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Abstract
Introduction—Distant spreading of primary lesions is mod-
ulated by the vascular dynamics of circulating tumor cells
(CTCs) and their ability to establish metastatic niches. While
the mechanisms regulating CTC homing in specific tissues are
yet to be elucidated, it is well documented that CTCs possess
different size, biological properties and deformability.
Methods—A computational model is presented to predict the
vascular transport and adhesion of CTCs in whole blood. A
Lattice–Boltzmann method, which is employed to solve the
Navier-Stokes equation for the plasma flow, is coupled with
an Immersed Boundary Method.
Results—The vascular dynamics of a CTC is assessed in large
and small microcapillaries. The CTC shear modulus kctc is
varied returning CTCs that are stiffer, softer and equally
deformable as compared to RBCs. In large microcapillaries,
soft CTCs behave similarly to RBCs and move away from
the vessel walls; whereas rigid CTCs are pushed laterally by
the fast moving RBCs and interact with the vessel walls.
Three adhesion behaviors are observed—firm adhesion,
rolling and crawling over the vessel walls—depending on
the CTC stiffness. On the contrary, in small microcapillaries,
rigid CTCs are pushed downstream by a compact train of
RBCs and cannot establish any firm interaction with the
vessel walls; whereas soft CTCs are squeezed between the
vessel wall and the RBC train and rapidly establish firm
adhesion.
Conclusions—These findings document the relevance of cell
deformability in CTC vascular adhesion and provide insights
on the mechanisms regulating metastasis formation in
different vascular districts.

Keywords—Lattice–Boltzmann method, Immersed Boundary

method, Cell mechanics.

INTRODUCTION

The shedding into the vascular network of so-called
‘circulating tumor cells’ (CTCs) is the main mechanism
by which malignant masses colonize distant organs and
tissues.12,29,50 After leaving the primary cancerous le-
sion, following a complex set of biological adaptations,
CTCs face the blood stream and, as any other blood
cell, are transported away along the vascular network.
Although the mechanism by which CTCs select their
final homing tissue is not yet fully understood, exper-
imental evidence supports the notion that CTCs tend
to more efficiently interact with the vessel walls and
eventually extravasate in microcapillaries, with diam-
eters in the range of a few tens of micrometers.28 The
vascular transport, adhesion and subsequent extrava-
sation of CTCs are regulated by local hemodynamics
and biological conditions and affected by the cell size
and deformability. Individual CTCs present an average
radius ranging from 5 to over 15 lm.14 More interest-
ingly, multiple studies have documented significant
differences in deformability among cancer cells.36,41,48

In general, atomic force microscopy, optical and
magnetic tweezer-based assays, and micropipette
aspiration studies have demonstrated that malignant
cells are more deformable than their healthy counter-
parts. For instance, Hrynkiewicz and his group tested
multiple cells lines using scanning force microscopy
and documented a difference of about 1 order of
magnitude between healthy and cancer cells.20 Using
primary cells from humans, oral carcinoma cells were
found to be about 3 times more compliant than healthy
cells.35 Similar observations were provided by the
group of Gimzewski.3 Recently, the group of Manalis
has elegantly compared the deformability of cancer
cells (lung, breast and prostate cancer) directly to that
of blood cells (erythrocytes, leukocytes, and peripheral
monocytes), using a suspended microchannel res-
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onator and measuring cell passage times through a
constriction.1 The work concludes that CTC
deformability can be larger, comparable or lower than
that documented for blood cells.

Blood flow dynamics in microvessels is primarily
ruled by a non-Newtonian effect called the Fåhræus–
Lindqvist effect,56 which is characterized by the RBC
migration away from the walls and progressive accu-
mulation in the vessel core. At the continuum scale, the
complex rheological behaviour of blood can be math-
ematically treated by adopting proper constitutive
models, such as three-dimensional neo-Hookean or
viscoelastic laws.17,40 However, within a microvascular
network, cell–cell collisions and cell–cell adhesive
interactions need to be explicitly accounted for. As
such, mesoscale models are required in order to ana-
lyze the spatial and temporal evolution of blood flow
and its cellular component.38 Starting with the
pioneering work of Pozrikidis et al.,32 who described
blood cells using immersed boundary methods (IBM),
different computational approaches have been pre-
sented in the open literature to capture the dynamics of
a multitude of deformable cells. The group of Karni-
adakis has adopted a dissipative particle dynamics
method (DPD) in which the RBC membrane is rep-
resented by a coarse-grained spring network.5,6 More
recently, Gompper and colleagues introduced a parti-
cle-based mesoscopic simulation technique, called the
smoothed dissipative particle dynamics (SDPD)
method, which combines smoothed particle hydrody-
namics and dissipative particle dynamics.7,8

IBM coupled on one side with a fluid solver and on
the other side with a structural solver represents a
potent tool for predicting the transport of cells and
particles in microcapillaries.31 The structural solver
serves to capture the deformation of the immersed
object over time under different hydrodynamic stres-
ses. This could be a network of viscoelastic springs or a
membrane with a complex rheological behavior solved
by a Finite Element procedure.19,22,37 The latter
requires heavy parallelization as compared to the
spring network limiting the maximum number of im-
mersed objects.

In recent years the Lattice Boltzmann method
(LBM) has been widely used as a fluid solver in IBM
schemes.4,43,44 In 2D problems, LBM-IBM approach
with elastic spring networks has been extensively doc-
umented in simulation of transport of RBCs, cells and
particles in microcapillaries.2,46,55 In 3D simulations,
community codes such as LAMMPAS (large-scale
atomic/molecular massively parallel simulator) and
ESPResSo (Extensible Simulation Package for RE-
Search on SOft matter) have been recentely pro-
posed.9,54

In the literature, only a few works are focused on
predicting the microvascular transport of circulating
tumor cells. For instance, Rejniak used a 2D Immersed
Boundary method to study the interaction of a single
tumor cell with the vascular endothelium in pure
plasma.34 Yan et al. studied the vascular adhesion of a
rigid, spherical cell in either a curved or a straight
capillary, using a LBM method for describing blood
flow, without accounting for the presence of RBCs.52

More recently, the same group adopted a DPD com-
putational scheme for predicting the transport of an
individual tumor cell, initially released at the blood
vessel wall, in the presence of RBCs.51 This study
demonstrates that RBCs enhance CTC adhesion in
small capillaries whereas, in large vessels, CTC can be
more easily detached away from the wall, especially at
higher hematocrits. In the same work, a preliminary
analysis of CTC deformability was also provided,
considering a cell shear modulus about 25, 2.5 and
0.25 time larger than that of RBCs. It was concluded
that softer cells can engage a larger number of ligand–
receptor bonds upon adhesion with the vascular walls.

In the present work, the effect of CTC deformability
on metastasis formation is analyzed using a hierar-
chical computational model, where Lattice Boltzmann
and Immersed Boundary methods are combined to-
gether. The Lattice–Boltzmann method is employed to
solve the Navier–Stokes equation governing the pure
plasma flow4,15,42–44; whereas, the Immersed Boundary
Method31 is adopted to describe the deformation and
transport of RBCs and CTCs. The cell membranes are
discretized as an ensemble of linear elastic springs,
connecting neighboring membrane points. Following
the seminal work of Hammer et al.,11,13 an adhesive
potential is also included to describe vascular adhe-
sion, as mediated by the formation of individual
receptor-ligand bonds treated as linear elastic
springs.2,11,53 The aim of this work is to elucidate the
role of CTC deformability on vascular margination
and subsequent adhesion in the presence of whole
blood flow.

COMPUTATIONAL METHOD

The presented hierarchical computational model
relies on the combination of a fluid solver for the
incompressible Navier-Stokes equation, based on the
three-dimensional D3Q19 Lattice–Boltzmann Method
(LBM),42,43,46 and a structural solver for the dynamics
of the deformable membrane, based on an Immersed
Boundary Method (IBM).31 Details of the physical
model, governing equations and numerical implemen-
tation are given in the sequel.
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LATTICE BOLTZMANN METHOD

The LBM introduces a number of N populations
ffig, ði ¼ 0; . . . ;N� 1Þ streaming along a regular lat-
tice in discrete time steps. These populations can be
regarded as mesoscopic particles propagating and
colliding. The evolution of the N populations is given
by the Lattice–Boltzmann equations,42 which takes the
form:

fiðXþ ciDt; tþ DtÞ � fiðX; tÞ

¼ �Dt
s

fiðX; tÞ � feqi ðX; tÞ½ � þ DtFi; ð1Þ

where X is the spatial coordinate on a Cartesian reg-
ular lattice and t is the time coordinate; fcig; ði ¼
0; . . . ;N� 1Þ is the set of discrete velocities; Dt is the
time step; and s is the relaxation time. The kinematic

viscosity m ¼ c2s ðs� 1
2ÞDt of the flow is related to the

relaxation time s, being cs ¼ 1
ffiffi

3
p Dx

Dt the reticular speed of

sound. The local equilibrium density functions ffeqi g
are expressed by the Maxwell–Boltzmann distribution:

feqi ðX; tÞ ¼ xiq 1þ 1

c2s
ci � uð Þ þ 1

2c4s
ðci � uÞ2 �

1

2c2s
u2

� �

;

ð2Þ

where fxig; ði ¼ 0; . . . ;N� 1Þ are the lattice weights,
depending on the underlying lattice structure; q is the
density and u is the velocity field. A forcing term fib,
having the dimension of a body force density, can be
incorporated via Fi as:

Fi ¼ xi 1� 1

2s

� �

ci � u

c2s
þ ci � u

c4s
ci

� �

� fib: ð3Þ

It is worth noting that the fluid interacts with an im-
mersed object only via the forcing fib. In this regard,
the body force density fib is the term linking togheter
the LB and IB modules. From equations (1–3),
macroscopic quantities can be recovered respectively
as the fluid density q ¼

P

i fi and velocity

qu ¼
P

i cifi þ DtFi=2.
On the three-dimensional square lattice with N ¼ 19

speeds (D3Q19),33 the set of discrete velocities is given
by:

ci ¼

ð0; 0; 0Þ; i ¼ 0;

ð�1; 0; 0Þ; ð0;�1; 0Þ; ð0; 0;�1Þ; i ¼ 1� 6;

ð�1;�1; 0Þ; ð�1; 0;�1Þ; ð0;�1;�1Þ; i ¼ 7� 12;

ð�1;�1; 0Þ; ð�1; 0;�1Þ; ð0;�1� 1Þ; i ¼ 13� 18

8

>

>

>

<

>

>

>

:

ð4Þ

with the weight, xi ¼ 1=18 for i ¼ 1; . . . ; 6, xi ¼ 1=36
for i ¼ 7; . . . ; 18, and x0 ¼ 1=3.

Immersed Boundary Method

In the IB module, two independent meshes are
considered to approximate respectively the immersed
membranes and the fluid domain. The structure is
discretized by a moving Lagrangian mesh in which the
position of each node is xiðtÞ, while the fluid is dis-
cretized by a fixed Eulerian mesh. The different steps in
the computational algorithm are the following.31 First,
compute the total particle forces FiðtÞ acting on the
Lagrangian point xiðtÞ of the immersed object (see
Fig. 1). These forces account for the internal elastic
forces, interaction forces, adhesive forces and define
the biological and mechanical behavior of the im-
mersed object. Second, spread forces from the La-
grangian to the Eulerian mesh via the interpolation:

fib X; tð Þ ¼
X

i

FiðtÞDðxiðtÞ � XÞAi; ð5Þ

where the index i ranges over all Lagrangian points xi
inside the interpolation stencil surrounding the Eule-
rian point X. Ai is the area element associated with the
Lagrangian node xi. The operator D is the discretized
delta function. Third, solve the Lattice–Boltzmann
equation for the fluid and find the velocity vector
u(X, t). Fourth, interpolate the fluid velocity to derive
the velocity at each boundary node:

_xiðtÞ ¼
X

X

uðX; tÞDðxiðtÞ � XÞ; ð6Þ

where X ranges over all Eulerian points inside the
interpolation stencil surrounding xi. Fifth, update the
particle position as xiðtþ 1Þ ¼ xiðtÞ þ _xiðtÞDt.

The choice of the discretized delta function is not
unique and characterize the size of the interpolation
stencil. Let r ¼ xi � X, the Dirac delta function D(r) is
factorized as DðrÞ ¼ udðrxÞudðryÞudðrzÞ, where ud de-

fine an interpolation kernel and d is the support of the
stencil. Two kernel functions have been used in the
simulations:
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FIGURE 1. Schematic representation of the Immersed
Boundary method. a Interpolation step: the velocity of node
xi ðtÞ is interpolated from the lattice nodes inside the
interpolation stencil. b Spreading forces: the force density
acting on the fluid node X is obtained from the Lagrangian
nodes inside the square region.
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u2ðxÞ ¼
1� jxj; if 0 � jxj � 1
0; if jxj>1

�

and

u4ðxÞ ¼
1
4 1þ cos px

2

� 	� 	

; if jxj � 2;
0; if jxj >2

�

The choice of u2 leads to an interpolation stencil

consisting of 23 Eulerian points for the interpolations
of the forces and velocities,16,17 while u4 leads to an

interpolation stencil containing 43 points.

Constitutive Model for the Membrane of the Immersed
Object

A regular mesh is used to approximate the surface
of the immersed object. This could be a spherical or
biconcave capsule if it represents a CTC or a RBC,
respectively. Meridional and azimuthal angles are used
to describe the surface of the immersed object. The
advantage of using a parametric description of the
mesh is that the local connectivity of each node of the
network, i.e. its neighborhood structure, is simply in-
duced by the equations of the geometric surface. This
is particularly useful when the elastic forces are com-
puted. Each Lagrangian node on the surface of the
immersed object xn;m is identyfied by two parameters

0 � n;m � N , such that the total number of points on

the surface is N2. The stretching force Fs acting on each
Lagrangian node xn;m is defined by summing up the

forces on the springs connected to its neighboring
nodes xn0;m0 2 fxn�1;m; xn;m�1g given by25,39:

Fs
n;m ¼ �k

X

n0;m0

dn0;m0 � d0n;m
d0n;m

ðxn0;m0 � xn;mÞ
dn;m

; ð7Þ

where dn;m ¼ jxn0;m0 � xn;mj is the distance between
node xn;m and its neighbor xn0;m0 and k is the shear

elastic modulus. A simple bending term can be con-
sidered as:

Fb
n;m ¼ �kb

X

j

hj � h0j
h0j

 !

n̂j; ð8Þ

where index j runs over adjacent edges
fðn;mÞ; ðn� 1;m� 1Þg, hj are the angles between

adjacent triangles sourranding point xn;m and n̂j is the

outward unit vector related to edge j. To enforce
membrane incompressibility, a constraint on the total
volume is needed:

Fv
n;m ¼ �kv 1� V

V0

� �

An;mnn;m; ð9Þ

where kv is the volume constraint factor, V0 and V are
the volumes of the immersed object in the reference
and current configuration respectively, nn;m is the out-

ward unit normal vector associated to the Lagrangian
point xn;m and An;m is the area of the triangular element

defined by the three mesh points fxn;m; xnþ1;m; xn;mþ1g.
To evaluate the normal unit vector and the area An;m

consider n1 ¼ xnþ1;m � xn;m and n2 ¼ xn;mþ1 � xn;m,

then the unit outward normal vector is nn;m ¼ n1 ^
n2=jn1 ^ n2j and the area of the triangular element is
An;m ¼ jn1 ^ n2j=2. The volume is computed at each

time iteration via the discrete Green theorem as
V ¼

P

T nT � cTAT=3, where the summation index runs

over all triangles T ¼ fxn;m; xnþ1;m; xn;mþ1g, is nT the

unit normal vector to the surface associated to triangle
T, AT is the area of the triangular element, and cT ¼
ðxn;m þ xnþ1;m þ xn;mþ1Þ=3 is the baricenter of the tri-

angle T. Another constraint is imposed on the con-
servation of the total surface of the cell:

Fa
n;m ¼ �ka 1� A

A0

� �

fn;m; ð10Þ

where karea is the area constraint factor and fn;m is the
unit vector pointing from the centroid of triangle T ¼
fxn;m; xnþ1;m; xn;mþ1g to the vertex xn;m . This constraint

is applied in the case of RBCs and CTCs to account for
their cytoskeleton.21,26

Particle–Particle Interactions

The cell–cell interactions can be approximated with
the Morse potential given by56:

UMðrÞ ¼ Deðe2bðr0�rÞ � 2ebðr0�rÞÞ; ð11Þ

where r is the distance between two cells and De is the
energy well depth. Note that the calibration of the
Morse potential can be done following the same pro-
cedure in Ref. 53 returning De ¼ 0:04kBT, where

kBT ¼ 4:14� 10�21N �m. Let dn;m ¼ jxn;m � xn0;m0 j be

the distance between two nodes on different structures.
The interaction force between node xn;m on the surface

of the current cell and node xn0;m0 on another cell is

given by:

Finte
n;m ¼ �2bDeUM

xn;m�xn0 ;m0
jxn;m�xn0 ;m0 j ; if dn;m<dcut

0; otherwise:

�

ð12Þ

The Morse interaction potential is implemented
between two nodes of separate cells if they are within a
cutoff distance dcut. This type of interaction consists of
a high short-range repulsive force when r<r0 and a
low long-range attractive force for r>r0. Parameters

used are: b ¼ 3:84 lm�1, r0 ¼ 0:5 lm, and
dcut ¼ 1:5 lm.24,56
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Wall–Particle Interactions

Ligand and receptor molecules are distributed over
the cell and blood vessel surfaces, respectively. Ligand
molecules are modeled as linear springs which tend to
establish bonds with receptors on the vascular wall. Let
xn;m be a point on the particle surface, xwall be the

normal projection of xn;m on the wall of the channel,

and ln;m ¼ jxn;m � xwallj be the distance between a point

on the cell surface and the corresponding point on the
wall, when the distance between the surface of the
capsule and the wall is less than a critical distance dwall,
the adhesive force acting on xn;m is defined as34,51:

Fadh
n;m ¼ �rðln;m � kÞ xn;m�xwall

ln;m
; if dwn;m<dwall

0; otherwise:

�

ð13Þ

where dwn;m ¼ dðxn;m;wallÞ is the distance of xn;m from
the wall, r is the adhesion constant, k is the equilibrium
separation distance for the spring and dwall ¼ 2k is the
critical distance. It is here important to recall that the
mathematical model for cell-wall adhesion mediated
by receptor–ligand interactions was originally pre-
sented by Hammer et al. and applied to study the
rolling dynamics of leukocytes on endothelial sur-
faces.11 Since then, this Adhesive-Dynamics model
(AD) has been extended to study many biologically
relevant problems, such as the hydrodynamic recruit-
ment of rolling leukocytes,13 platelet–surface and
platlet–platlet interactions.27,49 Note also that the
current model does not account for the stochastic
formation and rupture of ligand receptor bonds, which
can be readily included following previous works by
the authors and others.2,11,13

RESULTS AND DISCUSSION

The proposed hierarchical computational model
combines a Lattice–Boltzmann (LBM) algorithm, for
solving the fluid flow, with an Immersed Boundary
method (IBM), for determining particle–fluid and
particle–wall interactions. As such, the computational
model can efficiently deal with multiple scales and
different biophysical problems, spanning from the li-
gand–receptor adhesive interactions (molecular scale)
to the deformation of cell membranes (mesoscopic
scale) and the transport of multiple red blood cells
(RBCs) in a capillary flow (macroscopic scale). This is
schematically presented in Fig. 2. The computational
model is first validated against known test cases: a
deformable spherical capsule in a linear shear flow; the
stretching of a red blood cell under uniaxial loading.
Finally, the model is applied to document the vascular
transport and adhesion dynamics of a single circulating
tumor cells (CTCs), in whole blood flow, in

microvessels of different calibers. It is worth noting
that in the present paper, only one CTC is considered.
Given the low abundance of CTCs in blood, this
condition is indeed physiologically sound. Other blood
cells, such as leukocytes, platelets, monocytes and so
on, are not explicitly modeled in this problem in that
they are far less abundant than RBCs. Indeed, RBCs
represent up to 95% of all cellular components of
blood and are responsible of the peculiar blood rhe-
ology. In small vessels, ranging from 10 to 40 lm, the
volume fraction of RBCs varies from 15 to about
35%.5 In the present work, the hematocrit has been
fixed to the average value of 20%. Indeed, higher val-
ues for the hematocrit are associated with higher
computational burden. The fluid solver used in this
model relies on the Lattice–Boltzmann method which
is very accurate and effective in terms of single cost per
time iteration. However, a Lattice–Boltzmann solver is
explicit in time and, as such, requires small time steps

(in the order of 10�7 s) to ensure stability. The effect of
the mesh resolution on the accuracy of the solution is
provided for the first test case.

A Deformable Spherical Capsule in a Linear Shear
Flow: Test Case 1

A spherical capsule of radius r is placed in the center
of a cubic box of size L and subjected to a linear shear
flow, realized by moving the top and bottom walls with
velocities u0 and �u0, respectively (Fig. 3a). The size of
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FIGURE 2. Schematic representation of a CTC in whole
blood flow. A spherical, deformable circulating tumor cell
(CTC) is transported downstream in a whole blood flow. The
CTC interaction with the vessel wall is mediated by the
formation of receptor–ligand bonds.
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the fluid mesh is L ¼ 16r. 6400 Lagrangian points are
used to discretize the capsule membrane. The fluid is
considered as quasi-stationary in the so-called Stokes

regime with a Reynolds number Re ¼ 10�2 and a shear

rate _c ¼ mRe=r2, where m ¼ 1=6 is the lattice viscosity.
Thus, the magnitude of the imposed velocity u0 is given
as u0 ¼ _cL=2. The capsule has a shear elastic modulus
k. The capillary number Ca ðCa ¼ _cmr=kÞ, which rep-
resents the relative effect of the viscous drag over
surface tension, provides a measure of the capsule
deformability: Ca ¼ 0 means a rigid capsule
(k ! þ1); Ca>0 means a deformable capsule.

In a linear shear flow, the capsule rotates and de-
forms assuming eventually the shape of an ellipsoid
(Figs. 3b and 3c), with ra and rb being the two prin-
cipal axes of the ellipsoid. Figure 3b gives the steady
state, normalized velocity distribution u=u0 within the
box, for Ca ¼ 0:075. Four recirculation areas are
clearly developing around the elongated capsule. The
deformation of the capsule is quantified via the Taylor
parameter D (D ¼ ðra � rbÞ=ðra þ rbÞ). Deformed con-
figurations of the capsule at steady state are shown in

Fig. 3c for three representative values of the capillary
number, namely Ca ¼ 0; 0:075 and 0.15. Indeed, the
larger is the capillary number, the larger is the capsule
deformation D. This is also presented quantitatively in
Fig. 3d, where the Taylors number D is plotted vs. the
non-dimensional time _ct, for different values of the
capillary number Ca ( 0.0375, 0.075, 0.15 and 0.3). D
increases with time until a steady state configuration is
reached for _ct 	 3. For longer times, the capsule
membrane rotates along its own shape with a inclina-
tion angle /, as predicted by the known tank-treading
condition.18 In Fig. 3d, the present solution is com-
pared with data from a neo-hookean membrane
model, solved using the Boundary Integral method
(BIM), by Lac and colleagues18 for two values of the
mesh resolution, namely low (r ¼ 5;L ¼ 80, dotted
lines) and high (r ¼ 10;L ¼ 160, solid lines) resolution.
The presented results are in good agreement with the
BIM data, for different Ca values.18 Notice that the
agreement between the two solutions improves as the
mesh resolution increases. This appears to be particu-
larly relevant at large Ca, which corresponds to more
deformable capsule. The difference between the two
numerical solutions is plotted as a function of Ca in
Fig. 3e, at steady state. This difference grows with the
capillary number Ca, as previously pointed out,25 but
it stays well below 4% for all considered cases. Table. 1
summarizes the D values for different Ca numbers
obtained by BIM simulations and the current method,
demonstrating that the difference ranges from 0:047%
for Ca ¼ 0:0375 to 3:04% for Ca ¼ 0:3. In Table 2, are
reported the values of the capsule angle /=p for Ca ¼
0:0375; 0:075 and 0.15. The angle / is computed as

/ ¼ 0:5� arctan 2rarb=ðr2b � r2aÞ
� 	

. In the Electronic

Supporting Information, the case of a lid driven cavity
is also treated (Supporting Fig.1).

The Stretching of a Red Blood Cell Under Uniaxial
Loading: Test Case 2

A single red blood cell (RBC) is stretched longitu-
dinally by applying a force F at two opposite sites of
the cell membrane (Fig. 4a). After a transient phase,

the elastic reaction force Fel arising at the cell mem-
brane balances out the external applied force F so that
a steady deformation is achieved. This case serves to
predict the stretching of a RBC in a pulling test real-
ized using an optical tweezer.21,26 Briefly, two silica
microbeads are attached at opposite sites of the cell
membrane: one bead is anchored to the surface of a
glass slide, while the other one is trapped by a laser
beam. By moving the bead attached to the glass slide, a
well defined strain is applied to the cell. At equilibrium,
the diameter Da in the pulling direction (axial) and the
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FIGURE 3. A deformable spherical capsule in a linear shear
flow. (a) Schematic representation of the problem and
computational domain. (b) Normalized velocity field at
steady state (Ca ¼ 0:075). (c) Steady state configurations of
spherical capsules for Ca ¼ 0; 0:075, and 0.15. (d) Variation of
the Taylor number D with time, for Ca ¼ 0:0375; 0075; 0:15; and
0.3 (dashed line: low resolution; solid line: high resolution;
solid dots: BIM simulations by Lac et al.18) (e, f) Percentage
difference between BIM simulations and the present solution,
at steady state, for different Ca and mesh resolutions (low
resolution: r ¼ 5, L ¼ 80; high resolution r ¼ 10, L ¼ 160).
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diameter Dt orthogonal to the pulling direction
(transverse) are measured for each value of the applied
force. This is documented by solid dots in Fig. 4b.
Experimentally the traction force F ranges from 0 to
180 pN.

The 3D shape of the RBC is given by the following
parametric equations, for 0 � h � 2p; 0 � / � p:

x ¼ aa sinðhÞ cosð/Þ

y ¼ a

2
ð0:207þ 2:003 sin2ðhÞ � 1:123 sin4ðhÞÞ cosðhÞ

z ¼ aa sinðhÞ sinð/Þ

8

>

>

<

>

>

:

ð14Þ

where a ¼ 0:74rrbc, with rrbc ¼ 3:91 lm being the
equivalent RBC radius and a ¼ 1:39. Note that this
parametric equation is equivalent to the well known
Evans–Fung formula in cartesian coordinates.21,32,45

The RBC shear modulus is taken as krbc ¼
8:3 lN=m:26 The solid lines in Fig. 4b report the values
of Da and Dt computed at equilibrium for different
values of F via the present hierarchical model. As ex-
pected, the diameter Da increases while Dt decreases
with the applied force F. The computed axial and
transverse diameters Da and Dt are in good agreement
with the experimental data.26 Figure 4c shows repre-
sentative equilibrium configurations of the RBC under
different applied forces. The proposed hierarchical
model captures correctly the mechanical deformation
of RBCs with an overall error lower than 10%. Values
of the diameters Da and Dt for different applied forces
F are reported in Table 3 and compared with experi-
mental data by Ref. 26. The RBC bending modulus

kbrbc and volume constraint kvrbc can be estimated as

previously documented in Refs. 5 and 26, returning

kbrbc ¼ 2:4� 10�19 J (¼ 0:0016 in LB units) and kvrbc ¼
10 (LB units).

Margination Dynamics of Circulating Tumor Cells
with Different Deformability

Cancer spreading to distant tissues (metastasis)
involves the shedding in the circulation of malignant
cells from a primary lesion; their vascular transport,
adhesion, extravasation and proliferation.12,28,30,50

During their journey, CTCs reach peripheral vascular
beds, with blood vessels characterized by a diameter
ranging between 10 and 40 lm. In these small vessels,
the presence of RBCs would favor the margination of
CTCs towards the vascular endothelium, just like for
leukocytes in an inflamed vessel. While the shear
modulus of a RBC is in the range of
krbc ¼ 5� 10 lN =m,21 CTC deformability can vary
from fractions of 1 kPa (soft) up to 100 kPa, which is
20 times higher than a RBC (rigid), under physiologi-
cal conditions.1,10 In this section, the effect of cell
deformability on CTC vascular dynamics is analyzed.
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TABLE 1. Evolution of the Taylor parameter D as a function of the capillary number Ca.

Ca D Lac (2004) D ðr ¼ 10;L ¼ 160Þ % Diff. D ðr ¼ 5;L ¼ 80Þ % Diff.

0.0375 0.0798 0.0794 0.04 0.0790 0.080

0.075 0.1594 0.1487 1.07 0.1461 1.33

0.15 0.2718 0.2594 1.24 0.2491 2.49

0.3 0.4053 0.3904 1.49 0.3749 3.04

TABLE 2. Evolution of the inclination angle /=p as a function
of the capillary number Ca.

Ca /=p Lac (2004) /=p ðr ¼ 5;L ¼ 80Þ % Diff.

0.0375 0.21739 0.21929 0.19

0.075 0.18391 0.19694 1.3030

0.15 0.15826 0.16401 0.5750

FIGURE 4. The stretching of a red blood cell under uniaxial
loading. (a) Schematic representation of the problem. Pulling
force F is applied at two opposite sides of the RBC
membrane. (b) The variation of the axial and transverse
diameters (Da , Dt ) at steady state, for different pulling forces
F . (solid dots: experimental results from Mills et al.26; solid
lines: present hierarchical model). (c) Steady state
configurations of a RBC subjected to an uniaxial pulling
force F of 0, 40 and 140 pN.
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The proposed hierarchical computational model is
applied to study the transport of an ensemble of RBCs
and a single CTC within a capillary for an hematocrit
of 20%, which is a physiological value in the micro-
circulation. It is well known that, due to their
deformability, RBCs move away from the walls and
migrate to the center of the capillary.6,23,56 This results
in the formation of a region depleted of cells next to
the wall, which is called the cell-free layer (CFL). This
non-Newtonian effect known as the Fåhræus–Lindq-
vist effect6 is responsible for the modulation of the
blood viscosity. In the Electronic Supporting Infor-
mation, the formation of the CFL for different tube
sizes and its evaluation is discussed (see Supporting
Fig. 2).

Following Refs. 53 and 54, a capillary with a square
cross section ofH ¼ W and lenght L is considered. The
equivalent radius of the RBC is rrbc ¼ 3:9 lm, so that

Vrbc ¼ 94:1 lm3. Following the same equation de-
scribed in the previous section, RBCs are modelled as
biconcave membranes.

A number Nrbc of vectors, representing the RBC
and CTC centers of mass, are uniformely generated in
space and positioned in the volume Vcap. Each RBC

has initially a random orientation with respect to the x-
and z-axes. For each RBC, the number of Lagrangian
points is 4900. Periodic boundary conditions are im-
posed in the flow direction at the inlet and outlet sec-
tions of the capillary, while no-slip velocity boundary
conditions are prescribed on the remaining walls.
Bounce-back boundary conditions are employed to
treat the no-slip velocity conditions at the walls. The

Reynolds number is fixed to be Re ¼ 2:5� 10�2. The
blood flow is driven by a constant body force density
qf, which is equivalent to prescribe a pressure differ-
ence over the lenght of the capillary given by

DP=L ¼ 16u0mq=D2, where u0 ¼ mRe=H is the peak
velocity in the flow direction, D ¼ 4HW=2ðHþWÞ ¼
H is the hydraulic diameter of the channel. The non-
dimensional time _ct is considered, where _c ¼ 4u0=H is
the shear rate. The capillary number is defined as Ca ¼
m _crrbc=krbc and fixed to 0.026 for the RBCs. The Lattice

resolution is Dx ¼ 0:5714 lm and the Lattice–Boltz-

mann viscosity is given by m ¼ 1
6Dx

2Dt�1. Note that, in

dimensional units, the viscosity is equal to m ¼ 1:2�
10�6 m2s�1 and the plasma density is q ¼ 1000Kg=m3.
A capillary with a square cross section of H ¼ W ¼
25 lm and lenght L ¼ 60 lm is considered. The CTC
is modelled as a spherical capsule having a radius rctc ¼
12 lm and discretized with 6400 Lagrangian points. A

Poiseuille flow with Reynolds number Re ¼ 0:25�
10�2 is assumed. Periodic boundary conditions are
prescribed at the front and back walls of the capillary,
while no-slip velocity boundary conditions are im-
posed on the remaining walls. Table 4 collects the
values of all physical parameters used in this simula-
tion. The initial position of the CTC center of mass is
ðx0; y0; z0Þ ¼ ðW=2;L� 2rctc;H=2� rctcÞ.
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TABLE 3. Measured axial and transversal RBC diameters under a stretching test.

F(pN) DaðlmÞ Mills (2004) DaðlmÞ Dt ðlmÞ Mills (2004) Dt ðlmÞ

20 9:65672� 1:08955 9.19057 6:61194� 0:73134 6.31599

40 11:41791� 1:50746 9.95102 5:58209� 1:22388 6.08232

60 12:23881� 1:61194 10.98340 5:09851� 1:56716 5.81418

100 13:64179� 2:01309 12.19840 4:44179� 1:26866 5.09710

120 14:08955� 2:14925 12.69840 4:40299� 1:20896 4.70220

140 14:58209� 2:31343 13.77490 4:50746� 1:22388 4.52800

160 14:83582� 2:32836 14.58190 4:46269� 1:01256 4.30200

180 15:34328� 2:41791 15.2200 4:25373� 0:94030 4.14313

TABLE 4. Table listing the parameters used in the
simulations.

Parameters Symbol Value

Tube height, size H ¼ W ;D 25;15 lm
Tube segment lenght L 60 lm
RBC radius r rbc 4 lm
CTC radius r ctc 12 lm
RBC count Nrbc Variable

Hematocrit H t NrbcVrbc=Vcap

Plasma kinetic viscosity m 1:2� 10�6 m2/s

RBC stiffness modulus k rbc 10l N/m

RBC bending modulus kb
ctc 2:4� 10�19 J

RBC volume constraint kv
ctc 10

CTC stiffness modulus kctc 5� 200l N/m

Reynolds number Re 2:5� 10�2
Center velocity (no cells) u0 mRe=H
Shear rate _c 4u0=H

Pressure gradient f ¼ Dp=L 16mqu0=H2

Lattice resolution Dx 0:5714 lm
Time step Dt Dx2=6m
Capillary number Ca m _cr rbc=k rbc

Adhesive number Ad r=m _cr rbc
Receptor–ligand resting lenght k 50 nm
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Three different CTC deformability values are con-
sidered: a CTC softer than RBCs (kctc ¼ 0:5krbc:
SOFT); a CTC stiffer than RBCs (kctc ¼ 10krbc: RI-
GID); a CTC as deformable as a RBC (kctc ¼ krbc:
EQUAL). Figures 5a and 5c show the RBC distri-
bution and the CTC location within a longitudinal
section of the capillary, at time _ct ¼ 100, for the ‘soft’,
‘rigid’ and ‘equal’ cases. On the right, fluid velocity
profiles are shown. Specifically, the different velocity
profiles are referred to the classical Poiseuille case in
the absence of RBCs (black line); the time-averaged
velocity profile for Ht ¼ 20% with RBCs and no CTC
(red line); and the time-averaged velocity profile for
Ht ¼ 20% with RBCs and the CTC (blue line). The

presence of the CTC does not change significantly the
time-averaged velocity profile, whereas the addition of
RBCs flattens the classical Poiseuille parabolic profile,
as well documented in the literature. In the ‘rigid’ case
(kctc ¼ 10krbc), malignant cells are rapidly pushed out
from the center of the capillary and confined to move
within the CFL (Fig. 5b). This indeed increases the
likelihood of building adhesive interactions with the
wall. For the other two cases (kctc ¼ 0:5krbc and
kctc ¼ krbc), malignant cells are not observed to mar-
ginate within the considered simulation time. This is
due to the fact that RBCs and CTCs would move
similarly in the channel, deforming under flow and
moving away from the walls (Figs. 5b and 5c).

In Fig. 5d, the CTC trajectories are presented for
the three considered cases. In the ‘soft’ and ‘equal’
cases (red and blue lines), malignant cells migrate to-
wards the centerline z ¼ H=2 and stay within the
capillary core without interacting with the vessel walls
throughout the simulation time. Conversely, in the
‘rigid’ case, malignant cells deviate from the streamli-
nes and, eventually, reach the capillary wall
(margination). For these simulations, the cell-wall
adhesion potential is turned off and a moderate
repulsive force is included only to prevent body com-
penetration. Notice that the incompressibility con-
straint is fully satisfied as reported in Supporting
Fig.3a, b.

Adhesion Dynamics of Circulating Tumor Cells
in a Large Microcapillary: The 25 lm Case

After marginating towards the vessel walls, CTCs
could firmly adhere to the endothelial cells, if proper
conditions are met. The margination and vascular
adhesion are fundamental steps in the cascade of
events regulating the extravasation of both leukocytes,
in inflammation, and CTCs, in metastasis. Adhesive
interactions are governed by receptor molecules, ex-
pressed on the vascular endothelial cells and ligand
molecules, distributed over the CTC membrane
(Fig. 2). These molecular interactions operate only,
and only if, CTCs are sufficiently close to the wall,
namely closer than a critical distance set to
dwall ¼ 100 nm. The molecular bonds are computa-
tionally treated as linear springs, whose strength is
dictated by the adhesive number Ad ¼ r=m _crctc. Sim-
ulations are performed by fixing a value of the adhesive
strenght r and varying the CTC stiffness kctc. In this
section, the proposed hierarchical computational
model is applied to predict the vascular adhesion
dynamics of CTCs as a function of their deformability.

Based on the results of the previous paragraph, the
CTC stiffness is here assumed to be high enough to
allow rapid margination, namely kctc ¼ 10; 15; 20 and
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FIGURE 5. Margination dynamics of a CTC with different
deformability in whole blood flow. (a--c) Representative
images of RBC and CTC distribution within a capillary whole
blood flow (Ht ¼ 20%;D ¼ 25 lm) for the ‘rigid’ (a), ‘soft’ (b)
and ‘equal’ (c) cases. The right columns show the velocity
profile compared to the pure plasma parabolic profile. d.
Trajectories of the center of mass of the CTC for kctc ¼
fk rbc=2; k rbc ;10k rbcg (black line: kctc ¼ 10krbc ; blue line:
kctc ¼ k rbc=2 ; red line: kctc ¼ k rbc ).
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25krbc. For soft CTCs, margination would not occur in
capillaries with a tube size of D ¼ 25 lm, within the
time of the simulations. Indeed, this implies that soft
CTCs could interact with the vascular walls only in
capillaries slightly larger, or even smaller, than the
CTC tube size, as shown in the sequel. The relative
position of CTCs, the size of the adhesion area and the
adhesion forces are monitored over time. The CTC

dynamics is presented in Figs. 6a and 6b in terms of
the vertical coordinate zctcðyÞ and corresponding
velocity component vzctcðyÞ as a function of the position

along the y-axis, and of the horizontal coordinate

yctcðtÞ and corresponding velocity component v
y
ctcðtÞ as

a function of time (Figs. 6c and 6d). The z-direction is
normal to the flow, whereas the y-direction is aligned
with the flow.
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FIGURE 6. Adhesion dynamics of a CTC in a large microcapillary (25lm case). (a) Variation over the capillary length y / L of the
vertical position zctc=z0 of the CTC, for different values of k ctc. (b) Variation over the capillary length y / L of the vertical CTC
velocity vz

ctc=v
0
z , for different values of k ctc. (c) Variation of the normalized coordinate along the flow yctc=y0 of the CTC over time _ct ,

for different values of k ctc. (d) Variation of the normalized velocity along the flow vy
ctc=v

y
0 of the CTC over time _ct , for different values

of k ctc. (e) Variation of the contact area Actc=A
0
ctc of the CTC over time _ct . (f) Variation of the vertical component of the adhesion

force F adh
z of the CTC over time _ct . (black line: k ctc ¼ k rbc; blue line: k ctc ¼ 10k rbc; green line: k ctc ¼ 15k rbc; violet line: k ctc ¼ 20k rbc;

red line: k ctc ¼ 25k rbc).
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In Fig. 6a the black line corresponds to ‘soft’ CTCs
(kctc ¼ krbc) for which margination does not occur
within the considered simulation time. In this case, the
vertical position zctc of the CTC oscillates sligthly
around the centerline of the capillary (z ¼ H=2) while
the cell is transported downstream. This is also con-
firmed by the variation over time of yctc, as shown in
Fig. 6c. The black line grows steadily over time
implying that the CTC is steadily moving along the
flow direction. As such, the velocity components vzctc
along z, in Fig. 6b and v

y
ctc along y in Fig. 6d are,

respectively, nearly zero and quasi-constant but larger
than zero. Correspondingly, the size of the adhesion

area Actc and adhesion force Fadh
z are both null

(Figs. 6e and 6f).
A totally different behavior is documented for ‘rigid’

CTCs (kctc ¼ 25krbc), as per the red lines in Fig. 6. The
cell is pushed downstream by the flow but also laterally
towards the vessel walls until a stable adhesion is
established (point A). This is documented in Figs. 6a
and 6c by the reduction of zctc till zero (interaction with
the lower vessel wall) and final constant value of yctc.
Also the velocity goes to zero, after a significant spike
in vzctc due to the margination process (point A in

Fig. 6b). The area of adhesion Actc grows upon inter-
action with the vessel wall and stays quasi-constant
over time (Fig. 6e). Similar observations apply for the

adhesion force Fadh (Fig. 6f). This is consistent with
the stable adhesion of a relatively rigid cell that does
not squeeze down onto the wall. The case kctc ¼ 10krbc
is depicted in Fig. 6 by blue lines. The behavior is quite
similar to that of kctc ¼ 25krbc, whereby the cell moves
downstream and laterally towards the vessel wall and
starts interacting with its surface. However, the
margination process occurs over a longer time (see
Figs. 6a and 6c), with a smoother variation in the
velocities (see Figs. 6b and 6d). Interestingly, and dif-
ferently from the more rigid case, the CTC preserves a

non-zero v
y
ctc velocity, which implies that firm adhesion

is not established but the cell is rather rolling steadly
over the vessel wall (point B). Similarly, the size of the
adhesion area and the value of the adhesion force do
not change significantly over time after an initial in-
crease (see Figs. 6e and 6f). The stable rolling is sup-
ported by the continuous rupture and formation of
ligand-receptor bonds, respectively, of the tail and
leading edge of the adhesive area. Finally, the case
kctc ¼ 15krbc is depicted by the green line, in Fig. 6.
Under this condition, the CTC exhibits an even slower
approach to the vessel wall. Also adhesion does not
appear to be firm and complete suggesting a ‘crawling’
behavior over the vessel wall (point C). The velocity

v
y
ctc is close to zero but not null (Fig. 6d), the adhesion
area grows steadily with time just like for the adhesion

force documenting a progressive CTC flattening over
the wall (see Figs. 6e and 6f). Indeed, the higher CTC
deformability favors its continuous deformation and
conformation to the vessel walls under hemodynamic
forces.

Figure 7 shows the RBC distribution and velocity
field around the CTC under firm adhesion (Fig. 7a)
and steady rolling (Fig. 7b) at different time points.
Figure 7a shows images of the CTC undergoing firm
adhesion on the vessel wall, after margination at dif-
ferent time points (kctc ¼ 25krbc). When the CTC
reaches the substrate, the adhesion force dominates
over the lift hydrodynamic force. In this case the cell
firmly adheres to the wall and experiences small vari-
ations in configurations due to the complex whole
blood flow dynamics. The streamlines of the velocity
u=u0 show the initiation of a local recirculation area
(see also Supporting Fig. 4) around the adhering CTC.
The adhered CTC becomes an obstacle for the red
blood cells, which are continuously hitting over the
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FIGURE 7. Adhesion dynamics of a CTC in a large
microcapillary (25lm case). (a) Section of the capillary
showing a CTC firmly adhering on the endothelium
(k ctc ¼ 25k rbc). (b) Section of the capillary showing a CTC
rolling on the bottom of the endothelium (k ctc ¼ 10k rbc). A
small portion of the boundary of the cell is labelled in
magenta.
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trailing edge of the CTC, and might detach the cell if
adhesion is insufficiently strong. In Fig. 7b, a CTC
undergoing stable rolling dynamics on the wall is
shown (kctc ¼ 10krbc). The CTC moves along the vessel
wall with a constant size of the adhesion area at the
interface between the particle and the substrate. The
rolling behaviour is confirmed by following the red
spot on the cell membrane over time (see also Sup-
porting Fig. 5). In Supporting Fig. 6, a CTC crawling
over the wall is depicted (kctc ¼ 15krbc) on the top wall
of the channel. It can be appreciated the increase of the
contact area over time which is associated with the
progressive flattening of the CTC over the vessel wall.
Although a simplified adhesive model is used based on
elastic springs, it is capable to predict different adhe-
sive regimes. In particular, it is observed that, if suffi-
ciently soft, CTCs can detach from the wall of a
capillary as reported in Supporting Fig. 7.

Adhesion Dynamics of Circulating Tumor Cells
in a Small Microcapillary: The 15 lm Case

The analysis of the margination and adhesion pro-
cess is here conducted in a capillary having a tube size
comparable with the size of the CTC. The relative
position of CTCs, the size of the adhesion area and the
adhesion forces are monitored over time. The CTC
dynamics is presented in Figs. 8a and 8b in terms of
the vertical coordinate zctcðyÞ and corresponding
velocity component vzctcðyÞ as a function of the position

along the y-axis, and of the horizontal coordinate

yctcðtÞ and corresponding velocity component v
y
ctcðtÞ as

a function of time. The red and blue lines in Figs. 8a
and 8b correspond to ‘rigid’ CTCs, with kctc ¼ 25krbc
and kctc ¼ 20krbc. For these values, the vertical posi-
tion zctc remains close to the centerline of the capillary
(z ¼ H=2). Correspondingly, yctc (red and blue lines in
Fig. 8c is linearly increasing in time. As such, the

velocity components vzctc along z, in Fig. 8b and v
y
ctc

along y in Fig. 8d are, respectively, nearly zero and
quasi-constant but larger than zero. Also, for ‘rigid’
CTCs (kctc ¼ 25krbc; kctc ¼ 20krbc), the size of the

adhesion area Actc and adhesion force Fadh are both
null (Figs. 8e and 8f). In the ‘rigid’ case, CTCs are
transported along the flow direction by the fast moving
RBCs and do not appear to be interacting with the
vessel walls. Very different is the behavior observed for
a ‘soft’ CTCs. This is shown in Fig. 8a (green line:
kctc ¼ 10krbc ; violet line: kctc ¼ 5krbc ; and black line:
kctc ¼ krbc). zctc increases till the top capillary wall is
reached. Spikes in the velocity component vzctc (green,

violet and black line in Fig. 8b) demonstrate the
interaction with the top wall and the subsequent
establishment of adhesive interactions. In Fig. 8c the

components in the flow direction yctc for ‘soft’ CTCs,
slightly deviate from the straight line and the velocity

component v
y
ctc decreases, as in Fig. 8d (green, violet

and black line). This implies that the cell is no longer in
the fluid phase and has established an adhesive inter-
action with the vessel walls. In Figs. 8e and 8f, the
variations of the contact area and adhesion force are
shown for ‘soft’ CTCs (green, violet and black line). In
all the cases, the contact area and the adhesion force
increases with time. This is due to the interaction with
RBCs and hydrodynamic lift force, which affects the
formation of the contact area.

Figure 9a shows images of a CTC undergoing
‘train’ dynamics in a small capillary (D ¼ 15 lm) , at
different time points for kctc ¼ 25krbc. The ‘rigid’ CTC
is transported downstream without marginating. This
results in a stable dynamics in which the CTC becomes
a moving obstacle inside the capillary. The RBCs pile
up behind the cell and form a dense aggregate.47 Fig-
ure 9b shows representative images of the dynamics of
a ‘soft’ CTC (kctc ¼ krbc) in a small capillary. Due to its
deformability the cell interacts with the vessel walls
establishing adhesion. This results in a partial occlu-
sion of the capillary. RBCs tend to pile up behind the
cell, continuously pushing the cell against the wall,
until they are free to pass again.

It can be concluded that in small capillaries of size
comparable with that of the CTC, the stiffness of the
cell is responsible for a transition from a ‘train’
dynamics, in which the CTC moves along the capillary
without interacting with the walls (‘rigid’ case), to
margination and subsequent adhesion dynamics (‘soft’
case).

CONCLUSIONS

Using a combined Lattice Boltzmann–Immersed
Boundary method, the transport of deformable CTCs
in a whole blood capillary flow has been analyzed in
terms of cell displacements and velocities, and cell
interactions with the vessel walls. The evolution over
time of the area of adhesion and adhesion forces ex-
changed at the cell–wall interface has been documented
for CTC stiffer, softer and equally deformable as
compared to RBCs. It has been demonstrated that the
interaction between deformable CTCs and RBCs is
crucial in shaping the metastatic process.

Rigid CTCs have been observed to marginate ra-
pidly within 25 lm microcapillaries and efficiently
interact with the vessel walls as they are pushed later-
ally by the RBCs. On the contrary, in smaller 15 lm
microcapillaries, rigid CTCs cannot establish firm
interactions with the vessel walls. This should be as-
cribed to the significant flow obstruction induced by a
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rigid CTC adhering in such a small vessel. In other
words, the fast moving RBCs in 15 lm microcapillar-
ies form a compact train that constantly pushes and
dislodge downstream any obstacle, such as a rigid
CTC. Different adhesive regimes have been predicted
for the rigid CTCs depending on their relative stiffness
to RBCs. Very rigid CTC would firmly adhere, if
proper local hemodynamic and biophysical conditions
ar met. Intermediate rigid CTCs would roll over the
vascular walls, whereas CTCs that are slightly stiffer

than RBCs could crawl over the surface as a combi-
nation of rolling and progressive squeezing against the
wall. Soft CTCs have been observed to deform and
navigate together with the RBCs in the core of the
blood vessel in 25 lm microcapillaries. Very differ-
ently, in smaller 15 lm microcapillaries, soft CTCs can
deform and squeeze progressively within the train of
fast moving RBCs and the vessel walls. This indeed
increases the surface area of the CTC exposed to the
vessel wall and inevitably favors firm adhesion. As a
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FIGURE 8. Adhesion dynamics of a CTC in a small microcapillary (15lm case). (a) Variation over the capillary length y / L of the
vertical position zctc=z0 of the CTC, for different values of k ctc. (b) Variation over the capillary length y / L of the vertical CTC
velocity vz

ctc=v
z
0 , for different values of k ctc. (c) Variation of the normalized coordinate along the flow yctc=y0 of the CTC over time _ct ,

for different values of k ctc. (d) Variation of the normalized velocity along the flow vy
ctc=v

y
0 of the CTC over time _ct , for different values

of k ctc. (e) Variation of the contact area Actc=A
0
ctc of the CTC over time _ct . (f) Variation of the vertical component of the adhesion

force F adh
z of the CTC over time _ct . ( black line: k ctc ¼ k rbc; red line: k ctc ¼ 25k rbc; blue line: k ctc ¼ 20k rbc; green line: k ctc ¼ 10k rbc;

violet line: k ctc ¼ 5k rbc).
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consequence, soft CTCs are expected to have a higher
longevity in blood and, possibly, the ability to evade
more efficiently than rigid CTC the recognition by cells
of the immune system. These findings highlight the role
of CTC deformability in defining the metastatic
potential of cancer cells.
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