)|u
=

{
O(ln(n)/n) for u = 1,

O
(
n−u

)
for u > 1;

(A.8)

while when c(ax + ay) > 1 and e ∈ {0, 1, 2}

n−1∑
k=m0

r2uk lneu
(n
k

) |pn(x)|u|pn(y)|u

|pk(x)|u|pk(y)|u
=


O(n−uc(ax+ay) lneu(n)) for uc(ax + ay) < 2u− 1,

O(n−(2u−1) lneu+1(n)) for uc(ax + ay) = 2u− 1,

O(n−(2u−1)) for uc(ax + ay) > 2u− 1

(A.9)

(note that for u = 1 only the third case is possible).

Proof. (i) First of all, let us notice that the limit (A.6) and the first of the limits (A.7) have already been
proved in (Aletti, Crimaldi and Ghiglietti, 2017, Eq. (A.11),(A.18)). Therefore, we can focus on the second
and the third limits in (A.7). To this end, let us set

S1,n :=

n−1∑
k=m0

r2k
pk(x)pk(y)

, S2,n :=

n−1∑
k=m0

r2k ln(k)

pk(x)pk(y)
, S3,n :=

n−1∑
k=m0

r2k ln2(k)

pk(x)pk(y)
,

so that, recalling the equality Fk+1,n(x) = pn(x)/pk(x), we can write:

n

n−1∑
k=m0

r2kFk+1,n(x)Fk+1,n(y) = npn(x)pn(y)S1,n,

n

n−1∑
k=m0

r2k ln
(n
k

)
Fk+1,n(x)Fk+1,n(y) = npn(x)pn(y) (ln(n)S1,n − S2,n) ,

n

n−1∑
k=m0

r2k ln2
(n
k

)
Fk+1,n(x)Fk+1,n(y) = npn(x)pn(y)

(
ln2(n)S1,n − 2 ln(n)S2,n + S3,n

)
.

Now, set G1,k := c2/[kpk(x)pk(y)] and recall that, as seen in (Aletti, Crimaldi and Ghiglietti, 2017, Proof of
Lemma A.5), when c(ax + ay) > 1 we have

∆G1,k = (c(x+ y)− 1)∆S1,k +O
(
k−1|∆S1,k|

)
. (A.10)
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Using analogous arguments, we can set G2,k := c2 ln(k)/[kpk(x)pk(y)] and observe that we have:

∆G2,k =
c2

pk(x)pk(y)

[(
ln(k)

k
− ln(k − 1)

k − 1

)(
1− (x+ y)rk + r2kxy

)
+

ln(k)

k

(
(x+ y)rk − r2kxy

)]
=

c2

pk(x)pk(y)

[(
− ln(k)

k2
+

1

k2
+ o(k−2)

)(
1− (x+ y)rk + r2kxy

)
+

ln(k)

k

(
(x+ y)rk − r2kxy

)]
= (c(x+ y)− 1)∆S2,k + ∆S1,k +O(k−1|∆S2,k|).

Therefore, when c(ax + ay) > 1, we obtain

∆G2,k

c(x+ y)− 1
−∆S2,k =

∆S1,k
c(x+ y)− 1

+O
(
k−1 ln(k)|∆S1,k|

)
. (A.11)

The relations (A.10), (A.11) and the first limit in (A.7) imply

lim
n
npn(x)pn(y)

(
ln(n)S1,n − S2,n

)
= lim

n
npn(x)pn(y)

( ln(n)G1,n

c(x+ y)− 1
− S2,n

)
+O

(
ln(n)n|pn(x)pn(y)|

n−1∑
k=m0

k−1|∆S1,k|
)

= lim
n
npn(x)pn(y)

( G2,n

c(x+ y)− 1
− S2,n

)
= (c(x+ y)− 1)−1 lim

n
npn(x)pn(y)S1,n +O

(
n|pn(x)pn(y)|

n−1∑
k=m0

k−1 ln(k)|∆S1,k|
)

= (c(x+ y)− 1)−1 lim
n
npn(x)pn(y)S1,n =

c2

(c(x+ 1)− 1)2
,

where we have used the fact that, by Lemma A.3 and relation (A.3), we have

O
(

ln(n)n|pn(x)pn(y)|
n−1∑
k=m0

k−1|∆S1,k|
)

= O
( ln(n)

nc(ax+ay)−1

n−1∑
k=m0

1

k1−(c(ax+ay)−2)

)
−→ 0.

For the last limit, we can set G3,k := c2 ln2(k)/[kpk(x)pk(y)] and, similarly as above, observe that we have:

∆G3,k =
c2

pk(x)pk(y)

[(
ln2(k)

k
− ln2(k − 1)

k − 1

)(
1− (x+ y)rk + r2kxy

)
+

ln2(k)

k

(
(x+ y)rk − r2kxy

)]
=

c2

pk(x)pk(y)
×[(

− ln2(k)

k2
+ 2

ln(k)

k2
+O(k−3 ln2(k))

)(
1− (x+ y)rk + r2kxy

)
+

ln2(k)

k

(
(x+ y)rk − r2kxy

)]
= (c(x+ y)− 1)∆S3,k + 2∆S2,k +O(k−1|∆S3,k|).

Therefore, when c(ax + ay) > 1, we obtain

∆G3,k

c(x+ y)− 1
−∆S3,k =

2∆S2,k
c(x+ y)− 1

+O(k−1 ln2(k)|∆S1,k|). (A.12)

By means of analogous computations as above, the relations (A.10), (A.11), (A.12) and the already proved
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second limit in (A.7) imply

lim
n
npn(x)pn(y)

(
ln2(n)S1,n − 2 ln(n)S2,n + S3,n

)
= lim

n
npn(x)pn(y)

( ln2(n)G1,n

c(x+ y)− 1
− 2 ln(n)S2,n + S3,n

)
+O

(
ln2(n)n|pn(x)pn(y)|

n−1∑
k=m0

k−1|∆S1,k|
)

= lim
n
npn(x)pn(y)

( ln(n)G2,n

c(x+ y)− 1
− 2 ln(n)S2,n + S3,n

)
= lim

n
npn(x)pn(y)

( ln(n)G2,n

c(x+ y)− 1
− 2

ln(n)(G2,n − S1,n)

c(x+ y)− 1
+ S3,n

)
+O

(
ln(n)n|pn(x)pn(y)|

n−1∑
k=m0

k−1 ln(k)|∆S1,k|
)

= lim
n
npn(x)pn(y)

( 2 ln(n)S1,n
c(x+ y)− 1

− G3,n

c(x+ y)− 1
+ S3,n

)
=

2

c(x+ y)− 1
lim
n
npn(x)pn(y)

(
ln(n)S1,n − S2,n

)
+O

(
n|pn(x)pn(y)|

n−1∑
k=m0

k−1 ln2(k)|∆S1,k|
)

=
2

c(x+ y)− 1
lim
n
npn(x)pn(y)

(
ln(n)S1,n − S2,n

)
=

2c2

(c(x+ 1)− 1)3
,

where we have used the fact that, by Lemma A.3 and relation (A.3), we have

O
(

ln2(n)n|pn(x)pn(y)|
n−1∑
k=m0

k−1|∆S1,k|
)

= O
( ln2(n)

nc(ax+ay)−1

n−1∑
k=m0

1

k1−(c(ax+ay)−2)

)
−→ 0.

ii) For the second part of the proof, note that by condition (A.5) on (rn)n, relation (A.3) and Lemma A.3,
when c(ax + ay) = 1, we have

n−1∑
k=m0

r2uk
|pn(x)|u|pn(y)|u

|pk(x)|u|pk(y)|u
= O(n−u)

n−1∑
k=m0

O(k−u) =

{
O(ln(n)/n) for u = 1,

O
(
n−u

)
for u > 1.

For the case c(ax + ay) > 1, note that for u ≥ 1 and e ∈ {0, 1, 2}, we have

n−1∑
k=m0

r2uk lneu
(n
k

) |pn(x)|u|pn(y)|u

|pk(x)|u|pk(y)|u
=

n−1∑
k=m0

O(k−2u) lneu
(n
k

)
O
((k

n

)uc(ax+ay))
=

n−2u
n−1∑
k=m0

lneu
(n
k

)
O
((k

n

)u(c(ax+ay)−2))
.

Then, for e = 0, using relation (A.3), it is easy to see that

n−2u
n−1∑
k=m0

O

((
k

n

)u(c(ax+ay)−2))
=


O(n−uc(ax+ay)) for uc(ax + ay) < 2u− 1,

O(n−(2u−1) ln(n)) for uc(ax + ay) = 2u− 1,

O(n−(2u−1)) for uc(ax + ay) > 2u− 1

(note that for u = 1 only the third case is possible).
Now we consider the cases e = 1 and e = 2. Note that, setting α := 2u−uc(ax+ay) ∈ R and β := eu ≥ 1,

we have that
1

n

n−1∑
k=m0

lnβ
(n
k

)
O
((k

n

)−α)
= O(1) + O

(∫ ε

m0−1
n

x−α lnβ(x−1)dx

)
,
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where ε ∈ (0, 1) has been chosen such that g(x) = x−α lnβ(x−1) is monotone in (0, ε] and we recall that
(m0 − 1) ≥ 1. Then, we have that

∫ ε

m0−1
n

x−α lnβ(x−1)dx =


O(nα−1 lnβ(n)) for α > 1

O(lnβ+1(n)) for α = 1,

O(1) for α < 1.

Finally, we can conclude that, for the cases e = 1 and e = 2, we have

n−2u
n−1∑
k=m0

lneu
(n
k

)
O
((k

n

)u(c(ax+ay)−2))
=


O(n−uc(ax+ay) lneu(n)) for uc(ax + ay) < 2u− 1,

O(n−(2u−1) lneu+1(n)) for uc(ax + ay) = 2u− 1,

O(n−(2u−1)) for uc(ax + ay) > 2u− 1

(note again that for u = 1 only the third case is possible).

Remark A.1. Setting v
(e)
n,k := (n/k) lne(n/k)Fk+1,n(x)Fk+1,n(y) for any e ∈ {0, 1, 2} and m0 − 1 ≤ k ≤

n − 1, and using the relations (A.10), (A.11), (A.12) found in the proof of Lemma A.4, for c(ax + ay) > 1
we have:

|v(0)n,k − v
(0)
n,k−1| = n|pn(x)pn(y)|O(|∆G1,k|) = n|pn(x)pn(y)|O(|∆S1,k|) = O

(
nr2k
|pn(x)||pn(y)|
|pk(x)||pk(y)|

)
;

|v(1)n,k − v
(1)
n,k−1| = n|pn(x)pn(y)|O(| ln(n)∆G1,k −∆G2,k|)

= n|pn(x)pn(y)|O(| ln(n)∆S1,k −∆S2,k|+ |∆S1,k|) = O
(
nr2k

(
ln
(n
k

)
+ 1
) |pn(x)||pn(y)|
|pk(x)||pk(y)|

)
;

|v(2)n,k − v
(2)
n,k−1| = n|pn(x)pn(y)|O(| ln2(n)∆G1,k − 2 ln(n)∆G2,k + ∆G3,k|)

= n|pn(x)pn(y)|O
(
| ln2(n)∆S1,k − 2 ln(n)∆S2,k + ∆S3,k|+ | ln(n)∆S1,k −∆S2,k|

)
= O

(
nr2k

(
ln2
(n
k

)
+ ln

(n
k

)) |pn(x)||pn(y)|
|pk(x)||pk(y)|

)
,

Moreover, setting vn,k := v
(0)
n,k/ ln(n) for any m0 − 1 ≤ k ≤ n − 1, in the case c(ax + ay) = 1 we have:

|vn,k − vn,k−1| = O
(
r2kk/ ln(n)

)
when bx + by 6= 0 since Lemma A.3 and

|v(0)n,k − v
(0)
n,k−1| = n|pn(x)pn(y)|O(|∆G1,k|) = n|pn(x)pn(y)|O(|∆S1,k|) = O

(
nr2k
|pn(x)||pn(y)|
|pk(x)||pk(y)|

)
;

while |vn,k − vn,k−1| = O
(
r2k/ ln(n)

)
when bx + by = 0 since Lemma A.3 and

|v(0)n,k − v
(0)
n,k−1| = n|pn(x)pn(y)|O(|∆G1,k|) = n|pn(x)pn(y)|O(k−1|∆S1,k|) = O

(
r2k
n|pn(x)||pn(y)|
k|pk(x)||pk(y)|

)
.

A.3. Technical computations for the proofs of (Aletti, Crimaldi and Ghiglietti,
2019, Theorem 4.3 and Theorem 4.4)

In this subsection we collect some technical computations necessary for the proofs of (Aletti, Crimaldi and
Ghiglietti, 2019, Theorem 4.3 and Theorem 4.4). Therefore, the notation and the assumptions used here are
the same as those used in these theorems.
The first technical result is the following:
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8 Aletti, Crimaldi and Ghiglietti

Lemma A.5. Let the matrix Ak+1,n be defined as in (Aletti, Crimaldi and Ghiglietti, 2019, (4.22)) for
m0 − 1 ≤ k ≤ n− 1. Then, we have that

[A11
k+1,n]jj = Fk+1,n(αj),

[A33
k+1,n]jj = a22k+1,n = Fk+1,n(c−1),

[A31
k+1,n]jj =

{(
1−αj

cαj−1

)
(Fk+1,n(c−1)− Fk+1,n(αj)), for cαj 6= 1,

(1− c−1)Fk+1,n(c−1) ln
(
n
k

)
+O(n−1), for cαj = 1.

Proof. By means of (Aletti, Crimaldi and Ghiglietti, 2019, (4.20) and (4.22)), after standard calculations,
the elements in Ak+1,n for m0−1 ≤ k ≤ n−1 can be written as follows: [A11

k+1,n]jj = Fk+1,n(αj), [A33
k+1,n]jj =

a22k+1,n = Fk+1,n(c−1) and

[A31
k+1,n]jj = (1− αj)

pn(αj)

pk(c−1)
Sjk+1,n,

where

Sjk+1,n :=

n∑
l=k+1

( rlc
−1

1− rlc−1
)
Xj
l and Xj

l :=
pl(c

−1)

pl(αj)
.

Setting ∆Xj
l := (Xj

l −X
j
l−1), notice that we have

∆Xj
l =

(1− rlc−1

1− rlαj
− 1
)
Xj
l−1 = (cαj − 1)

( rlc
−1

1− rlαj

)
Xj
l−1 = (cαj − 1)

( rlc
−1

1− rlc−1
)
Xj
l .

Hence, in the case cαj 6= 1, we have that

(Xj
n −X

j
k) =

n∑
l=k+1

∆Xj
l = (cαj − 1)Sjk+1,n,

which implies

Sjk+1,n =
Xj
n −X

j
k

cαj − 1
= (cαj − 1)−1

(pn(c−1)

pn(αj)
− pk(c−1)

pk(αj)

)
.

Using the above expression of Sjk+1,n in the definition of A31
k+1,n, we obtain (for cαj 6= 1) that

[A31
k+1,n]jj =

1− αj
cαj − 1

pn(αj)

pk(c−1)

(pn(c−1)

pn(αj)
− pk(c−1)

pk(αj)

)
=
( 1− αj
cαj − 1

)(
Fk+1,n(c−1)− Fk+1,n(αj)

)
.

When cαj = 1, observing that Xj
l = 1 for any l ≥ 1 and using condition (A.5) we get

Sjk+1,n =

n∑
l=k+1

rlc
−1

1− rlc−1
=

n∑
l=k+1

1

l − 1
+

n∑
l=k+1

O
( 1

l2

)
=

n∑
l=k

1

l
− 1

n
+O

(∑
l≥k

1

l2

)
=

n∑
l=k

1

l
+O(k−1),

where, for the last equality, we have used the fact that k < n and
∑
l≥k 1/l2 = O(1/k). Then, using (A.4)

for a = 0, we have

n∑
l=k

1

l
= ln

(n
k

)
+ dn − dk = ln

(n
k

)
+O(n−1)−O(k−1) = ln

(n
k

)
+O(k−1)

(where the last passage follows again by the fact that k < n). Finally, since Lemma A.3 we have |Fk+1,n(c−1)| =
O(k/n), we obtain (for cαj = 1) that

[A31
k+1,n]jj = (1− c−1)

pn(c−1)

pk(c−1)

(
ln(n/k) +O(1/k)

)
= (1− c−1)Fk+1,n(c−1) ln

(n
k

)
+O(n−1).
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A.3.1. Computations for the almost sure limits of the elements in (Aletti, Crimaldi and Ghiglietti, 2019,
(4.27))

• a.s.− limn n
∑n−1
k=m0

r2k[A1
k+1,nBk+1A

1
k+1,n]h,j :

By using the first limit in (Aletti, Crimaldi and Ghiglietti, 2019, (4.29)), we have

n

n−1∑
k=m0

r2k[Bk+1]h,j [A
1
k+1,n]h,h[A1

k+1,n]j,j = n

n−1∑
k=m0

r2k[Bk+1]h,jFk+1,n(αh)Fk+1,n(αj)

a.s−→ c2

c(αh + αj)− 1
(v>h vj)Z∞(1− Z∞).

• a.s.− limn n
∑n−1
k=m0

r2k[A3
k+1,nBk+1A

3
k+1,n]h,j :

First, note that when cαh 6= 1 and cαj 6= 1, we have that n
∑n−1
k=m0

r2k[Bk+1]h,j [A
3
k+1,n]h,h[A3

k+1,n]j,j
has the same limit as

(1− c−1)2

(cαh − 1)(cαj − 1)
n

n−1∑
k=m0

r2k[Bk+1]h,jF
2
k+1,n(c−1)

+
(1− αh)(1− αj)

(cαh − 1)(cαj − 1)
n

n−1∑
k=m0

r2k[Bk+1]h,jFk+1,n(αh)Fk+1,n(αj)

− (1− αh)(1− c−1)

(cαh − 1)(cαj − 1)
n

n−1∑
k=m0

r2k[Bk+1]h,jFk+1,n(αh)Fk+1,n(c−1)

− (1− αj)(1− c−1)

(cαh − 1)(cαj − 1)
n

n−1∑
k=m0

r2k[Bk+1]h,jFk+1,n(αj)Fk+1,n(c−1).

Then, when cαh 6= 1 and cαj 6= 1, using the first limit in (4.29) we obtain, after some standard
calculations,

n

n−1∑
k=m0

r2k[Bk+1]h,j [A
3
k+1,n]h,h[A3

k+1,n]j,j
a.s−→

1 + (c− 1)(α−1h + α−1j )

c(αh + αj)− 1
(v>h vj)Z∞(1− Z∞).

When cαh = cαj = 1, we have that n
∑n−1
k=m0

r2k[Bk+1]h,j [A
3
k+1,n]h,h[A3

k+1,n]j,j has the same limit as

(1− c−1)2 n

n−1∑
k=m0

ln2(n/k)r2k[Bk+1]h,jF
2
k+1,n(c−1)

+ 2c−1(1− c−1)n

n−1∑
k=m0

ln(n/k)r2k[Bk+1]h,jF
2
k+1,n(c−1)

+ c−2 n

n−1∑
k=m0

r2k[Bk+1]h,jF
2
k+1,n(c−1),

from which, using the three limits in (Aletti, Crimaldi and Ghiglietti, 2019, (4.29)), we obtain

n
n−1∑
k=m0

r2k[Bk+1]h,j [A
3
k+1,n]h,h[A3

k+1,n]j,j
a.s−→ (1 + 2c(c− 1))(v>h vj)Z∞(1− Z∞).
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Finally, when cαh 6= 1 and cαj = 1, we have that n
∑n−1
k=m0

r2k[Bk+1]h,j [A
3
k+1,n]h,h[A3

k+1,n]j,j has the
same limit as

(1− c−1)2

(cαh − 1)
n

n−1∑
k=m0

ln(n/k)r2k[Bk+1]h,jF
2
k+1,n(c−1)

+
c−1(1− c−1)

(cαh − 1)
n

n−1∑
k=m0

r2k[Bk+1]h,jF
2
k+1,n(c−1)

− (1− αh)(1− c−1)

(cαh − 1)
n

n−1∑
k=m0

ln(n/k)r2k[Bk+1]h,jFk+1,n(αh)Fk+1,n(c−1)

− c−1(1− αh)

(cαh − 1)
n

n−1∑
k=m0

r2k[Bk+1]h,jFk+1,n(αh)Fk+1,n(c−1),

which implies, using the first two limits in (Aletti, Crimaldi and Ghiglietti, 2019, (4.29)), that

n

n−1∑
k=m0

r2k[Bk+1]h,j [A
3
k+1,n]h,h[A3

k+1,n]j,j
a.s−→

1 + (c− 1)(c+ α−1h )

cαh
(v>h vj)Z∞(1− Z∞).

The case cαh = 1 and cαj 6= 1 is analogous. Therefore, we can summarize the limits in all the above
cases with the formula:

1 + (c− 1)(α−1h + α−1j )

c(αh + αj)− 1
(v>h vj)Z∞(1− Z∞).

• a.s.− limn n
∑n−1
k=m0

r2k(a2k+1,n)2bk+1:
Using the first limit in (Aletti, Crimaldi and Ghiglietti, 2019, (4.29)), we have

n

n−1∑
k=m0

r2k(a2k+1,n)2bk+1 = (c−1 − 1)2n

n−1∑
k=m0

r2kbk+1F
2
k+1,n(c−1)

a.s−→ (c− 1)2‖v1‖2Z∞(1− Z∞).

• a.s.− limn n
∑n−1
k=m0

r2k[A1
k+1,nBk+1A

3
k+1,n]h,j :

First, when cαj 6= 1 notice that n
∑n−1
k=m0

r2k[Bk+1]h,j [A
1
k+1,n]h,h[A3

k+1,n]j,j has the same limit as

1− c−1

cαj − 1
n

n−1∑
k=m0

r2k[Bk+1]h,jFk+1,n(αh)Fk+1,n(c−1)− 1− αj
cαj − 1

n

n−1∑
k=m0

r2k[Bk+1]h,jFk+1,n(αh)Fk+1,n(αj),

and hence, after standard calculations, we obtain

n

n−1∑
k=m0

r2k[Bk+1]h,j [A
1
k+1,n]h,h[A3

k+1,n]j,j
a.s−→

α−1h (c− 1) + c

c(αh + αj)− 1
(v>h vj)Z∞(1− Z∞).

When cαj = 1, n
∑n−1
k=m0

r2k[Bk+1]h,j [A
1
k+1,n]h,h[A3

k+1,n]j,j has the same limit as

(1−c−1)n

n−1∑
k=m0

ln(n/k)r2k[Bk+1]h,jFk+1,n(αh)Fk+1,n(c−1)+c−1n

n−1∑
k=m0

r2k[Bk+1]h,jFk+1,n(αh)Fk+1,n(c−1),

and hence

n

n−1∑
k=m0

r2k[Bk+1]h,j [A
1
k+1,n]h,h[A3

k+1,n]j,j
a.s−→

α−1h (c− 1) + c

cαh
(v>h vj)Z∞(1− Z∞).
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Therefore we can summarize the limits of the above two cases with the formula

α−1h (c− 1) + c

c(αh + αj)− 1
(v>h vj)Z∞(1− Z∞).

• a.s.− limn n
∑n−1
k=m0

r2ka
2
k+1,n[b>k+1A

1
k+1,n]j :

Notice that

n

n−1∑
k=m0

r2k[bk+1]j [A
1
k+1,n]jja

2
k+1,n = (c−1 − 1)n

n−1∑
k=m0

r2k[bk+1]jFk+1,n(αj)Fk+1,n(c−1),

which implies that

n

n−1∑
k=m0

r2k[bk+1]j [A
1
k+1,n]jja

2
k+1,n

a.s−→ 1− c
αj

(v>1 vj)Z∞(1− Z∞).

• a.s.− limn n
∑n−1
k=m0

r2ka
2
k+1,n[b>k+1A

3
k+1,n]j :

First, when cαj 6= 1, notice that

n
∑n−1
k=m0

r2k[bk+1]j [A
3
k+1,n]jja

2
k+1,n has the same limit as

(1− c−1)(1− αj)
cαj − 1

n

n−1∑
k=m0

r2k[bk+1]jFk+1,n(αj)Fk+1,n(c−1)

− (1− c−1)2

cαj − 1
n

n−1∑
k=m0

r2k[bk+1]jF
2
k+1,n(c−1),

which implies after some calculations

n

n−1∑
k=m0

r2k[bk+1]j [A
3
k+1,n]jja

2
k+1,n

a.s−→ 1− c
αj

(v>1 vj)Z∞(1− Z∞).

When cαj = 1, n
∑n−1
k=m0

r2k[bk+1]j [A
3
k+1,n]jja

2
k+1,n has the same limit as

−(1− c−1)2n

n−1∑
k=m0

ln(n/k)r2k[bk+1]jF
2
k+1,n(c−1)− c−1(1− c−1)n

n−1∑
k=m0

r2k[bk+1]jF
2
k+1,n(c−1),

from which we can obtain

n

n−1∑
k=m0

r2k[bk+1]j [A
3
k+1,n]jja

2
k+1,n

a.s−→ c(1− c)(v>1 vj)Z∞(1− Z∞).

Therefore, we can summarize the limits of the above two cases with the formula

1− c
αj

(v>1 vj)Z∞(1− Z∞).
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A.3.2. Computations for the almost sure limits of the elements in (Aletti, Crimaldi and Ghiglietti, 2019,
(4.30))

• a.s.− limn
n

ln(n)

∑n−1
k=m0

r2k[A1
k+1,nBk+1A

1
k+1,n]h,j :

By using (Aletti, Crimaldi and Ghiglietti, 2019, (4.31)), we have

n

ln(n)

n−1∑
k=m0

r2k[Bk+1]h,j [A
1
k+1,n]h,h[A1

k+1,n]j,j =
n

ln(n)

n−1∑
k=m0

r2k[Bk+1]h,jFk+1,n(αh)Fk+1,n(αj)

a.s−→ (v>h vj)Z∞(1− Z∞)

{
c2 if bαh

+ bαj
= 0,

0 if bαh
+ bαj 6= 0.

• a.s.− limn
n

ln(n)

∑n−1
k=m0

r2k[A3
k+1,nBk+1A

3
k+1,n]h,j :

Since c(αh + αj) = 1 implies cαh 6= 1 and cαj 6= 1, we have that

n

ln(n)

n−1∑
k=m0

r2k[Bk+1]h,j [A
3
k+1,n]h,h[A3

k+1,n]j,j

has the same limit as

(1− c−1)2

(cαh − 1)(cαj − 1)

n

ln(n)

n−1∑
k=m0

r2k[Bk+1]h,jF
2
k+1,n(c−1)

+
(1− αh)(1− αj)

(cαh − 1)(cαj − 1)

n

ln(n)

n−1∑
k=m0

r2k[Bk+1]h,jFk+1,n(αh)Fk+1,n(αj)

− (1− αh)(1− c−1)

(cαh − 1)(cαj − 1)

n

ln(n)

n−1∑
k=m0

r2k[Bk+1]h,jFk+1,n(αh)Fk+1,n(c−1)

− (1− αj)(1− c−1)

(cαh − 1)(cαj − 1)

n

ln(n)

n−1∑
k=m0

r2k[Bk+1]h,jFk+1,n(αj)Fk+1,n(c−1),

which is equal to

o(1) +

(
(αh − 1)(αj − 1)

c2αhαj

)
n

ln(n)

n−1∑
k=m0

r2k[Bk+1]h,jFk+1,n(αh)Fk+1,n(αj).

Hence, we have that

n

ln(n)

n−1∑
k=m0

r2k[Bk+1]h,j [A
3
k+1,n]h,h[A3

k+1,n]j,j

a.s−→ (v>h vj)Z∞(1− Z∞)

{
(αh−1)(αj−1)

αhαj
if bαh

+ bαj
= 0,

0 if bαh
+ bαj

6= 0.

• a.s.− limn
n

ln(n)

∑n−1
k=m0

r2kbk+1(a2k+1,n)2:

Since the calculations are analogous to those in Subsection A.3.1, we have

n

ln(n)

n−1∑
k=m0

r2kbk+1(a2k+1,n)2
a.s−→ 0.
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• a.s.− limn
n

ln(n)

∑n−1
k=m0

r2k[A1
k+1,nBk+1A

3
k+1,n]h,j :

Since c(αh + αj) = 1 implies cαj 6= 1, we have that

n

ln(n)

n−1∑
k=m0

r2k[Bk+1]h,j [A
1
k+1,n]h,h[A3

k+1,n]j,j

has the same limit as(
1− c−1

cαj − 1

)
n

ln(n)

n−1∑
k=m0

r2k[Bk+1]h,jFk+1,n(αh)Fk+1,n(c−1)

−
(

1− αj
cαj − 1

)
n

ln(n)

n−1∑
k=m0

r2k[Bk+1]h,jFk+1,n(αh)Fk+1,n(αj)

= o(1)−
(

1− αj
cαj − 1

)
n

ln(n)

n−1∑
k=m0

r2k[Bk+1]h,jFk+1,n(αh)Fk+1,n(αj).

Hence, we have

n

ln(n)

n−1∑
k=m0

r2k[Bk+1]h,j [A
1
k+1,n]h,h[A3

k+1,n]j,j

a.s−→ (v>h vj)Z∞(1− Z∞)

{
c2(αj−1)
cαj−1 =

c(1−αj)
αh

if bαh
+ bαj = 0,

0 if bαh
+ bαj

6= 0.

• a.s.− limn
n

ln(n)

∑n−1
k=m0

r2ka
2
k+1,n[b>k+1A

1
k+1,n]j :

Since the calculations are analogous to those in Subsection A.3.1, we have

n

ln(n)

n−1∑
k=m0

r2k[bk+1]ja
2
k+1,n[A1

k+1,n]jj
a.s−→ 0.

• a.s.− limn
n

ln(n)

∑n−1
k=m0

r2ka
2
k+1,n[b>k+1A

3
k+1,n]j :

Since the calculations are analogous to those in Subsection A.3.1, we have

n

ln(n)

n−1∑
k=m0

r2k[bk+1]ja
2
k+1,n[A3

k+1,n]jj
a.s−→ 0.

B. Stable convergence and its variants

This brief appendix contains some basic definitions and results concerning stable convergence and its variants.
For more details, we refer the reader to Crimaldi (2009, 2016); Crimaldi, Letta and Pratelli (2007); Hall and
Heyde (1980) and the references therein.

Let (Ω,A, P ) be a probability space, and let S be a Polish space, endowed with its Borel σ-field. A kernel
on S, or a random probability measure on S, is a collection K = {K(ω) : ω ∈ Ω} of probability measures
on the Borel σ-field of S such that, for each bounded Borel real function f on S, the map

ω 7→ Kf(ω) =

∫
f(x)K(ω)(dx)
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is A-measurable. Given a sub-σ-field H of A, a kernel K is said H-measurable if all the above random
variables Kf are H-measurable.

On (Ω,A, P ), let (Yn)n be a sequence of S-valued random variables, let H be a sub-σ-field of A, and let
K be a H-measurable kernel on S. Then we say that Yn converges H-stably to K, and we write Yn −→ K
H-stably, if

P (Yn ∈ · |H)
weakly−→ E [K(·) |H] for all H ∈ H with P (H) > 0,

where K(·) denotes the random variable defined, for each Borel set B of S, as ω 7→ KIB(ω) = K(ω)(B). In
the case when H = A, we simply say that Yn converges stably to K and we write Yn −→ K stably. Clearly,
if Yn −→ K H-stably, then Yn converges in distribution to the probability distribution E[K(·)]. Moreover,
the H-stable convergence of Yn to K can be stated in terms of the following convergence of conditional
expectations:

E[f(Yn) |H]
σ(L1, L∞)−→ Kf (B.1)

for each bounded continuous real function f on S.
In Crimaldi, Letta and Pratelli (2007) the notion of H-stable convergence is firstly generalized in a natural

way replacing in (B.1) the single sub-σ-field H by a collection G = (Gn)n (called conditioning system) of
sub-σ-fields of A and then it is strengthened by substituting the convergence in σ(L1, L∞) by the one in
probability (i.e. in L1, since f is bounded). Hence, according to Crimaldi, Letta and Pratelli (2007), we say
that Yn converges to K stably in the strong sense, with respect to G = (Gn)n, if

E [f(Yn) | Gn]
P−→ Kf (B.2)

for each bounded continuous real function f on S.
Finally, a strengthening of the stable convergence in the strong sense can be naturally obtained if in

(B.2) we replace the convergence in probability by the almost sure convergence: given a conditioning system
G = (Gn)n, we say that Yn converges to K in the sense of the almost sure conditional convergence, with
respect to G, if

E [f(Yn) | Gn]
a.s.−→ Kf

for each bounded continuous real function f on S. The almost sure conditional convergence has been in-
troduced in Crimaldi (2009) and, subsequently, employed by others in the urn model literature (e.g. Aletti,
Ghiglietti and Vidyashankar (2018); Aletti, May and Secchi (2009); Zhang (2014)).
We now conclude this section recalling two convergence results that we need in our proofs.
From (Crimaldi and Pratelli, 2005, Proposition 3.1), we can get the following result.

Theorem B.1. Let (Tn,k)n≥1,1≤k≤kn be a triangular array of d-dimensional real random vectors, such
that, for each fixed n, the finite sequence (Tn,k)1≤k≤kn is a martingale difference array with respect to a
given filtration (Gn,k)k≥0. Moreover, let (tn)n be a sequence of real numbers and assume that the following
conditions hold:

(c1) Gn,k⊂Gn+1,k for each n and 1 ≤ k ≤ kn;

(c2)
∑kn
k=1(tnTn,k)(tnTn,k)> = t2n

∑kn
k=1 Tn,kT

>
n,k

P−→ Σ, where Σ is a random positive semidefinite matrix;

(c3) sup1≤k≤kn |tnTn,k|
L1

−→ 0.

Then tn
∑kn
k=1 Tn,k converges stably to the Gaussian kernel N (0,Σ).

The following result combines together a stable convergence and a stable convergence in the strong sense.

Theorem B.2. (Berti et al., 2011, Lemma 1) Suppose that Cn and Dn are S-valued random variables,
that M and N are kernels on S, and that G = (Gn)n is a filtration satisfying for all n

σ(Cn)⊂Gn and σ(Dn)⊂σ (
⋃
nGn)
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If Cn stably converges to M and Dn converges to N stably in the strong sense, with respect to G, then

(Cn, Dn) −→M ⊗N stably.

(Here, M ⊗N is the kernel on S × S such that (M ⊗N)(ω) = M(ω)⊗N(ω) for all ω.)
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