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A challenging problem in the study of complex systems is that of resolving, without prior information,
the emergent, mesoscopic organization determined by groups of units whose dynamical activity is more
strongly correlated internally than with the rest of the system. The existing techniques to filter correlations
are not explicitly oriented towards identifying such modules and can suffer from an unavoidable
information loss. A promising alternative is that of employing community detection techniques developed
in network theory. Unfortunately, this approach has focused predominantly on replacing network data with
correlation matrices, a procedure that we show to be intrinsically biased because of its inconsistency with
the null hypotheses underlying the existing algorithms. Here, we introduce, via a consistent redefinition of
null models based on random matrix theory, the appropriate correlation-based counterparts of the most
popular community detection techniques. Our methods can filter out both unit-specific noise and system-
wide dependencies, and the resulting communities are internally correlated and mutually anticorrelated. We
also implement multiresolution and multifrequency approaches revealing hierarchically nested subcom-
munities with “hard” cores and “soft” peripheries. We apply our techniques to several financial time series
and identify mesoscopic groups of stocks which are irreducible to a standard, sectorial taxonomy; detect
“soft stocks” that alternate between communities; and discuss implications for portfolio optimization and
risk management.
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I. INTRODUCTION

Over the past couple of decades, the amount of raw data
available has started to grow at an exponential rate, doubling
approximately every 12months [1], while the amount of data
being consumed by users remains linear [2]. The so-called
“big data” phenomenon imposes an urgent need to develop,
possibly with the aid of high-speed computing and cheap
data storage, efficient pattern-detection methods and data-
mining techniques aimed at identifying a few highly relevant
pieces of information in an ever-increasing noisy or irrel-
evant background. One of the most important and wide-
spread examples of the big data phenomenon is time-series
data, as witnessed by the impressive growth of data bases of
electronic and mobile-device communication patterns in
large social systems, financial returns in stock markets,
physiological signals such as heartbeat and brain dynamics,
gene expression profiles, and finally, climate, weather, and
earthquake activity. In all these examples, high-dimensional

(multiple) time series originate from the dynamical activity
of the constituent units (such as stocks, people, neurons,
genes, etc.) of large systems with complicated internal
interactions. For this reason, “big time-series data” offer
an unprecedented empirical resource for the science of
complex systems.
Multiple time series are, in fact, the key ingredient

required in order to face one of the main challenges for our
modern understanding of real-world complex systems: the
identification of an emergent, mesoscopic level of dynami-
cal organization which is intermediate between the micro-
scopic dynamics of individual units (e.g., neurons) and the
macroscopic dynamics of the system as a whole (e.g., the
brain). Many complex systems are indeed organized in a
modular way, with functionally related units being corre-
lated with each other while, at the same time, being
relatively less (or even negatively) correlated with func-
tionally dissimilar ones. While the existence of such a
modular organization is intuitively plausible, its empirical
identification is still an open problem, complicated by the
fact that modules are typically emergent, in the sense that
they are not evident a priori from a local inspection of
static, or even dynamic, similarities or connections among
individual units. In neuroscience, for instance, “functional
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brain networks” are precisely defined by the correlated
dynamical activity of neurons, as opposed to “structural
brain networks” which are instead defined by static neuro-
nal connections [3]. Remarkably, it has been proposed that
the observed divergence between functional and structural
brain networks represents a signature of the brain’s many-
to-one (degenerate) function-structure relationships which
allow diverse functions to arise from a static neuronal
anatomy [3]. Similarly, in the analysis of financial markets,
it has been observed that groups of correlated stocks evolve
in time and only partially overlap with industrial sectors,
implying that the (static) industrial classification fails to
capture the dynamical modularity of real markets [4–8].
The approaches proposed so far to infer some form of

modular or hierarchical organization from multiple time
series are based on (necessarily arbitrary) criteria used to
filter information [4,5,9]. As we discuss in more detail
below, these filtering criteria are either the introduction of
thresholds or a geometric embedding in some metric space
with predefined properties. Our aim in the present paper is
that of going beyond the limitations imposed by these
arbitrary criteria. We propose that, both conceptually and
algorithmically, the identification of mesoscopic modules,
whose dynamical activity is more correlated internally than
with that of other modules, requires iterated recursions into
many attempted partitions of the system, an inherently
nonlocal operation. By their nature, threshold-based or
geometric methods are unfortunately not suited to deal with
this sort of iterative partitioning problem [10].
Our strategy towards a solution is the adaptation of a

different class of rapidly developing techniques, specifi-
cally those aimed at identifying the static mesoscopic
organization in complex networks, a problem known as
“community detection” [11,12]. Communities within net-
works are groups of nodes that are more densely connected
to each other than would be expected under a suitable null
hypothesis. Additionally, the nodes within a community are
less connected to the nodes within other communities of the
same network. Several methods have been proposed over
the last decade in order to empirically detect communities
within networks. Different techniques have explored differ-
ent ways to optimize the search over all possible partitions
of the system. Conceptually, these methods contain pre-
cisely the ingredients that we need in order to solve our
problem of identifying the hidden mesoscopic organization
encoded within multiple time series. Adapting the existing
community detection techniques to deal with time-series
data is the main goal of this paper.
While the idea of using community detection algorithms

in order to analyze time-series data has already been
exploited a few times in the past [13–16], the attempts
made so far have basically replaced network data with
cross-correlation matrices. Here, we show that this pro-
cedure suffers from the limitation that the underlying null
hypotheses used in network-based community detection

algorithms are inconsistent with the properties of correla-
tion matrices. We illustrate that one of the undesired
consequences is a systematic bias in the search over
partitions, which becomes stronger as the heterogeneity
of the size of the “true” communities increases.
Here, we propose a solution to this problem by intro-

ducing appropriate redefinitions of the so-called modularity
[11], the core quantity that most methods aim at maximiz-
ing when searching the space of possible partitions. While
in ordinary community detection methods the modularity
is defined in terms of a null model that is (approximately)
correct for networks, in the methods we propose the
modularity is defined in terms of different null models
that are appropriate for time-series data and therefore
dictated by random matrix theory (RMT) [7,17,18]. We
also adapt three popular algorithms that have been pro-
posed to find the optimal partition (in networks), i.e., the
one that maximizes the modularity. As a result, we end up
with three community detection algorithms that are con-
sistent with time-series data and represent the counterparts
of the most popular techniques used in network analysis.
We also provide extensions to resolve hierarchically nested
subcommunities (multiresolution community detection) and
“hard” cores versus “soft” peripheries inside communities
(multifrequency and time-dependent community detection).
After introducing our theoretical framework, we put

special emphasis on financial applications, where the units
of the system are assets and the corresponding time series
are sequences of logarithmic price increments [4,5,9]. Even
though advanced techniques to analyze correlations have
been developed in other fields as well, financial time-series
analysis is one of the most active domains in this respect
(another important example is that of functional brain
networks, as we have already mentioned). We show that
our methods allow us to efficiently probe the mesoscopic
structure of different financial markets and ascertain
communities of corporations, based on the time series of
their daily stock returns. We uncover a variety of correla-
tions between stocks of different industry sectors, not
intuitively obvious from the sectorial taxonomy alone,
thus confirming, in a more rigorous manner, the afore-
mentioned result that market correlations only partially
overlap with industry classifications. More importantly, the
communities we detect after removing noisy and market-
wide dependencies turn out to be internally correlated
and mutually anticorrelated, a feature of particular rel-
evance for portfolio optimization and risk management. We
also analyze the stability of communities over different
frequency resolutions and time horizons, thereby identify-
ing groups of “hard stocks” that reside stably in the core of
communities and groups of “soft stocks” that alternate
between communities.
The rest of the paper is organized as follows: In Sec. II,

we briefly describe the most important approaches that
have been proposed in order to filter correlation matrices
and highlight their issues with characterizing the modular
properties of systems described by multiple time series.
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In Sec. III, we show that the existing community detection
algorithms are based on a null hypothesis that is incon-
sistent for time-series data, making these methods inad-
equate as well. In Sec. IV, we then introduce alternative and
appropriate null models based on RMT and exploit them in
order to redefine three of the most popular community
detection algorithms, in a way that makes them consistent
with time-series data. In Sec. V, we apply our methods to
several time series of daily stock returns, from various
financial markets around the globe. In Sec. VI, we analyze
the dependence of community structure on the temporal
resolution (i.e., the frequency) of the original time series.
In Sec. VII, we investigate the evolution of community
structure over time. Finally, in Sec. VIII, we summarize our
results and provide some conclusions.

II. EXISTING APPROACHES

We start by introducing some useful notation. Let us
consider a system with N units. The single time series

Xi ≡ fxið1Þ; xið2Þ;…; xiðTÞg ð1Þ

represents the temporally ordered activity of the ith unit of
the system over T time steps. In the case of financial
markets, i is typically one particular stock and xiðtÞ is the
“log-return” of stock i, i.e., the difference between the
logarithms of the price of i at times t and t − 1 (more details
will be given later).
The whole set of N time series, denoted by fX1; X2;…;

XNg, describes the synchronous activity of all the units of
the system. The vast majority of the available techniques
aimed at quantifying the level of mutual dependency within
such a set of multiple time series exploit the information
encoded in the N × N cross-correlation matrix. The cross-
correlation matrix C measures the mutual dependencies
among N time series on a scale between −1 and 1. The
generic entry of C is defined as the Pearson correlation
coefficient

Cij ≡ Corr½Xi; Xj�≡ Cov½Xi; Xj�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Xi� · Var½Xj�

p ; ð2Þ

where

Cov½Xi; Xj�≡ XiXj − Xi · Xj ð3Þ

is the covariance of Xi and Xj and

Var½Xi�≡ σ2i ≡ X2
i − Xi

2 ¼ Cov½Xi; Xi� ð4Þ

is the variance of Xi. In the above equations, the bar denotes
a temporal average, i.e.,

Xi ≡ T−1XT
t¼1

xiðtÞ; ð5Þ

X2
i ≡ T−1XT

t¼1

x2i ðtÞ; ð6Þ

XiXj ≡ T−1XT
t¼1

xiðtÞxjðtÞ: ð7Þ

Clearly, the diagonal entries of the correlation matrix
are Cii ¼ 1.
We will assume, as routinely done in order to filter out

the intrinsic heterogeneity of time series, that each series Xi
has been standardized by subtracting out the temporal
average Xi and dividing the result by the standard deviation
σi, i.e., that Xi has been redefined as ðXi − XiÞ=σi. Then,
the following expressions hold:

Xi ¼ 0; ð8Þ

Var½Xi� ¼ X2
i ¼ 1; ð9Þ

Cij ¼ Cov½Xi; Xj� ¼ XiXj: ð10Þ

Note that, even though in statistics the notation
Corr½Xi; Xj�, Cov½Xi; Xj� or Var½Xi� usually denotes a
population value, i.e., a theoretical value calculated using
the knowledge of the (joint) probability distributions for Xi
and Xj, all quantities we have defined so far are instead
sample quantities, i.e., measured on the specific realized
values of a set of time series. Our choice of a somewhat
unconventional notation is merely due to the fact that it
allows us to describe various operations more compactly.
We will need to denote the population value of a quantity
only in a few cases, and when this happens, such population
value will coincide with the expected value hfðX; Y;…Þi
(over the joint probability distribution of the random
variables X; Y;… involved) of the corresponding sample
quantity fðX; Y;…Þ. We will therefore directly express
population quantities in terms of expected values when
necessary.
We stress that empirical cross-correlation matrices are

intrinsically limited by the fact that they assume temporally
stationary and linearly interdependent time series. Clearly,
both assumptions are, in general, violated in real financial
markets and many other complex systems. Nonetheless,
cross-correlations are still the most widely used quantity.
Improving the definition of correlations is a very important
open problem, but it is beyond the scope of this paper. Here,
we want to overcome the limitations encountered when the
methods introduced so far to process or filter correlation
matrices are used in order to identify a mesoscopic modular
structure. These current limitations are in place even when
correlations are an appropriate measure, i.e., for stationary
and linearly interdependent time series. Therefore, our goal
is that of introducing a consistent methodology that makes
optimal use of correlation matrices in order to resolve the
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mesoscopic organization of complex systems. If improved
measures of interdependency are introduced, our approach
will still represent a valuable guideline in order to imple-
ment a consistent community detection framework in that
case as well.
In what follows, we review the most important correla-

tion-based approaches and their limitations. We will put
special emphasis on financial time series, even if our
discussion is more general.

A. Asset graphs

Among the proposed approaches to filter cross-
correlation matrices, the simplest one is perhaps that of
focusing on the strongest (off-diagonal) correlations by
introducing a threshold value and discarding all the
correlations below the threshold. The result can be repre-
sented as a network, also known as an asset graph (AG) in
the econophysics literature [4,19,20], connecting the nodes
whose time series are more strongly correlated. Since the
method entirely depends on the choice of the threshold, one
usually investigates how the properties of the AG change as
the threshold is varied. The method is quite robust to noise,
precisely because it discards the weakest correlations that
are more subject to random fluctuations. However, for the
same reason, it fails in detecting a mesoscopic organization
(if present) of the system. In fact, the use of a global
threshold prevents the identification of modules whose
internal correlations, even if below the threshold because
they are weak with respect to the strongest ones, are still
significantly stronger than the external correlations with
different modules. Therefore, while valuable as a filtering
technique, the AG discards a significant amount of infor-
mation and is not best suited to detect emergent groups of
correlated time series. We provide additional information
about AGs, along with an explicit example, when we
analyze real financial data in Sec. V B.

B. Minimal spanning trees

Another filtering approach looks for the minimal spanning
tree (MST) obtained again from the strongest correlations,
but now retaining only the N − 1 correlations that are
required for each node to be reachable from any other node
via a connected path, while discarding those that produce
loops [9]. This procedure automatically produces an agglom-
erative hierarchical clustering (a dendrogram) of the original
time series and requires that the correlation matrix is
“renormalized” at each iteration of the clustering according
to some protocol (the one having some distinct theoretical
advantage is the so-called single-linkage clustering algo-
rithm [9]), until a final filtered matrix is obtained.
The MST method does not require the introduction of

an arbitrary threshold, but it assumes that the original
correlations are well approximated by the filtered ones. At a
geometrical level, this corresponds to the assumption that
the metric space in which the original time series are

embedded (via the definition of a proper correlation-based
distance) effectively reduces to a so-called ultrametric
space where well-separated clusters of points are hierarchi-
cally nested within larger well-separated clusters [21].
Even if the method exploits the correlations required for

the MST to span the entire set of time series, it discards all
the weaker correlations. Moreover, the approximating
(renormalized) correlations are progressively more distant
from the original ones as higher and higher levels of the
taxonomic tree are resolved. This means that the method is
more reliable when using the strongest correlations to
determine the low-level structure of the taxonomic tree
(small clusters of time series), while it is progressively less
reliable when using the weaker correlations to determine
the high-level taxonomy (medium-sized and large clusters).
With the above warning in mind, the method allows one

to identify correlated groups of stocks lying on separate
“branches” of the MST or that become disconnected when
the associated dendrogram is cut at some level. However,
this comes at the price of introducing an arbitrary threshold
on the value of the correlation again. Moreover, just like the
AG technique, the MST does not compare internal and
cross-group correlations (possibly with the aid of a null
model) in order to identify emergent mesoscopic modules.

C. Planar maximally filtered graphs

An alternative approach, which is similar in spirit to the
MST but discards less information, is the so-called planar
maximally filtered graph (PMFG) [22,23]. This method
allows one to retain not just the correlations required to
form the MST but also a number of additional ones,
provided that the resulting structure is a planar graph
(a network that can be drawn on a plane without creating
intersecting links).
A nice feature of the PMFG is that it always contains the

entire MST, so the former provides additional, and not just
different, information with respect to the latter. However,
this method is also affected by some degree of arbitrariness,
which again lies in the properties of the postulated,
approximating structure. There is no obvious reason why
stocks (or other time series) should find a natural embed-
ding in a bidimensional plane. In fact, the PMFG has also
been described as the simplest case of a more general
procedure based on the embedding of high-dimensional
data in lower-dimensional manifolds with a controllable
genus (number of “handles” or “holes”) [23]. The PMFG
corresponds to the case when the genus is zero. So the
arbitrariness of the method can be rephrased as its depend-
ence on some value of the genus that must be fixed a priori.
The method has been extended in a variety of ways in

order to produce a nested hierarchy of time series by
exploiting the properties of the embedding space [24–26].
However, as with the MST, the target of these methods is
that of finding the postulated approximating structure rather
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than optimizing the search of groups of time series that are
more correlated internally than with each other.

D. Random matrix theory

We finally mention an important technique, based on
RMT [7,17,18], which is widely used in order to identify
the nonrandom properties of empirical correlation matrices.
We use this technique extensively in this paper. A corre-
lation matrix constructed from N completely random time
series of duration T has (in the limits N → þ∞ and
T → þ∞ with 1 < T=N < þ∞) a very specific distribu-
tion of its eigenvalues, known as the Marcenko-Pastur or
Sengupta-Mitra distribution [27,28]. This distribution reads

ρðλÞ ¼ T
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðλþ − λÞðλ − λ−Þ
p

2πλ
if λþ ≤ λ ≤ λ− ð11Þ

and ρðλÞ ¼ 0 otherwise, where the maximum (λþ) and
minimum (λ−) eigenvalues are given by

λ� ¼
�
1�

ffiffiffiffi
N
T

r �2
: ð12Þ

The bulk of the eigenvalues of an empirical correlation
matrix that fall within the range ½λ−; λþ� can be considered
to be mostly due to random noise. Thus, any eigenvalues
larger than the maximum eigenvalue λþ predicted by the
Marcenko-Pastur distribution are deemed to represent
meaningful structure in the data [6–8]. That being the
case, any empirical correlation matrix C can be decom-
posed as the sum of two matrices:

C ¼ CðrÞ þ CðsÞ; ð13Þ
where (using hbraj and jketi notation)

CðrÞ ≡ X
i∶λi≤λþ

λijviihvij ð14Þ

is the “random” component constituted from the eigenvalues
fλig less than or equal to λþ (usually, the eigenvalues smaller
than λ− are included as well) and their corresponding
eigenvectors fjviig, and CðsÞ ¼ C −CðrÞ is the “structured”
component constituted from the remaining eigenvalues
corresponding to eigenvalues larger than λþ.
The deviation of the spectra of real correlation matrices

from the RMT prediction provides an effective way to filter
out noise from empirical data, and it also illustrates some
robust property of financial markets. For instance, in Fig. 1,
we superimpose the eigenvalue density of the empirical
correlation matrix obtained from T ¼ 2500 log-returns of
daily closing prices of N ¼ 445 stocks of the S&P 500
index (from 2001 to 2011) and the corresponding expect-
ation given by the Marcenko-Pastur distribution with the
same values of N and T. As also observed in a multitude of
previous studies [4,5], a typical feature of the spectrum of

empirical correlation matrices is that the largest observed
eigenvalue λm is much larger than all other eigenvalues (see
inset of Fig. 1). The corresponding eigenvector jvmi has all
positive signs, and one can therefore identify this eigen-
component of the correlations as the so-called market mode
[4,5], i.e., a common factor influencing all stocks within a
given market. With this interpretation, the bulk of the
correlation between pairs of stocks is attributed to a single
common factor, much as all boats in a harbor will rise and
fall with the tide.
In order to clearly see which “boats” are rising and

falling relative to one another, one must subtract out the
common “tide,” which in terms of the correlation matrix
leads to the further decomposition

C ¼ CðrÞ þ CðgÞ þ CðmÞ; ð15Þ

where we have rewritten the structured component as
CðsÞ ¼ CðgÞ þCðmÞ, with

CðmÞ ≡ λmjvmihvmj ð16Þ

(representing the market mode) and

FIG. 1. The eigenvalue density of the empirical correlation
matrix of T ¼ 2500 log-returns (of daily closing prices from
2001Q4 to 2011Q3) for N ¼ 445 stocks of the S&P 500 index
(purple) and the Marcenko-Pastur prediction for a random
correlation matrix with the same values of N and T (blue),
denoting a maximum expected eigenvalue of approximately 2.
The orange plot is the eigenvalue density obtained by randomly
shuffling (i.e., permuting with uniform probability) the empirical
increments within each of the observed time series, confirming
the agreement with random matrix theory for uncorrelated data.
The inset is the fully zoomed-out version of the plot, showing
that the empirical correlation matrix has a maximum eigenvalue
of about 175 (“market mode”), as well as a handful of other
leading eigenvalues above the predicted maximum value.
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CðgÞ ≡ X
i∶ λþ<λi<λm

λijviihvij ð17Þ

(representing the remaining correlations).
The correlations embodied byCðgÞ act neither at the level

of individual stocks (uncorrelated noise) nor at that of
the entire market. Such correlations act at the level of
subgroups of stocks within a market, and they are often
referred to as the “group” mode [4,28]. The eigenvectors
contributing to CðgÞ have alternating signs, and this allows
the identification of groups of stocks that are influenced in
a similar manner by one or more common factors [6–8].
Broadly speaking, these groups are expected to reflect
some sectorial or subsectorial classification of stocks
according to their industrial category; however, the overlap
between nominal asset classes and groups of empirically
correlated stocks is only partial [6–8].
We should, at this point, stress that the above discussion

makes some strong assumptions, which have been recently
criticized. In particular, the interpretation of the largest
eigenvalue in terms of a market mode and the assumption
that the elimination of the market and noise modes does not
alter the information present in the remaining subspace are
not correct, in general, and are sometimes only approximate
[29,30]. Moreover, the eigencomponents of the correlation
matrix, and consequently the filtered correlation matrix
itself, can end up not being proper correlation matrices, and
alternative constructions enforcing the required properties
have been proposed [31–34]. Finally, the way to filter out
the market and noise modes is not unique [35].
Bearing these limitations is mind, RMT is still to be

considered a valuable tool to filter empirical correlation
matrices and clean them from both stock-level (random)
and market-wide fluctuations. However, after this prepro-
cessing, filtered correlation data still need to be analyzed
according to the particular research question. For instance,
the matrix CðgÞ is often processed further and used as an
alternative, filtered input in all the algorithms (AG, MST,
and PMFG) described above. So RMT alone is not enough
in order to resolve the mesoscopic organization of markets,
in the sense defined above.

III. COMMUNITY DETECTION IN GRAPHS
AND ITS INCONSISTENCY WITH

CORRELATION MATRICES

In the previous section, we clarified that many of the
available techniques used to identify the most relevant
correlations are not designed to isolate groups of time series
whose dynamical activity is more correlated internally than
with that of other groups. At an abstract level, achieving
this task would require iterated recursions into many
attempted partitions of the system, an inherently nonlocal
and computationally demanding operation. Notably, an
entire branch of network science is devoted to an analogous
problem, known as community detection [11]. In this

section, we briefly illustrate the principles of community
detection in networks and show how that knowledge can, in
principle, be transferred to our initial problem, namely, the
identification of a mesoscopic organization across multiple
time series. We also show that despite the many progressive
inroads made in this direction so far, they often rely on an
inherently biased approach.

A. Community detection in networks

In network analysis, community detection is the process
of identifying relatively dense clusters of nodes. There has
been a flurry of research in the area of community detection
over the last decade [11]. In this paper, we focus on the
method of modularity optimization [36], which is one of
the most popular methods identifying nonoverlapping
communities. It should be noted that various alternative
methods other than modularity optimization exist, includ-
ing techniques that resolve overlapping communities
[11,37]. However, this method has the advantage of being
based on a null model, acting as a community-free bench-
mark to which the real network is compared. It is the
appropriate modification of such benchmarks that will lead
us, in Sec. IV, to a redefinition of modularity optimization
methods valid for correlation matrices.
We restrict ourselves to undirected networks, since they

exhibit the same symmetry property as correlation matrices.
Given a network with N nodes, one can introduce a number
of partitions of the N nodes into nonoverlapping sets.
Each such partition can be mathematically represented by
an N-dimensional vector ~σ, where the ith component σi
denotes the set in which node i is placed by that particular
partition. Then, one can introduce the so-called modularity
Qð~σÞ as a measure of the effectiveness of a particular
partition ~σ in identifying densely connected groups of
nodes. The process of modularity optimization seeks to
find the optimal partition that maximizes the value ofQð~σÞ,
by varying the communities to which the different nodes of
the network belong. The modularity Qð~σÞ is expressed in
the form

Qð~σÞ ¼ 1

Atot

X
i;j

½Aij − hAiji�δðσi; σjÞ; ð18Þ

where, here and throughout the paper, the sum is intended
to run over all pairs of nodes even if we are considering
undirected networks, and we are also including the diago-
nal elements corresponding to i ¼ j since many expres-
sions become simpler with this choice. The meaning of the
different terms of the above expression is as follows. The
delta function is δðσi; σjÞ ¼ 1 if σi ¼ σj and δðσi; σjÞ ¼ 0

if σi ≠ σj, ensuring that only nodes within the same
community contribute to the sum. For binary networks,
Aij is the entry of the adjacency matrix representing the
presence (Aij ¼ 1) or absence (Aij ¼ 0) of a link between
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nodes i and j in the observed network. The initial prefactor
works to normalize the value of Qð~σÞ between −1 and 1,
where Atot ≡P

i;jAij ¼ 2m is twice the total number m
of links.
The term hAiji is a key element determining the outcome

of the entire community detection process. It mathemati-
cally represents a null model for the network, i.e., an
expectation for Aij under some suitable null hypothesis.
The most popular null model for a binary network, known
as the configuration model, is one where the expected value
hkii of the degree ki (number of links) of each node i is
equal to the value

P
N
j¼1 Aij observed in the real network

and where the topology is otherwise completely random.
This null hypothesis ensures that the local heterogeneity of
nodes, e.g., the fact that more popular people naturally have
more friends in social networks, is appropriately accounted
for. Mathematically, this model is approximately (i.e., only
when the heterogeneity of the degrees is weak [38,39])
represented by the expression

hAiji ¼
kikj
2m

; ð19Þ

which gives a rough estimate of the probability that nodes i
and j are connected, under the null hypothesis that the
observed network’s structure is completely explained on
the basis of the different degrees of vertices.
For weighted networks, Aij denotes the weight of the link

between nodes i and j, ki is called the strength of node
i, and 2m is twice the total weight (of all links in the
network). Still, Eq. (19) is used without modifications [11]
to determine the (again approximate [39,40]) expected
edge weight under the null hypothesis that the network’s
structure is completely explained on the basis of the
observed strengths of all vertices.
The accuracy and usefulness of the results obtained from

the process of modularity optimization depend heavily
on the choice and suitability of the null model. When the
null hypothesis is true, no higher-order patterns (including
communities) are present. Consistently, one expects the
modularity in Eq. (18) to be close to zero for every
partition. In maximizing the modularity for a network that
does have community structure, the nodes that are more
tightly connected than one would expect on the basis of
their individual characteristics will be clustered together
in the same community, while the nodes for which the
opposite occurs will be placed in different communities.
It should be noted that, in the context of network

analysis, the modularity function defined in Eq. (18) suffers
from a main drawback: It cannot resolve communities
below a typical scale [41]. This resolution limit was proven
to be rooted in the specific mathematical form of Eq. (19)
used to represent the null model. However, it was not
proven to be due to the concept of the null model itself,
i.e., to the choice of comparing the real network with an

ensemble of graphs with given degrees (or strengths).
In particular, we stress again that Eq. (19) only approx-
imately represents such an ensemble, the exact formula
being a more complicated nonlinear equation [38–40].
Whether the resolution limit disappears if the exact
expression is used in place of Eq. (19) has never been
investigated. Rather, it has been proposed [42] that a way
to change the resolution of the community detection is the
introduction of an extra resolution parameter ϕ > 0 in the
null model, i.e., replacing Eq. (19) with

hAiji ¼ ϕ
kikj
2m

: ð20Þ

Many studies have indeed shown that, as ϕ is varied,
different hierarchical levels of the community structure can
be revealed, so a so-called multiresolution method can be
obtained [42–44]. In general, multiresolution methods can
resolve smaller subcommunities, which are nested inside
larger communities. One should, however, bear in mind
that the resolution parameter was originally introduced in
an ad hoc fashion and without a theoretical foundation, its
main justification being an agreement a posteriori with the
hierarchical community structure expected in some real-
world networks. Only later was it shown to have some
physical interpretation in terms of an inverse time required
to explore the network under certain assumptions [44].
When extending modularity-based algorithms to the analy-
sis of multiple time series, we will address the problem of
multiresolution community detection in a fundamentally
different way, which avoids ad hoc parameters and is
theoretically consistent with the properties of correlation
matrices (see Sec. IV C).

B. Inconsistency of modularity for
cross-correlation matrices

The appealing properties of community detection in
networks clearly have the potential to solve our initial
problem of finding groups of time series that are more
correlated than we would expect. However, one should be
very careful in identifying the correlation-based problem
with the network-based one. A naive approach would be
that of treating the empirical correlation matrix C as a
weighted network and looking for communities using the
modularity as defined in Eq. (18), i.e., setting Aij ¼ Cij.
This would result in a modularity of the form

Qð~σÞ ¼ 1

Cnorm

X
i;j

½Cij − hCiji�δðσi; σjÞ; ð21Þ

where Cnorm ¼ P
i;jCij, hCiji ¼ kikj=Cnorm and ki ¼P

N
j¼1 Cij. This idea has been recently exploited, sometimes

with modifications, to study communities of interest rates
[14] and stocks [13,15,16] in financial markets.
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Unfortunately, although the above approach has made a
lot of headway, it suffers from some fundamental flaws and
can lead to biased results, as we now show. The problem
arises because the null model defined in Eq. (19), while
(approximately [38–40]) valid when the matrixA describes
a network, is inconsistent if A is replaced by a correlation
matrix C. Indeed, note that if Aij ¼ Cij and if Xi denotes a
standardized time series i (see Sec. II), then Eq. (10)
implies

ki ≡
XN
j¼1

Cij ¼
XN
j¼1

Cov½Xi; Xj� ¼ Cov½Xi; Xtot�; ð22Þ

where Xtot ¼ fxtotð1Þ; xtotð2Þ;…; xtotðTÞg is the time series
of the total increment xtotðtÞ≡P

N
j¼1 xjðtÞ. Note that, even

if all Xi’s are standardized, Xtot has zero mean but nonunit
variance and is therefore not standardized. Similarly,

2m ¼
XN
i¼1

ki ¼ Cov½Xtot; Xtot� ¼ Var½Xtot�: ð23Þ

It then follows that

kikj
2m

¼ Cov½Xi; Xtot� · Cov½Xj; Xtot�
Var½Xtot�

¼ Corr½Xi; Xtot� · Corr½Xj; Xtot�: ð24Þ

We therefore arrive at an important conclusion:
For correlation matrices, the “naïve” modularity, as ordi-
narily defined in Eq. (18) with the ordinary specification
given in Eq. (19), corresponds to the following null
hypothesis:

hCijinaive ¼ Corr½Xi; Xtot� · Corr½Xj; Xtot�: ð25Þ

When used within the modularity function, the above null
model will not necessarily give more importance to pairs
of strongly correlated time series but rather to pairs of
time series whose “direct” correlation Cij is larger than the
product of the correlations of each time series with the
“common signal” Xtot. On the other hand, if we want to
detect communities of time series that are empirically more
correlated than expected under the hypothesis that all time
series are independent of each other, we know that the
correct null model (at least for infinitely long time series, a
hypothesis that we will relax later) is

hCiji ¼ δij; ð26Þ

i.e., the expected correlation matrix hCi should be the
N × N identity matrix I. Other acceptable forms of hCiji
based on realistic properties of correlation matrices will be
discussed later.

The origin of the problematic discrepancy between
Eqs. (25) and (26) is the fact that the null model defined
in Eq. (19) is meant to represent networks with given
degrees, i.e., matrices with given column and row sums.
Any matrix that matches this constraint is admissible, in the
sense that it represents a possible [45] network consistent
with the hypothesis that degrees are an important structural
constraint. By contrast, sums over rows or columns of
correlation matrices do not represent any meaningful
constraint, as evident from Eq. (22). Moreover, not every
symmetric real matrix with given row and column sums is a
possible correlation matrix. Correlation matrices must also
be positive-semidefinite, i.e., have non-negative eigenval-
ues. A little algebra shows that Eq. (25) fulfills this property
but in a very extreme way: The eigenvalues of the matrix
having elements hCijinaive are λ ¼ 0 (with multiplicity
N − 1) and

λ ¼
XN
i¼1

ðCorr½Xi; Xtot�Þ2 ð27Þ

(with multiplicity 1). This result holds irrespective of the
original data, e.g., also for correlated and finite-length time
series. Our discussion of the spectrum of realistic correla-
tion matrices in Sec. II D strongly indicates that a sensible
null model for correlation matrices should feature an
eigenvalue distribution that is not easily reducible to the
extremely simple one found above.
Similar conceptual limitations are also encountered in

more sophisticated null models, which while allowing for
both positive and negative link weights [46], still consider
all possible matrices (many of which are inconsistent with
correlation matrices) with given sums over rows and
columns. More importantly, the above problems cannot
be solved by the introduction of resolution parameters. If,
in analogy with Eq. (20), we consider the generalized null
model

hCijinaive ¼ ϕ · Corr½Xi; Xtot� · Corr½Xj; Xtot� ð28Þ

(with ϕ > 0), we are still left with an expression that cannot
be reduced to Eq. (26) or some other meaningful alter-
natives, which we will introduce later in Sec. IVA. For
instance, the eigenvalues become ϕλ, where λ still takes
only the two values shown above. Further aspects of this
limitation are explicitly illustrated in a benchmark case
below, and they imply that appropriate multiresolution
community detection methods for correlation matrices
should be implemented in a completely different way
(see Sec. IV C).

C. Bias produced by the naive approach

To have an idea of the consequence of using the naive
approach, i.e., the application of a network-based modu-
larity directly to a cross-correlation matrix, we consider an
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FIG. 2. The biasing effect of the heterogeneity of community size on the naive (network-based) modularity. The left panels show the entries
δðσ�i ; σ�jÞ of three benchmark community matrices (white ¼ 0, red ¼ 1), each with N ¼ 1000 time series and c ¼ 8 communities of
increasingly heterogeneous sizes. The right panels show the corresponding distribution of the off-diagonal entries hCijinaive of the null model
defined in Eq. (32), withϕ ¼ 1 (the bin size of the histograms is of the order of 10−5, whichmakes the distributions correctly normalized). For
perfectly homogeneous community sizes, i.e., if each community contains exactly 125 time series (a), the distribution has a single peak at
1=c ¼ 0.125 (b). Formoderately heterogeneous sizes, i.e., if the eight communities contain 35, 60, 85, 110, 140, 165, 190, and215 time series,
respectively (c), the distribution has several peaks (d) coming from the 64 different combinations of nσ�i nσ�j in Eq. (32). For strongly

heterogeneous sizes, i.e., if theeight communities contain4,8,16, 32, 64,128, 246, and502 timeseries, respectively (e), thedistributionstill has
64 different peaks but is much broader (f). The two dominant peaks are located at hCijinaive ¼ 0.7536 (coming from pairs of time series inside
the largest community) and hCijinaive ¼ 0.3694 (coming from pairs of time series across the largest and the second-largest communities).
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ideal benchmark case where N infinitely long time series
are divided into c “true” communities, specified by a true
partition ~σ�. We assume that each community A is made of
nA standardized time series (with

P
c
A¼1 nA ¼ N) that are

perfectly correlated with each other and completely uncor-
related to the time series in other communities, i.e.,

Cij ¼ Corr½Xi; Xj� ¼ Cov½Xi; Xj� ¼ δðσ�i ; σ�jÞ: ð29Þ

In such a case,

Cov½Xi; Xtot� ¼
XN
j¼1

Cov½Xi; Xj� ¼ nσ�i ð30Þ

(where nσ�i is the number of time series in the community of
the time series i) and

Var½Xtot� ¼
X
i;j

Cov½Xi; Xj� ¼
Xc
A¼1

n2A: ð31Þ

From the last two equations, it follows that Eq. (25), or
more generally Eq. (28), can be rewritten as

hCijinaive ¼ ϕ
nσ�i nσ�jP
c
A¼1 n

2
A

ð32Þ

(with ϕ > 0), which is the fundamental result showing the
inconsistency of the naive approach and the nature of the
resulting bias. Equation (32) can never lead to the correct
expectation (26) because it cannot produce off-diagonal
zeros. If there are c equally sized communities of n ¼ N=c
time series each, then hCijinaive ¼ ϕ=c for all i; j, i.e., the
distribution of hCijinaive has a single peak and zero standard
deviation. In this case, apart from the minor [47] problem
of nonunit diagonal entries, the use of hCijinaive in Eq. (18)
can still be justified on the basis of the fact that ϕ=c is a
constant term having no effect on the modularity maximi-
zation. However, for heterogeneously sized communities,
Eq. (32) does not lead to a mere overall shift in the
modularity. As the size heterogeneity increases, the distri-
bution of the off-diagonal entries of hCijinaive will become
broader. In general, hCijinaive is larger for pairs of time series
belonging to larger communities. This effect is shown in
Fig. 2 for three choices of benchmark communities.
The above consideration implies that the standard

deviation (irrespective of the average) of the off-diagonal
(i ≠ j) entries of hCijinaive can be taken as a quantitative
measure of the bias induced by Eq. (32). This definition
depends linearly on the multiresolution parameter ϕ.
Alternatively, the coefficient of variation (standard
deviation divided by average value) of the off-diagonal
entries of hCijinaive is a measure of the relative bias of the
naive approach and is independent of ϕ. One should bear in
mind that when the value of the coefficient of variation is

much lower than 1, the heterogeneity is moderate, while
when it approaches or exceeds 1, then the heterogeneity is
such that the average value is no longer representative of
the distribution.
In Fig. 3, we show both the bias (for ϕ ¼ 1) and the

relative bias as a function of size heterogeneity, the latter
being, in turn, defined as the coefficient of variation of
community size. We see that the (relative) bias first steadily
increases as the size heterogeneity increases from zero to
approximately 2 and then decreases when the heterogeneity
further increases. This decrease corresponds to entering an
extremely heterogeneous regime where there is a giant
community of OðNÞ nodes and other very small commun-
ities of Oð1Þ nodes. In this regime, the effective number
of communities is practically 1, and the distribution of
hCijinaive becomes sharp again, as most entries have the
same value. So, for a very broad range of heterogeneity (say,
when the coefficient of variation of community sizes is
between 0.5 and 2.5), the (relative) bias is very strong. In this
regime, Eq. (32) gives a prediction hCijinaive ≈ 0 (close to the
correct expectation) only for pairs of time series belonging to
the smallest community. For such time series, the difference
Cij − hCijinaive is still close to 1, and one therefore expects
that the smallest community will be detected correctly.
However, for time series belonging to larger communities,
hCijinaive increases, progressively biasing the community
detection. For the largest community, the expected internal
correlation is always larger than the correlation among any
pair of communities, so Cij − hCijinaive is very low and this
community is paradoxically difficult to detect.

〉
〈

〉
〈

FIG. 3. Dependence of the (relative) bias of the naive approach
on the heterogeneity (coefficient of variation) of community size,
for various benchmarks with N ¼ 1000 time series and c ¼ 8
communities. The bias is defined as the standard deviation
(coefficient of variation) of the off-diagonal entries hCijinaive
of the null model defined in Eq. (32) with ϕ ¼ 1, while the
relative bias is defined as the coefficient of variation of the same
entries (and is independent of ϕ).
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It should be noted that the use of the multiresolution
parameter ϕ does not help reduce the relative bias, as the
latter is independent of ϕ. In order to reduce the absolute
bias (which for ϕ ¼ 1 has values around 0.3 in the relevant
regime; see Fig. 3) to small values (say, of the order of
0.01), ϕ should be set to very small values (around 0.03),
which is another way of saying that the null model in
Eq. (28) should effectively be replaced by that in Eq. (26)
(we recall that we are referring only to the off-diagonal
entries here), thus confirming our previous discussion.
The above results lead us to conclude that the ordinary

definition of modularity, even with the introduction of a
multiresolution parameter, cannot properly detect com-
munities. This limitation would systematically bias any
modularity-based community detection algorithm. It is there-
fore clear that ordinary network-based clustering methods,
when used with correlationmatrices, lead to incorrect results.
In the rest of the paper, we try to overcome this limitation.

IV. REDEFINING COMMUNITY DETECTION
METHODS FOR MULTIPLE TIME SERIES

We now come to our most important results, i.e., the
introduction of improved and consistent methods to
cluster multiple time series using appropriate null models.
In Sec. IVA we give three redefinitions of the modularity
Qð~σÞ that make use of the results of RMT, which we
summarized in Sec. II D. In Sec. IV B, we introduce the
correlation-based counterparts of three of the most popular
community detection algorithms used in network analysis. In
Sec. IVC, we discuss how these algorithms can be further
extended in order to obtain appropriate, multiresolution
community detection methods. Finally, in Sec. IVD, we
benchmark our methods on various test cases.
A code implementing all the methods discussed in this

section (with the adaptations discussed in the Appendix) is
available here [48,49].

A. Correlation-based redefinitions of modularity

From our previous discussion, it should be clear that
simply replacing network data with correlation matrices in
Eq. (18) leads to Eq. (21) where Cnorm is

P
i;jCij and the

null model hCiji is incorrectly given by Eq. (25). We now
introduce three redefinitions of modularity based on appro-
priate null models. The end result of this redefinition will be
a set of modularity functions that correctly identify com-
munities of correlated time series. For compactness, we
postpone the possible (re)definition of Cnorm to the end of
this discussion, in Sec. IVA 4.

1. Infinite time series without global mode

We have already noted that, for infinitely long time
series, the correct expression corresponding to the null
hypothesis of independency is given by Eq. (26). This leads
us to a first redefinition of modularity with expectation
hCiji1 ≡ δij, i.e.,

Q1ð~σÞ ¼
1

Cnorm

X
i;j

½Cij − δij�δðσi; σjÞ

¼ 1

Cnorm

X
i;j

CðδÞ
ij δðσi; σjÞ; ð33Þ

where CðδÞ ≡ C − I (I being the N × N identity matrix),

so CðδÞ
ii ¼ 0.

2. Finite time series without global mode

For finite-length independent time series, we should
further modify our null model to one which anticipates a
certain amount of noise, as determined by RMT (see
Sec. II D). In such a case, we know that the correct null
hypothesis is hCiji2 ≡ CðrÞ

ij , where CðrÞ is given by
Eq. (14). This gives us a second redefinition of modularity
for dealing with noisy correlation matrices:

Q2ð~σÞ ¼
1

Cnorm

X
i;j

½Cij − CðrÞ
ij �δðσi; σjÞ

¼ 1

Cnorm

X
i;j

CðsÞ
ij δðσi; σjÞ: ð34Þ

Note that now, in general, CðsÞ
ii ≠ 0 as a result of the

eigendecomposition defined in Eq. (13). However, the
diagonal terms with i ¼ j give an irrelevant constant
contribution to the modularity due to the fact that
δðσi; σiÞ ¼ 1 for all i, independently of the particular
partition ~σ. This makes the above definition well defined
even in the presence of nonzero diagonal entries.

3. Finite time series with global mode

Lastly, we consider the case where we expect an overall
level of positive correlation among all time series, or “global
mode.” For instance, we have already mentioned that in
financial markets, the presence of the market mode (see
Sec. II D) generally results in a positive correlation affecting
all pairs of stocks altogether. The corresponding dominant
positive componentCðmÞ ofCwould makeQð~σÞmaximized
by the (trivial) partition where all time series are in the same
community. In order to detect nontrivial communities, we
can choose a null model that includes both the random
component of the correlation matrix and the global or market

mode, i.e., hCiji3 ≡ CðrÞ
ij þ CðmÞ

ij , where CðrÞ and CðmÞ are
given by Eqs. (14) and (16), respectively. This yields our
third and final formulation for the modularity:

Q3ð~σÞ ¼
1

Cnorm

X
i;j

½Cij − CðrÞ
ij − CðmÞ

ij �δðσi; σjÞ

¼ 1

Cnorm

X
i;j

CðgÞ
ij δðσi; σjÞ: ð35Þ
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In this case as well, CðgÞ
ii ≠ 0 as a result of the eigende-

composition defined in Eq. (15), but this does not affect the
outcome of the community detection.
The above definition is now explicitly aimed at detecting

mesoscopic communities, which are in between the “micro-
scopic” level of unit-specific noise and the “macroscopic”
level of system-wide fluctuations. While the existence of
the market mode is well established in finance, for other
types of time series it might be inappropriate to postulate
the existence of a global mode. However, we also expect
that, whenever the use of Q1ð~σÞ or Q2ð~σÞ yields only a
single community, the most plausible reason is the exist-
ence of a global mode. Accordingly, we expect that the use
of Q3ð~σÞ might be the most appropriate way to filter out
global dependencies for a variety of systems, not only for
financial markets. Moreover, as we discuss at length in
Sec. IV C, iteratively filtering out the global mode from the
correlation matrices restricted to individual communities
can result in the definition of a useful multiresolution
method to resolve multiple hierarchical levels of commu-
nity structure, if present.

4. A unified redefinition

For simplicity, in what follows, it is useful to express the
three definitions of modularity we gave in Eqs. (33), (34),
and (35) in unified form:

Qlð~σÞ≡ 1

Cnorm

X
i;j

CðlÞ
ij δðσi; σjÞ; ð36Þ

where

CðlÞ ≡C − hCil ¼
8<
:

CðδÞ l ¼ 1

CðsÞ l ¼ 2

CðgÞ l ¼ 3.

ð37Þ

In what follows, given a choice of l, we will refer to CðlÞ as
the “filtered” correlation matrix.
The overall constant Cnorm has no role in determining the

final partition, but it does have a role when different
systems, or different snapshots of the same system (includ-
ing dynamical analyses of community structure), are
compared. For simplicity, we keep the same definition
as in Eq. (21), i.e.,

Cnorm ≡X
i;j

Cij ¼ Var½Xtot�: ð38Þ

This definition implies that the modularity is the sum of
intracommunity (filtered) correlations, divided by the
variance of the total increment Xtot. This variance is a
natural measure of the volatility of the system over the
considered time window, which in the case of financial time
series, is an important property of the market. In other
words, Eq. (38) automatically controls for the volatility of
the system, a feature that is typically desirable when

analyzing the evolution of (the community structure of)
wildly fluctuating systems. However, in some cases it
might be interesting to compare the above modularity with
one calculated using a different definition of Cnorm, e.g.,
one that does not control for the volatility.
It should be noted that the above definition is such that

the typical (for real-world systems like financial markets)
values of the modularity defined in Eq. (36) will tend to be
much lower than the typical (for real-world networks)
values of the modularity defined in Eq. (18), even for
systems with well-defined communities. One should bear
this consideration in mind when interpreting the (maxi-
mized) modularity value as a measure of the strength of
community structure in the system. Unlike its network
counterpart, our definition of the modularity does not
quantify the strength of community structure in an absolute
scale between −1 and þ1. It only has a meaning in relative
terms, and the more information is contained in the null
model, the lower the value of the resulting modularity.
We remind the reader of the fact that, since the results of

RMT used in the above definition hold only in the regime
where N and T are both large (with T > N), we require the
original time series to respect these conditions. The require-
ment T > N is sometimes referred to as the “curse of
dimensionality” in the literature since it implies that, in
order to study the cross-correlations of a large set of time
series, one needs to extend the time interval so much that
the assumption of stationarity (implicit, as we mentioned,
in the definition of cross-correlations themselves) is vio-
lated. On the other hand, choosing sufficiently short time
intervals to make the time series approximately stationary
implies that the number N of time series is severely
reduced. One should therefore choose the data in such a
way that a reasonable compromise is achieved. This is an
ordinary trade-off to be made in the analysis of any
empirical (financial) cross-correlation matrix.
We finally stress that the three RMT-based null models we

have adopted do not represent the only possible choices.
One might, for instance, exploit more sophisticated results
[29–35] and introduce refined null models that overcome
some of the limitations of RMT that we mentioned in
Sec. II D. These alternative choices can then be incorporated
into our approach by redefining hCil and, consequently,
CðlÞ. Exploring the entire space of possibilities is beyond the
scope of this paper. The key point we are stressing here is
that, whatever the choice of the null model, it must respect
some realistic properties of correlation matrices. The net-
work-based definition of modularity, which has been used
so far, does not do so and as such is not the best choice.
Our approach can therefore be considered as a guideline, in
order to introduce improved techniques in the future.

B. Maximizing the new modularity

The discussion so far completes our first task of
introducing modularity functions that are consistent with
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the properties of correlation matrices. Our second task is
that of incorporating the above definition(s) into commu-
nity detection algorithms that seek to maximize the
modularity. Below, we start by briefly mentioning the
algorithms we adapted in order to search for the optimal
partition (more extended descriptions are in the Appendix)
and then prove an important property of the optimal
partition itself, namely, the fact that its communities are
internally positively correlated and mutually negatively
correlated.

1. Redefining three community detection algorithms

Given our new definition of modularity in Eq. (36), we
cannot directly apply the traditional optimization algo-
rithms devised for graphs, since the majority of these
algorithms rely, in some way or another, on the properties
of the original network-based definition of modularity,
where the degrees of nodes are used to construct the null
model. For this reason, we selected three of the most
popular network-based community detection algorithms
and reformulated them to be compatible with time-series
data and our new definition of modularity. The three
algorithms we selected are known as the Potts (or spin-
glass) method [42,50], the Louvain method [51], and the
spectral method [52]. Note that even if these techniques are
customarily referred to as “methods,” they can actually be
considered as three different algorithms implementing
the same method of modularity maximization. Since the
appropriate redefinition of these algorithms can require
quite technical discussions, it is described in the Appendix.
We note that there exist many modularity maximization

algorithms, some of which may already be much better
suited to our definition of modularity. However, we wanted
to choose popular algorithms whose original specifications
required varying levels of rework, ranging from verification
of its suitability to accommodate time-series-based mod-
ularity to modifications of the underlying tenets of the
algorithm itself.
These choices make it possible to illustrate further

differences between network-based and correlation-based
community detection problems. The reader is again
referred to the Appendix for a detailed discussion of these
differences.

2. Identifying anticorrelated communities

We now prove the result that the partition maximizing the
modularity (whichever method is used to search for it) is
characterized by positive intracommunity (filtered) correla-
tions and negative intercommunity (filtered) correlations.
Let us first define the “renormalized” intercommunity

correlations (also see the Appendix),

~CðlÞ
AB ≡X

i∈A

X
j∈B

CðlÞ
ij ; ð39Þ

where the notation i ∈ A indicates that the node i belongs
to the community A, and the sum is over all such nodes.
Now, assume that we have identified the optimal partition
maximizing the modularity, and consider the modularity
change ΔQl that would be obtained by further merging
two different communities of the optimal partition, say,
A and B. From Eq. (36), we can write this change as

ΔQl ¼ ½ ~CðlÞ
AA þ ~CðlÞ

BB þ ~CðlÞ
AB þ ~CðlÞ

BA� − ½ ~CðlÞ
AA þ ~CðlÞ

BB�
¼ 2 ~CðlÞ

AB: ð40Þ

The above change cannot be positive, otherwise merging A
and B would further increase the modularity, which is
impossible since A and B are communities of the optimal

partition. Therefore, ΔQl ≤ 0, which also implies ~CðlÞ
AB ≤ 0.

On the other hand, for every community A of the optimal

partition, we must have ~CðlÞ
AA ≥ 0, otherwise A would give a

negative contribution to the modularity, which is impos-
sible since the partition where all nodes of A are isolated
communities would have higher modularity than the
optimal partition. Taken together, these considerations
imply that

~CðlÞ
AB

�
≥ 0 if A ¼ B
≤ 0 if A ≠ B:

ð41Þ

The above result follows simply from the maximization of
Eq. (36) and will be confirmed empirically in Sec. V D.
Our algorithms effectively partition the network into

mutually anticorrelated communities of positively corre-
lated time series, where it is intended that the term “(anti)
correlated” refers to the residual correlations remaining
after applying the filtering procedure defined by Eq. (37).
For this reason, we will sometimes use the term “residually
(anti)correlated” when referring to the sign of filtered
correlations. As we will discuss in more detail in
Sec. V D, this property has important consequences for
portfolio optimization and risk management.

C. Multiresolution community detection

We now discuss the problem of introducing an appropriate
multiresolution method. As we mentioned, one way to
resolve a hierarchical community structure in ordinary
networks using a modularity-based community detection
algorithm is by introducing a resolution parameter ϕ as in
Eq. (20). We have already noted, in our discussion of
Eq. (28), that the same operation would not cluster corre-
lation matrices appropriately if applied to the naive null
model appearing in Eq. (25). The same kind of limitation
persists if we introduce a resolution parameter multiplying
any of the three improved null models hCil defined in
Eqs. (36) and (37). While the range of any observed
correlation coefficient Cij is ½−1;þ1� by construction, a
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resolution parameter would unreasonably map the range of
the expected correlation hCiji to ½−ϕ;þϕ�. Similarly, since
the null correlation matrices hCil we introduced are obtained
from the eigencomponents of the observed correlation
matrix C, rescaling them by ϕ is equivalent to an overall
rescaling of the corresponding eigenvalues of C, which is
again an unjustified operation.
Given the above limitations, which indicate a lack of

theoretical foundation for resolution parameters in the case
of correlation matrices, we introduce a completely different
multiresolution approach that is specifically designed for
multiple time series and has no counterpart in network
analysis. After running one of our newly introduced
community detection algorithms on the original empirical
correlation matrix C, for each community of size s in the
optimal partition, we consider the corresponding s × s
submatrix C� of C. For this submatrix, we define the three
null models hC�il as discussed in Sec. IVA for the original
matrix C. By running our community detection algorithms
recursively inside each of the communities, we can thus
resolve subcommunities within communities. Iterating this
procedure identifies a hierarchical community structure, if
present. Within each community, the procedure stops
automatically when it resolves no further subcommunities.
At each iteration, the “noise” component CðrÞ

� will have
the same interpretation as when it is identified on the entire
correlation matrix since C� is the submatrix of the original
matrix C and not of the filtered matrix CðlÞ defined in
Eq. (37), so it still contains the node-specific noise
component (the reason why we do not consider the
submatrix of CðlÞ is because, as we mentioned, the latter
may not be a proper correlation matrix [31–34] and thus
cannot be filtered further using RMT). The global mode

CðmÞ
� is now interpreted as the community mode, i.e., a

common factor influencing all the time series within that
particular community. This will now include both the
system-wide mode CðmÞ, restricted to the subspace relative
to C�, that would be identified on the entire matrix C (e.g.,
in the case of financial time series, the market mode) and a
genuinely community-specific mode not shared with the
time series in other communities. Different communities
are therefore possibly characterized by different commu-
nity modes, and the fact that both this mode and the
restriction of the global mode are filtered out is precisely
what allows the algorithm to resolve deeper hierarchical

modules. Finally, the group component CðgÞ
� represents the

effect of subgroups nested within the specific community,
if present.
It should be noted that the original correlation matrix C

typically has large dimensionality (large N), a property
ensuring that the results of RMT, in particular, the expected
eigenvalue distribution appearing in Eq. (11), hold to a
satisfactory level. However, when considering smaller
subcommunities, RMT becomes less reliable because

Eq. (11) no longer holds for small sets of nodes. For this
reason, for small submatrices (low-dimensional C�), it is
preferable to determine the eigenvalues λ� not via Eq. (12)
but by randomly shuffling the temporal increments of the
original time series and constructing the corresponding
spectrum as shown in Fig. 1.
We conclude by noting that, for the particular case of

multiple time series, there is another multiresolution
character, which can be attached to the problem of
community detection, namely, the fact that different com-
munities can, in principle, be obtained for different choices
of the initial temporal resolution, i.e., for different choices
of the frequency of the original time series (e.g., second,
minute, or daily returns). Note that this notion of temporal
resolution is specific to correlation matrices and has no
analogue in the ordinary problem of community detection
in networks. It is also not necessarily attached to an idea
of hierarchy, in the sense that we do not expect, e.g.,
communities obtained at higher frequencies to be neces-
sarily nested within communities obtained at lower
frequencies (even if this can reasonably happen in some
cases). To distinguish this specific notion from the usual
one of multiresolution community detection, we will refer
to it as the multifrequency problem and address it sepa-
rately in Sec. VI.

D. Benchmarking our methods

Before applying our methods to the analysis of real
correlation matrices, we ran a series of tests confirming that
we can correctly detect correlated sets of time series in
controlled benchmark cases. Our benchmarks consist of
heterogeneously sized communities of time series that are
internally correlated and additionally display varying levels
of noise and global signal (market mode). The reason why
we consider heterogeneous community sizes is because this
is the more challenging case where we showed the naive
method to display a higher bias (see Sec. III C).
We constructed these benchmarks by first choosing the

numberN of time series, the number c of communities, and
the desired number nA of time series in each community A,
such that

P
c
A¼1 nA ¼ N (as in Sec. III C). Then, we

generated c random and uncorrelated time series (with
T > N) with values γAðtÞ (where 1 ≤ A ≤ c) drawn inde-
pendently from a normal distribution with zero mean and
unit variance. Next, we created nA identical copies of the
Ath time series, for all A. To each of the resulting N time
series, each labeled by an index i, we added a local noise
βiðtÞ (a new normally distributed random variable with zero
mean and unit variance, independent of all the other ones)
multiplied by a “noise parameter” ν ≥ 0 and a global signal
αðtÞ (again, an independent normally distributed random
variable with zero mean and unit variance) multiplied by
a market-mode parameter μ ≥ 0. This resulted in a set
fY1;…; YNg of N time series with values
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yiðtÞ ¼ μ · αðtÞ þ ν · βiðtÞ þ γAðtÞ i ∈ A;

A ¼ 1; c: ð42Þ
Note that this procedure is similar to the so-called “factor
models” used in financial analysis [5,29,30,53–55]. The
time series fY1;…; YNgwere further standardized to obtain
a final set fX1;…; XNg of N time series, each with zero
mean and unit variance, in compliance with the general
prescription mentioned in Sec. II.
We generated several benchmarks according to the recipe

described above, for various choices of N, c, fnAg, μ and
ν. In general, when μ ¼ ν ¼ 0 the benchmark is similar
to the ideal one described in Sec. III C: The communities
are completely correlated internally (all the time series in
the same communities are identical) and uncorrelated
with the time series in other communities. This results in
a benchmark partition ~σ� such that, for infinite time series,
Cij ¼ δðσ�i ; σ�jÞ. However, for finite (but still such that
T > N as prescribed by random matrix theory; see
Sec. II D) time series, Cij will be affected by noise. As μ
and ν increase, additional noise will be generated and the

community structure will be more difficult to detect. If μ ¼ 1
(ν ¼ 1), then the amplitude of the global mode (local noise)
is the same as that of the community signal. Therefore, when
μ and/or ν approach or exceed 1, the community detection
problem becomes more challenging. Still, the ambition of
our method is that of correctly identifying the benchmark
partition ~σ� even in this hard regime.
In Fig. 4, we show nine benchmarks, organized in a 3 × 3

table with different combinations of values for μ and ν. In
all these cases, the communities to detect are the same set of
c ¼ 8 heterogeneously sized communities shown previ-
ously in Fig. 2(c). The color maps show the values of the
entries of the filtered correlation matrix CðgÞ defined in
Eq. (17), i.e., the residual correlations obtained after
removing the noise and market-mode components. It can
be seen that, even for values of μ and ν exceeding 1, the
filtered matrices always display a clear block-diagonal
structure with a visible contrast across diagonal and off-
diagonal blocks.
In all of these benchmarks, we confirmed that, using the

corresponding modularity Q3ð~σÞ defined in Eq. (35), our

FIG. 4. Performance of our method on nine benchmark sets of correlated time series with varying levels of noise (ν) and market-mode
(μ) components. For each combination of μ and ν, N ¼ 1000 time series of length T ¼ 50000, partitioned into c ¼ 8 communities
(always containing 35, 60, 85, 110, 140, 165, 190, and 215 time series, respectively), were initially generated according to Eq. (42).
Then, the 1000 × 1000 correlation matrix C was calculated. The heat maps in this figure show the values of the entries of the filtered
matrix CðgÞ defined in Eq. (17) and obtained by removing the noise and market-mode components from the original correlation matrix.
Blocks along the diagonal represent the residual correlations within each community, while off-diagonal blocks show the residual
negative cross-correlations among communities. Our method, using the Potts algorithm (see the Appendix) here to maximize the
modularity Q3ð~σÞ defined in Eq. (35), was always able to correctly identify the target communities, even for values of μ and ν
exceeding 1. This is indicated by the value of VI (averaged over 10 runs of the community detection algorithm) calculated between the
“true” and the detected partition in each benchmark. The average (over multiple runs) maximum modularity valueQ3ð~σ�Þ is also shown
in each case.
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method succeeded in detecting the correct partition ~σ�.
We quantitatively measured the performance of our method
in terms of a metric known as variation of information (VI)
[56,57], which measures the entropy difference between
two partitions of the same network, providing a rigorous
way for us to quantify the similarity between the true
partition and the one identified by our method. More
precisely, VI involves the use of Shannon’s entropy to
measure the amount of uncertainty that exists across the set
of communities of two different partitions of the same
network. It provides a quantitative measure of the differ-
ence between two partitions, a normalized value where zero
implies the two partitions are completely identical and 1
implies that they are completely unrelated. As can be seen
from Fig. 4, the values of VI (averaged over multiple runs
of the community detection algorithm) are zero or
extremely small, indicating a perfect or almost perfect
performance of the method.
The average (over multiple runs) maximum modularity

value Q3ð~σ�Þ obtained in the above benchmarks is also
illustrated in Fig. 4. Lower values of the modularity imply
that the network as a whole is more homogeneous in its
construction, to the extent that the detected communities
exhibit only a relatively weak increase in their collective
correlation, above the ambient level. As expected, we see
that the modularity decreases for increasing levels of
market mode. Increasing levels of noise, however, do
not have such a strong effect since noisy time series tend
to diminish the strength of the intracommunity correlations,
which enter in both the numerator and denominator of the
modularity. In contrast, the market mode has a significant
impact on the intercommunity correlations, which pri-
marily end up only in the denominator of the modularity,
hence the observed decrease in modularity with an increase
in market mode. The corresponding low values of the
modularity confirm what we had anticipated about the
effects of Eq. (38). We should bear these effects in mind
when interpreting the (low) values of the modularity arising
from the partition of real financial time series, where the
market mode is very strong. The fact that our method
correctly identifies the benchmark partitions even for strong
market mode (and low resulting modularity) makes us
confident that it will also properly detect the community
structure of real markets.

V. THE MESOSCOPIC ORGANIZATION
OF REAL FINANCIAL MARKETS

Having redefined the modularity consistently with the
properties of correlation matrices and appropriately recon-
figured three different techniques for optimizing it, we are
now in a position to apply our methodology to a variety of
real-world data sets and evaluate the quality of the results.
In particular, we will apply our three algorithms and the
null model expressed in Eq. (35) to time series representing
stock prices from a variety of stock indexes that span

multiple industries and multiple countries. We first obtained
static results, including the multiresolution community
structure as introduced in Sec. IV C, using time series of
log-returns of daily closing prices for all three indexes. These
results are shown in this section. Then, we considered
different temporal (frequency) resolutions and studied the
time dynamics of community structure. These additional
results are described in Secs. VI and VII, respectively.

A. Data and preprocessing

The indexes we used are the S&P 500 (US Large Cap.
Stocks), the FTSE 100 (British Large Cap.), and the Nikkei
225 (Japanese Large Cap.). For each of these indexes, we
considered a period of 2500 trading days, corresponding to
approximately ten years of market activity, from 2001Q4 to
2011Q3. We selected all stocks for which complete data are
available during this period. This resulted in the selection of
445S&P stocks, 78 FTSE stocks, and 193 Nikkei stocks.
All these stocks are classified within the Global Industry
Classification Standard (GICS) [58]. The complete
taxonomy can be found online [59]; however, we briefly
mention that there are ten top-level “sectors” (see Table I)
split into 24 subcategories called “industry groups,” which
are in turn divided into 68 “industries.”
It is important to note that, although we would expect

stocks within certain industry sectors to be correlated with
each other, we do not expect to observe this effect within
and throughout all industry sectors. Previous research in the
area of stock clustering [4–6,20,60,61] (see also our
discussion in Sec. II) has shown some relationships
between the industry sectors and clusters of stocks iden-
tified by the various methods. We therefore expect to find a
certain degree of overlap with this research. However, our
choice of null models in conjunction with our tailored
community detection algorithms is designed to uncover
nontrivial correlations, beyond a direct mapping to industry
sectors, such as finding stocks from different industry
sectors that tend to move together, and even in opposition
to other stocks in their own sector. It is therefore useful to
use industry sectors not as a target but as a baseline to
highlight important and nontrivial deviations identified by
the community detection algorithms.
As with the benchmarks described in Sec. IV D, each set

of financial time series was used to initially create a
correlation matrix C that was then filtered to produce

TABLE I. The 10 industry sectors in the Global Industry
Classification Standard (GICS), with the color representation
used to highlight the sectors in the following figures.

Consumer discretionary: Consumer staples:
Energy: Financials:
Health care: Industrials:
Information technology: Materials:
Telecommunication services: Utilities:
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the matrix CðgÞ following the procedure described in
Secs. II D and IVA. Each such matrix was then operated
on individually by the three community detection algorithms
described in Sec. IV. We found that all algorithms always
generate very similar partitions. This important result, which,
for the sake of exposition, is postponed to Sec. V E, implies
that we can refrain from showing the results of every
algorithm. For brevity, we will instead select representative
exemplars, with the understanding that any one of the
algorithms would generate very similar results.

B. Standard approaches

Before showing the main results of our own methodology,
as a preliminary study we illustrate what would be obtained
by using some of the standard approaches available, in
particular, the correlation threshold described in Sec. II A
and the community detection built on the network-based
modularity described in Secs. III B and III C.

1. Asset graph from Fisher-transformed correlations

As we discussed in Sec. II A, imposing a threshold on the
entries of a correlation matrixC allows us to obtain an asset
graph where links connect the more strongly correlated
pairs of stocks [4,19,20]. In Fig. 5, we show the effect of
this procedure on our S&P 500 data. Rather than showing
the results for multiple choices of the threshold, we used a
rough criterion to select a unique threshold that would, in
principle, correspond to a standard level of statistical
significance. This criterion is as follows.
As well known in statistics [62], one can easily show

that, under the null hypothesis, two time series Xi and Xj of
length T representing T realizations of two independent
and normally distributed random variables, the quantity

zij ≡ artanhCij ¼
1

2
ln
1þ Cij

1 − Cij
ð43Þ

(where Cij is the sample correlation coefficient) is distrib-
uted as a normal variable with zero mean (representing the
population correlation coefficient in the case of indepen-
dent variables) and standard error

σ ¼ ðT − 3Þ−1=2: ð44Þ

In other words, under the above null hypothesis, we expect
a concentration of values of zij around zero, with standard
error σ.
In order to detect significant deviations from the null

hypothesis, one may select a threshold τ such that only the
values outside τ standard errors, i.e., jzijj > τσ, are con-
sidered as statistically significant. This means that one can
select a threshold zτ ≡ τσ for zij. In terms of the correla-
tions Cij, the corresponding critical value is

Cτ ≡ tanh zτ ¼
expð 2τffiffiffiffiffiffiffi

T−3p Þ − 1

expð 2τffiffiffiffiffiffiffi
T−3p Þ þ 1

: ð45Þ

A suitable choice of the value of τ can be used as a
threshold to project the correlation matrix into an asset
graph at the corresponding significance level: Specifically,
one can draw a link only if jCijj > Cτ. The advantage of
introducing the above criterion is that, at least in principle,
it associates a precise statistical significance level to any
value of the threshold (there are, however, various problems
with this approach, aswe briefly comment later). Thismakes
it possible to select a unique threshold value corresponding
to a standard accepted level of significance.
We used the above approach as a rough criterion to select

an indicative threshold, choosing τ ¼ 2 so that only the
correlations lying two standard deviations away from the
null hypothesis are, in principle, retained. The resulting
asset graph for the stocks of the S&P 500, plotted in Fig. 5,
was visualized using a clustered rendering [63] of all the
stocks that do not end up completely isolated after the
filtration, according to the Fruchterman-Reingold [64]
force-based algorithm. As expected, we immediately see
a significant correspondence between groups of densely
connected nodes and industry sectors. However, there is no
linear relationship between the attractive and repulsive
forces defined by the graph-drawing algorithm and the
contribution of the corresponding correlations to the mod-
ularity. As such, the visualization of the graph cannot be
directly used to partition the network into communities.
Moreover, it should be noted that the approach we have

used to define a threshold has two main theoretical
disadvantages: First, it assumes normally distributed log-
returns (while it is well known that real log-return dis-
tributions are fat-tailed [65,66]); second, it does not
introduce multiple hypothesis test corrections. A more
rigorous way to statistically validate links in a correla-
tion-based network would be that of using numerical
bootstrapping methods such as the one considered in
Ref. [67].
In any case, since no search over the space of possible

partitions is performed, the asset-graph method cannot
identify communities of stocks that are more strongly
correlated internally than with the rest of the market. As
we anticipated in Sec. II A, this leaves the problem we
started with unsolved. We also recall from Sec. IV B 2 that
our methodology detects residually anticorrelated com-
munities. This property, which wewill illustrate in Sec. V D
for the data considered here, cannot be achieved by any
threshold-based method or any of the other available
methods we described in Sec. II.

2. Naive application of community detection

As another baseline reference, in Fig. 6 we show the
result of applying, to the same S&P 500 data, the
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community detection described in Sec. III B, i.e., by
treating the correlation matrix C as a weighted network
and running an ordinary (network-based) community
detection algorithm [13,14]. We see that the resulting
trivial community is a single one spanning the entire set
of stocks. In such a case, the pie chart depicting the
community merely illustrates the distribution of industries
within the S&P 500. The same result is obtained if one uses

the correlation-based modularity Q1ð~σÞ defined in Eq. (33)
in terms of the null model hCi ¼ 1 (i.e., assuming that all
time series are completely independent and of infinite
length).
In the first case, this result is due to the inconsistent

structure of the modularity and to the resulting bias of
the algorithms used to maximize it, as we discussed in
Sec. III B. In the second case, it is due to the inadequacy of
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FIG. 5. Asset graph for the S&P 500 (log-returns of daily closing prices from 2001Q4 to 2011Q3). The network is generated from the
correlation matrix of the constituent stocks, after taking the Fisher transform and setting a threshold at 2 standard deviations. The color of
each node represents the industry sector to which that stock belongs (see Table I). The force-based layout clearly indicates the existence
of strong connections between stocks of the same industry sector; however, this approach (like any other threshold-based approach)
cannot identify communities of stocks that are internally more correlated than with the rest of the market, and mutually anticorrelated.
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the null model defined in Eq. (26) for financial correlations
(see Sec. IVA): The community detection algorithm finds
only a single community because of the systemic correla-
tion of the market mode affecting all stocks simultaneously.

C. Community detection using our method

We now come to the application of our own methodol-
ogy described in Sec. IV. In Fig. 7 we show the result of the
application, to the same daily S&P 500 data, of the
appropriately redefined community detection methods
introduced in Sec. IV B, specifically making use of the
modularity Q3ð~σÞ defined in Eq. (35). Since such null
models discount both random and market-wide correla-
tions, the community detection algorithms are now able to
successfully find correlations that exist in between the
microscopic and macroscopic levels. For the S&P 500, the
result is a set of five mesoscopic communities whose
relative size (the number of nodes in each community)
is expressed by the size of the pie chart in the graph. The
relative breakdown of the stocks in each community,
classified according to their top-level GICS sector (see
Table I), is represented by the fraction of the pie chart for
that community.
In addition to the communities presented for the S&P

500, in Figs. 8 and 9 we also provide the communities for
the FTSE 100 and the Nikkei 225, respectively, again
detected using the null model from Eq. (35). As before, the
naive community detection would place all stocks into a
single community (not shown). For all of these data sets,
the values of the maximized modularity Q3ð~σ�Þ achieved
by the optimal partitions will be shown later in Sec. V E.
While at first glance it may seem as though there is no

particular pattern to the community structures in the three
markets (as each community contains a plethora of stocks
from different industry sectors), a closer look at the
industries to which the stocks belong does in fact yield
some interesting observations. First and foremost, some of

the industry sectors tend to dominate communities, where
in some cases 100% of the stocks for a particular industry
sector are in the same community, meaning that, on
average, over the past ten years, they have all remained
correlated. Examples of this include Energy ( , community
B), Financials ( , community C), and Information
Technology ( , community D) in the S&P; Utilities ( ,
community A), Health Care ( , community A), Information
Technology ( , community C), Telecom. Services ( ,
community C), and Energy ( , community E) in the
FTSE; and finally, Utilities ( , community B), Energy
( , community B), and Consumer Staples ( , community
B) in the Nikkei.
There are also instances where top-level sectors are split

among different communities according to their subclassi-
fication (Industry Group and Industry). This is very inter-
esting because it shows that subgroups of stocks within one
sector are often more correlated with a different sector than
their own sector.
Other interesting cross-sector correlations can be found

too, with Health Care, for example. In the FTSE commun-
ities, Health Care stocks ( ) are exclusively in community
A, whereas in the S&P, they are predominately in com-
munity E, with some in community D. Interestingly

FIG. 6. The trivial, single community containing all stocks of
the S&P 500 (log-returns of daily closing prices from 2001Q4 to
2011Q3), obtained by either naively treating the correlation
matrix as a weighted network and using the ordinary network-
based modularity or, alternatively, using the correlation-based
modularity Q1ð~σÞ (i.e., without filtering the correlation matrix).
In both cases, the Louvain algorithm (see the Appendix) has been
used. The colors represent different GICS sectors (color legend in
Table I) and span an area proportional to the number of stocks in
each sector.

A

B

C

D

E

FIG. 7. Communities of the S&P 500 (log-returns of daily
closing prices from 2001Q4 to 2011Q3) generated using our
correlation-based modularity Q3ð~σÞ with the Louvain algorithm
(see the Appendix). Individual communities are labeled A
through E, and the pie chart represents the relative composition
of each community based on the industry sectors of the
constituent stocks (color legend in Table I). The blue intercom-
munity link weights are negative, indicating that the communities
are all residually anticorrelated. The red circles around each
community indicate that the total intracommunity correlations are
all positive.
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enough, in the latter case, the Health Care Technology
industry sector stock from the Health Care sector is in
community D, which also happens to be the community
containing all of the Information Technology (IT) stocks
( ), whereas all of the Pharmaceutical stocks are in
community E, which contains the bulk of the Consumer
Staples ( ) stocks. The reader might, at this point, notice
that the FTSE community A containing all Health Care ( )
stocks also contains the bulk of the Consumer Staples ( )
stocks. It is probably not surprising then to discover that
those Health Care stocks are comprised entirely of
Pharmaceuticals. We find an identical relationship between
Pharmaceuticals and Consumer Staples in community B of
the Nikkei 225 as well. Furthermore, the one other Health
Care stock, a Health Care Equipment & Supplies stock,
trades in the same community as the IT stocks. This might
not be particularly interesting except for the fact that in the
Nikkei, the vast majority of IT sector stocks are subclassi-
fied as Electronic Equipment.
One might continue finding interesting trends such as

these; however, our purpose is not to glean specific
qualitative information regarding financial markets but
rather to illustrate how the underlying quantitative infor-
mation can be ascertained from the raw data, through the
appropriate choice of null models in conjunction with the

process of community detection. The most important result
of this process is the successful identification of meso-
scopic communities of correlated stocks that are irreducible
to a standard sectorial taxonomy and also anticorrelated
with each other, as we now discuss.

D. Residually anticorrelated communities
and portfolio optimization

The age-old proverb, “Don’t put all your eggs in one
basket,” could never be more insightful than when deciding
how to invest one’s money. Entire departments of almost
every investment bank, insurance firm, and hedge fund are
dedicated to picking the right baskets for their customers’
nest eggs. This process is often referred to as portfolio
optimization (or asset allocation) and involves optimizing
the way in which a sum of money is divided up between a
variety of financial instruments such that one maximizes
the return for a given risk or, alternatively, minimizes the
risk for a given return. According to modern portfolio
theory (MPT) [68–70], which is widely used in the
financial world to calculate asset allocations, one of the
most effective ways to accomplish this is through diversi-
fication, that is, to select groups of assets which are as
uncorrelated as possible, or even anticorrelated.
Clearly, we can identify numerous parallels between

MPT and our community detection method. As we antici-
pated in our proof of Eq. (41), a key property of the
correlation-based modularity is that its maximization will
identify mutually anticorrelated groups of time series

A
B

C

D

FIG. 9. Communities of the Nikkei 225 (log-returns of daily
closing prices from 2001Q4 to 2011Q3) generated using our
correlation-based modularity Q3ð~σÞ with the Louvain algorithm
(see the Appendix). Individual communities are labeled A through
D, and the pie chart represents the relative composition of each
community based on the industry sectors of the constituent stocks
(color legend in Table I). The blue intercommunity link weights are
negative, indicating that the communities are all residually anti-
correlated. The red circles around each community indicate that the
total intracommunity correlations are all positive.
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D

E

FIG. 8. Communities of the FTSE 100 (log-returns of daily
closing prices from 2001Q4 to 2011Q3) generated using our
correlation-based modularity Q3ð~σÞ with the Louvain algorithm
(see the Appendix). Individual communities are labeled A through
E, and the pie chart represents the relative composition of each
community based on the industry sectors of the constituent stocks
(color legend in Table I). The blue intercommunity link weights are
negative, indicating that the communities are all residually anti-
correlated. The red circles around each community indicate that the
total intracommunity correlations are all positive.
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(where anticorrelations are intended as residual, if some
filtering has been applied). Indeed, in Figs. 7, 8 and 9, all
the links connecting different communities have negative
weights, i.e., all communities are mutually anticorrelated.
The (residual) anticorrelations among communities

allow us to identify combinations of stocks, which on
top of the overall market mode and purely random
fluctuations, move in opposition to each other. Recalling
from Eqs. (A6), (A8) and (A9) that

~CðlÞ
AB ¼ Cov½ ~XA; ~XB� − hCov½ ~XA; ~XB�il ð46Þ

where ~XA ≡P
i∈AXi, we obtain a practical recipe to

construct a set f ~XAg of community-specific indexes (each
built as the sum of the time series of the stocks within a
community) such that, as follows from Eq. (41),

Cov½ ~XA; ~XB� < hCov½ ~XA; ~XB�il if A ≠ B: ð47Þ
In other words, the two indexes are residually less corre-
lated with each other than expected under the null model;
i.e., their mutual filtered correlations are negative. This is a
desirable trait from the point of view of risk management
and portfolio optimization.

E. Comparative analysis of the three algorithms

In Fig. 10 and in Table II, we show results supporting a
claim that we anticipated at the beginning of this section,
i.e., the fact that the three algorithms we introduced in
Sec. IV B identify a very similar community structure on
the data we considered. This finding makes the results
shown so far quite robust under changes of the protocol
used to derive them.
In particular, in Fig. 10 we show the value of the

maximized modularity Q3ð~σ�Þ and the number of detected

communities as a result of running all of our three algorithms
on the filtered correlation matrices for the S&P 500, the
Nikkei 225, and the FTSE 100. We recall from the
discussion following Eq. (38) and from the benchmarks
studied in Sec. IVD that, unlike the corresponding problem
in network analysis, our choice of Cnorm implies very small
values of the maximized modularity, even in the presence of
well-defined communities, when the market mode is strong.
So the small values of Q3ð~σ�Þ shown in Fig. 10(a) do not
imply a poor or weak community structure. It can be seen
that all three algorithms perform very closely in terms of the
maximized modularity value they achieve. Similarly, if we
compare the number of communities found by the three

FIG. 10. Maximized modularity values Q3ð~σ�Þ (a) and number of detected communities (b) for each of the three markets (log-returns
of daily closing prices from 2001Q4 to 2011Q3). The green bar is the Potts algorithm, the orange bar is the Louvain algorithm, and the
blue bar is the spectral algorithm.

TABLE II. Comparison of the relative variation of information
between the optimal partitions found by all algorithms, for the
S&P 500, the Nikkei 225, and the FTSE 100. The data are
log-returns of daily closing prices from 2001Q4 to 2011Q3.

S&P 500 Potts Louvain Spectral

Potts 0 0.019 0.09
Louvain 0.019 0 0.08
Spectral 0.09 0.08 0

Nikkei 225 Potts Louvain Spectral

Potts 0 0.007 0.04
Louvain 0.007 0 0.04
Spectral 0.04 0.04 0

FTSE 100 Potts Louvain Spectral

Potts 0 0.11 0.11
Louvain 0.11 0 0.05
Spectral 0.11 0.05 0
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methods (see Fig. 10(b)), we find that the number of
communities is quite stable as well.
In Table II, we quantify more rigorously the differences

in the composition of the communities detected by the three
algorithms, by showing the VI (see Sec. IV D) among all
pairs of algorithms, for all three indexes. The values are

quite low, indicating that the partitions found by different
algorithms are very similar.

F. Hierarchical community structure of the market

We now come to the application of the multiresolution
community detection approach we introduced in Sec. IV C.

A1 A2

A3

A4

B1

B2

B3 B4

C1

C2

C3

C4

D1
D2

D3

D4
D5

D6

E1

E2

E3

E4

E5

FIG. 11. Our multiresolution community detection method resolves the subcommunity structure of the five communities of the S&P
500 (see Fig. 7). Community A mainly comprises Consumer Discretionary and Industrial stocks, B all the Energy stocks, C all the
Finance stocks, and D all the IT stocks, while E is highly heterogeneous but very well resolved into five separate subcommunities
mainly comprising Utilities, Industrial, Health Care, Telecommunication Services, and Consumer Staples stocks, respectively. Besides
this relatively predictable partition, we note that Industrials stocks, and to a lesser extent also Materials and Consumer Discretionary
stocks, are quite dispersed across different communities. (From cross-correlations of log-returns of daily closing prices from 2001Q4 to
2011Q3; the Louvain algorithm has been used.)
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In the case of financial markets, the community-specific
correlation responsible for the modular structure shown so
far can be regarded, from the perspective of all stocks
within one community, as a “micro market mode.” Just as
the market mode discussed previously is responsible for
the collective tide of an entire market, a similar force can be
extrapolated at the community level. As discussed in
Sec. IV C, accounting for this “community mode” in the
leading eigenvalue and corresponding eigenvector of the
correlation submatrix restricted to an individual community
allows us to incorporate its effects, together with those of
the overall market mode, into the null model and, again,
detect any residual underlying structure.
Figure 11 shows the result of a single layer of recursion

into the five communities of the S&P 500 (depicted
previously in Fig. 7). Again, we note that the subcommun-
ities are all residually anticorrelated with each other (within
each parent community) but maintain an internal positive
correlation. Although not obvious from the graph, the
subcommunities tend to fall along GICS industry sector
lines, with some interesting exceptions, as before.
To call out a few examples, in community D (Fig. 11),

which contains all of the IT stocks, we see the subcommun-
ities separating along IndustryGroup and Industry lines [71].
Subcommunity D5 is comprised of only Software stocks,
D4 contains all of the Semiconductor & Semiconductor
Equipment stocks, and D2 contains all of the Internet
Software & Services stocks. Interestingly enough though,
D2 also contains Amazon Inc. and Priceline Inc. from the
Consumer Discretionary Sector, which one could argue are
quite aligned with the Internet. Continuing the analysis
further, we see that in communityC, the Finance community
subcommunity C2 contains all of the Commercial Bank
stocks, while C3 contains all but one of the Insurance

companies. C4 is exclusively Real Estate Investment Trusts
(REITs) and accounts for all of them. Similar partitions can
be seen in the other subcommunities, and further recursion
into these communities produces still further separation,
close to but not exactly in line with the GICS classification.
Figure 12 depicts the hierarchical nature of the S&P 500

to three layers deep. The process can be continued until no
single community can be partitioned further into any
combination of two or more sets that are anticorrelated
with each other. For instance, community E (Fig. 11),
which contains a variety of stocks from various GICS
sectors, separates out such that the bulk of the stocks in the
different sectors find themselves in their own subcommun-
ity. If we further probe into community E1, which contains
all of the Health Care stocks, we see that the subcommun-
ities (not shown) fall very closely along Industry lines, with
five communities each comprised predominantly of
Pharmaceutical, Biotechnology and Life Science Tools,
Health Care Providers & Services, Health Care Equipment
& Supplies, and everything else, respectively. Albeit
interesting, these results invite inspection of the stocks
that end up in the “everything else” community. These
stocks were deemed to be correlated with the other Health
Care stocks, when they were all placed in community E1,
and they include McGraw Hill Inc., H&R Block, andWaste
Management Inc. None of these stocks immediately stands
out as being fundamentally related to Health Care.
Similar outliers exist in the other communities as well. It

may well be the case that there is good reason for their
association, for example, a shared parent company, sizable
investment, common board members, or some other
significant relationship, or it may be purely coincidental.
Gaining a better understanding of this takes us to our next
line of experimentation.

A

A1

A4 A3 A2

B3

B2 B4

B1

C1

D1 E1

E3 E4
E2 E5D2

D6 D3 D5
D4C2 C3 C4

B

S&P 500

C D E

FIG. 12. Multiresolution community detection reveals the hierarchical structure of the communities of the S&P 500 (from cross-
correlations of log-returns of daily closing prices from 2001Q4 to 2011Q3). The dendrogram gives an alternative, combined
representation of Figs. 6, 7 and 11. (The modified Louvain algorithm has been used.)
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VI. MULTIFREQUENCY COMMUNITY
DETECTION

Having examined the mesoscopic structure of a set of
financial markets, one might be curious as to whether that
structure is specific to the chosen frequency of the original
time series. In other words, one can check whether the
same communities would be retrieved if the returns that
comprised the original time series were calculated every
minute, every half hour, or every two days. To answer this
“multifrequency” community detection problem, in this
section, we evaluate the robustness of partitions at a variety
of temporal resolutions.

A. Multiple-frequency data

In order to maintain consistency with the results pre-
viously described in this paper, we use the same time frame
but, instead of working with daily log-returns, we created
new data using minute log-returns for the S&P 500 stocks.
This process has the initial effect of greatly increasing the
amount of data being used: From 2500 data points per stock
for the daily returns to approximately 900,000 for the
minute returns. In order to accommodate some missing data
from the minute returns, we had to reduce the set of 445 to
413 stocks, noting that the removed stocks were relatively
evenly distributed across the top-level sectors of the GICS,
so as not to deplete any one particular sector. With the
minute return time data of these 413 stocks, we created nine
new sets of time series, corresponding to a variety of
different resolutions Δt spanning the same ten-year period:

Δt ∈ f1; 5; 10; 15 & 30 mins; 1 hour; 0.5; 1 & 2 daysg:

For example, the 5-min data were created by taking the
price of every stock every 5th minute throughout the day.
From these nine sets of time series, we then proceeded in
the same fashion as was previously described for daily
return data, creating correlation matrices and leveraging
RMT filtering to produce the respective null models.

B. Robustness over multiple frequencies

To measure the effects of resolution, we applied all three
of the community detection algorithms discussed above to
all nine data sets, yielding various values for the modularity
Q3ð~σ�Þ of the partition (see Fig. 13). Since there can be
multiple peaks within a modularity landscape [72], all
yielding the same value of Q3ð~σ�Þ but exhibiting different
community structures, we use VI (see Sec. IV D) as a
measure of the difference between the partitions. Since VI
is a comparative measure, we (arbitrarily) use the commu-
nity structure previously ascertained from the daily returns
as the point of reference. Thus, as can be seen in Fig. 14, the
VI for the 1-day returns is 0 by construction, indicating
perfect similarity, whereas the community structure for
every other resolution shows some level of deviation.

Overall, it can be seen from the combination of
Figs. 13 and 14 that there exists a considerable amount
of consistency between the communities detected at differ-
ing resolutions, with the Q3ð~σ�Þ values remaining almost

FIG. 13. Multifrequency analysis of the modularity Q3ð~σ�Þ for
the different methods, as the resolution goes from 1-min intervals
to 2-day intervals. A relatively consistent value of the modularity
can be seen across all time-step resolutions. (The Potts algorithm
is shown by green squares, the Louvain algorithm by orange
circles, and the spectral algorithm by blue triangles.)

FIG. 14. Multifrequency analysis of the variation of informa-
tion between each of the nine data sets of different time
resolutions and the partition for the data set of daily time steps.
It can be seen that all data sets yield partitions quite similar to
each other, but there is still slight degradation as the resolution
gets finer. (The Potts algorithm is shown by green squares, the
Louvain algorithm by orange circles, and the spectral algorithm
by blue triangles.)
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constant and VI deviating slightly with each resolution
interval but indicating, in most cases, no more than a 10%
difference between the communities of a particular reso-
lution and those of the 1-day resolution. This means that the
correlations between large groups of stocks are not strongly
dependent on the resolution of the chosen time step.
One might expect to see fluctuations in the variance of
stocks at smaller time resolutions, where the more volatile
periods of trading (such as market open and market close)
are captured. However, since we are dealing with correla-
tion matrices, this variance is normalized away. Moreover,
we recall that our definition of Cnorm in Eq. (38) controls for
the varying volatility (variance of the total log-return over
all stocks), allowing us to focus solely on the relationships
between the stocks themselves.

C. Detection of hard and soft stocks: Overlapping
community structure

Although the values of Q3ð~σ�Þ and VI do provide
reasonable insight into the robustness of community
structure at the different resolutions, we take the analysis
one step further and examine the communities from the
perspective of the individual stocks. In other words, we can
further examine the community affiliation of individual
stocks at the various resolutions to ascertain the frequency
of times any two stocks find themselves in the same
community as each other. We show the results of this
analysis in Fig. 15, which is a heat map of the different
stocks, such that the color of every pair indicates the
frequency of co-occurrence in the same community, across
all resolutions. For example, if two stocks are always in
the same community (unit frequency), then their entry in
the heat map is white, while if they are never in the same
community regardless of the time step chosen (zero
frequency), then their entry is black. Stocks that share a
community for some time steps are shades of red (lower
frequency) or yellow (higher frequency).
As we can see, the results are in line with the graph of VI

in Fig. 14. In other words, the communities tend to consist
of a large core of hard stocks that are unwavering over the
different resolutions, plus a small amount of soft stocks that
fluctuate between communities, presumably giving rise to
the 10% fluctuation in community structure observed with
the VI analysis. A significant finding is the existence of
a group of soft stocks that alternate across the Utilities,
Health Care, and Consumer Staples communities, and of
another group of soft stocks alternating across the
Consumer Discretionary and Financials communities.
It should be noted that our identification of the hard

stocks that are, most of the time, part of the core of a
community and the soft ones that are instead alternating
across communities is a way to take the potentially over-
lapping nature of communities into account, even if using a
nonoverlapping method like modularity maximization.
This possibility has no counterpart in the standard

network-based community detection problem, and it is
offered by the intrinsic dependence of correlation matrices
on the frequency of the original time series. In what
follows, we will use the dynamical evolution of correlations
to explore another dimension of variability leading to an
alternative way to resolve overlapping communities of
multiple time series.

VII. TIME DYNAMICS

When optimizing a portfolio, there is a constant need to
choose an adequate period of history from which to try to
predict future behavior of the assets in the portfolio.
Choosing too short a period will inaccurately bias one’s
results because extreme events are weighted too heavily.
Similarly, choosing too long a history can imply stability
where none exists. In general, analyzing the stability of
communities over time provides us with reassurance that
our models are in fact producing statistically significant
results as well as providing insightful information about the
data themselves. For example, it is well known in finance
that markets become much more globally correlated during
periods of economic decline. Stated in the terminology we
have been using throughout this paper, they fall more under
the influence of the market mode and relinquish the
structure provided by the group mode. That being the
case, we would expect to see communities lose coherence

FIG. 15. Multifrequency heat map showing the normalized
co-occurrence of different pairs of stocks within the same
community, for the same time period but over various temporal
resolutions of the original time series (white: unit frequency;
black: zero frequency). The stocks have been ordered using
simulated annealing to position stocks with a high degree of
cross-correlations next to each other. To further inform the graph,
the GICS sectors have been specified, emphasizing which
groupings of stocks tend to associate with a particular sector.
Overall, the blocks of large black and white areas indicate a high
degree of coherence of the communities at different resolutions.
However, there are two groups of soft stocks, one alternating
across Utilities, Health Care, and Consumer Staples, and one
alternating across Consumer Discretionary and Financials
(produced using the Louvain algorithm).
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during periods in the data set that we know to have been
economically troublesome, for example, the tech bubble
bursting from 2000–2001 or the subprime lending crisis,
2007–2008.
Since we have shown that the 15-min data set yields very

similar communities to the daily data set for the S&P, we
can feel reasonably assured that we can use 15-min data
instead of the daily data, which will allow us to examine the
S&P data set using a sliding time window of two years,
corresponding to a ratio T=N ¼ 6, and even look at more
fine-grained windows, e.g., six months.

A. Two-year window

We now seek to examine the community structure over
sequential periods of two years to unearth any anomalies
that might exist. We again apply the different methods of
community detection using the two-year window time-
series sets of the S&P 500 and subsequent null models
created using RMT filtering. As we did for our analysis
of resolution, here we evaluate the modularity function
Q3ð~σ�Þ for each period (see Fig. 16) along with the VI (see
Fig. 17), where for VI we are comparing each window with
the initial two-year window.
As before, we see that all three algorithms perform in a

reasonably similar manner. However, unlike our analysis of
robustness over different resolutions (which showed little
change in community structure or in the modularity), here
we see that Q3ð~σ�Þ fluctuates over the different windows.
We recall again that, as we mentioned in our discussion

following Eq. (38), our choice of Cnorm is already dis-
counting (the evolution of) the volatility of the market. Still,
we see that Q3ð~σ�Þ rises slowly from the period ending in
2003 to the period ending in 2007, implying an increase in
the strength of communities, and it then falls by more than
50% by the end of the period ending in 2009. This drop
implies a decoherence of the communities throughout that
period, quite possibly attributed to the financial crash of
2007–2008. This seems in line with the observation that
during periods of financial crisis, markets tend to become
more globally correlated, overwhelming the effect of
group-level correlations. However, it is interesting that
the values of VI have remained quite small and stationary
(Fig. 17). This indicates that, despite the fluctuating value
of the modularity (i.e., of the relative intracommunity
correlations), the composition of the communities has
remained very stable over time.

B. Six-month window

We can continue to probe this system at a finer-grained
resolution of time periods, to see if the observations made
with the two-year window hold up. Again, we plot both
Q3ð~σ�Þ and VI for the same ten-year period of the S&P and
present the results in Figs. 18 and 19, respectively. We can
immediately see that the homogeneity of community
structure that we see when probing the data using two-
year time windows still exists for the most part, but there
are some fluctuations in modularity and community com-
position over the various six-month periods. The graph of
Q3ð~σ�Þ in Fig. 18 reinforces the observation from Fig. 16 of

FIG. 16. Temporal trend in the values of Q3ð~σ�Þ for the
different methods over a two-year sliding window spanning
the time frame from October 2001 to October 2011. (The Potts
method is shown by green squares, the Louvain method by
orange circles, and the spectral method by blue triangles.)

FIG. 17. Temporal trend of VI showing the similarity in
community structure for the different algorithms over a two-year
sliding window spanning the time frame from October 2001 to
October 2011. (The Potts algorithm is shown by green squares,
the Louvain algorithm by orange circles, and the spectral
algorithm by blue triangles.)
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a significant drop in modularity around the time of the most
recent financial crisis and, more accurately, pinpoints it to
the last half of 2007. The VI plot in Fig. 19 indicates again
that although the strength of community structure, as
measured byQ3ð~σ�Þ, may have been decreasing, the overall

composition of the communities remained relatively
constant.
To further examine the coherence and fluctuations in

communities across all of the six-month windows, in
Fig. 20 we provide a heat map showing the mutual VI
between every two pairs of six-month windows. Each
square in the matrix is a colored representation of the
value of VI between the ith and jth six-month period.
Of particular interest, we can see in the lower-right corner
of the image (which displays the VI between the most
recent time windows) that the communities are slightly
more similar than communities generated from the other
windows. This indicates that there was less movement of
stocks between communities during the most recent couple
of years of the past decade. Additionally, these periods
are closer to the community structure observed when we
measured the entire ten-year period.
As far as explaining this behavior in financial and

economical terms, we are again left to hypothesize.
Perhaps the observed effect is due to a solidification of
communities of stocks caused by the financial collapse, or
perhaps it is merely the result of increased accessibility to
the markets. With the advent of smartphones, tablets, ease
of streaming, and subscribing to news feeds and social
networks in conjunction with faster trading systems, and
quantitative and high frequency trading, it is conceivable
that our increased access to information and the ability to
act on it in near real-time has caused a solidifying behavior
of the stocks within communities.

FIG. 18. Temporal trend in the values of Q3ð~σ�Þ for the
different algorithms over a six-month sliding window spanning
the time frame from October 2001 to October 2011. (The Potts
algorithm is shown by green squares, the Louvain algorithm by
orange circles, and the spectral algorithm by blue triangles.)

FIG. 19. Temporal trend of VI showing the similarity in
community structure for the different algorithms over a six-
month sliding window spanning the time frame from October
2001 to October 2011. (The Potts algorithm is shown by green
squares, the Louvain algorithm by orange circles, and the spectral
algorithm by blue triangles.)

FIG. 20. Heat map showing the value of VI between every pair
of six-month time windows, as well as the VI between each
window and the total ten-year period (leftmost column and top
row). Most notably, there is a slight increase in the similarity of
the communities of the last five periods from 2009–2011
(produced using the Louvain algorithm).
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C. Temporal coherence of communities:
Hard and soft stocks again

We display here one final take on the results obtained
from our sliding time window but this time with a stock-
centric view, similar to that which we performed for the
multifrequency analysis in Sec. VI. In the previous sec-
tions, we have alluded to how communities change with
time. One question that should be addressed in conjunction
with the previous discussion of time scales is then how the
composition of a community changes over time. We have
already seen from a variety of VI plots that across each of
the six-month periods, the sets of communities look slightly
different from each other, but what changes are actually
taking place? Are there groups of stocks that form tight
knit, unwavering cores of communities? Or do they morph
fluidly from one to the other, maintaining no coherence
over the entire span of ten years?
To address this, we examined the sets of stocks that

comprised the communities of each six-month time frame
of the S&P over the course of ten years and created a co-
occurrence matrix like the one previously shown in Fig. 15,
where we calculated the frequency of periods during which
any pair of stocks resided in the same community. The
resulting heat map is presented in Fig. 21. Again, pairs of
stocks that were in the same community all the time are
white, and those that were never in the same community
are black.
The list of stocks is too long to place on the figure as axis

labels, but from observing the raw results, we can make
some very interesting observations, which we have tried to
summarize by again labeling the graph with GICS industry
sectors. We can see that over the course of ten years, the
communities do exhibit strong cores which are unwavering

in their construction and constantly anticorrelated with each
other. For example, there exists a set of Core Energy, IT, and
Financial stocks that always reside in their own community
but never share a community with each other. Groups of
Energy, Materials, and Utilities stocks almost always share
the same community, but there have been instances when
they did not. Finance is broken into a couple of segments
of stocks, such as Banks, Real Estate Investment Trusts
(REITs), etc., where the smaller groups always trade with
each other but are not necessarily aggregated together
in a larger community. Similarly, Health Care stocks
are fractured in subsets of highly correlated groups of
Pharmaceuticals, Services, and Biotech, whose allegiance
to the larger industry sectors, such as IT and Consumer
Staples, is more fluid. These trends display an interesting
overlap with the hierarchical community structure of the
S&P discussed earlier in Sec. V F. We also see individual
stocks from one top-level industry sector spending most of
their time in communities comprised predominantly of a
different top-level industry sector, for example Amazon
(Consumer Discretionary) spends 90% of the time in the
IT group, as does Motorola (Telecommunications).

VIII. CONCLUSIONS

In this paper, we have addressed the challenging problem
of the detection of communities of strongly correlated time
series, whose importance resides in the possibility of
identifying a mesoscopic level of organization in the
dynamics of complex systems. While the available tech-
niques to analyze correlation matrices failed to detect such
modules, we have shown how the concepts of null models,
modularity, and community detection developed in net-
work theory can be appropriately modified in order to
successfully cluster matrices of multiple time series. Our
redefinitions of the standard methods solve a number of
problems encountered when correlation matrices are
naively regarded as weighted networks and when ordinary
community detection methods are used improperly.
Through the use of various financial markets as exam-

ples, we have demonstrated how community detection can
be used as a tool to extract specific structural information
from time-series data. By surfacing group correlations and
trends of the stocks in the S&P 500, the FTSE 100, and the
Nikkei 225, we were able to isolate well-defined commun-
ities of stocks such that each community exhibited an
internal positive correlation between its constituent stocks,
where those same stocks exhibited an aggregate residual
anticorrelation with the stocks of each of the other
communities. While some of these communities showed
an association with the more qualitative classification
expressed in the GICS industry sector taxonomy, our
approach was able to uncover a host of interesting
correlations between stocks of different sectors and indus-
try groups, as well as unsuspected residual anticorrelations
between stocks of the same sector. As such, our methods

FIG. 21. Coherence of communities over time. The heat map
shows the frequency of co-occurrence of different pairs of stocks
within the same community over time (white: unit frequency;
black: zero frequency). The stocks have been ordered using
simulated annealing to position stocks with a high degree of
cross-correlations next to each other. To further inform the graph,
the GICS sectors have been specified, emphasizing which
groupings of stocks tend to associate with a particular sector
(produced using the Louvain algorithm).
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and results show that the observed patterns are irreducible
to a standard taxonomy and therefore highlight nontrivial
patterns. Moreover, they could prove particularly useful in
a number of different fields of finance, such as portfolio
optimization and risk management.
It is worth pointing out that our modifications to the

Potts, Louvain, and Spectral Optimization algorithms for
community detection, although beneficial in and of them-
selves, act as a proof of concept opening the door to the
adaptation of other techniques existing in the field of
community detection, allowing, e.g., for overlapping,
multiresolution, or hierarchical communities [11,73,74].
Similarly, alternative null models controlling for additional
or more sophisticated features of the data can also be
developed and incorporated in our approach. The key point
is that these models, unlike the naive approach, which has
been used so far, should always be consistent with corre-
lation matrices. We hope that our approach will stimulate
further research in this direction. Moreover, although we
have focused on financial time series as our primary example
of real-world data, our general methodology can of course
be applied or adapted to any type of time-series data,
hopefully yielding equally promising results.
We conclude by noting that, abstractly, the ordinary

(network-based) community detection techniques and the
(correlation-based) clustering that we have introduced can
be thought of as lying at two opposite extremes of a more
general problem, in the following sense. The network-
based clustering is, in the vast majority of cases, aimed at
identifying groups of statically linked objects (as captured
by a single temporal snapshot of the network) while
disregarding their possibly correlated evolution. By con-
trast, the correlation-based clustering that we have intro-
duced assumes that the community-defining features are
precisely those determining synchronized trends of
dynamical activity among nodes, and that the presence
(if any) of static dependencies among the latter can be
disregarded. One could of course imagine a more general
framework where both static linkages and temporal corre-
lations contribute to the definition of communities, possibly
overcoming the “functional versus structural” dichotomy
such as the one existing in brain network analysis that we
mentioned in the Introduction. The present work thus
represents one step towards the introduction of a funda-
mentally more general interpolating formalism.
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APPENDIX: REFINING COMMUNITY
DETECTION METHODS

In this appendix, we show that we can successfully
reformulate three of the most popular network-based
community detection algorithms in order to properly detect
communities of correlated time series using the modified
modularity function defined in Eq. (36). We stress again
that, even if the techniques that we are going to describe can
be considered as three different algorithms implementing
the same method of modularity maximization, they are
often referred to as different “methods” in the literature.
In what follows, we will sometimes make use of this
somewhat improper terminology. We will also necessarily
use a vocabulary that applies more properly to networks
than to time series: For instance, a time series will be often
denoted as a “node” (or “vertex”) of the “network,” and the
correlation between two time series will be denoted as the
weight of the “link” (or “edge”) between the correspond-
ing nodes.

1. Modified Potts method

The first of the three methods we have selected is based
on the so-called q-state Potts model [42,50]. It represents
the system as a q-state spin glass, where each node
maintains a spin state σi (as given by some attempted
partition ~σ) and the weights of the edges between nodes
map to coupling strengths. So any partition of the network
is regarded as a spin configuration ~σ. In this paradigm, the
modularity Qð~σÞ is proportional to the negative energy
−Hð~σÞ of the system. The goal of optimization is then to
find the ground state of a spin glass, which corresponds to
the maximum value for the modularity. The use of a
multistate superparamagnetic model for graph clustering
was first introduced by Blatt, Wiseman, and Domany [75]
and later revised by Reichardt and Bornholdt [42,50]; it is
upon the latter that we base our extension to incorporate
multiple time series.
Within the q-state Potts spin-glass model, Reichardt and

Bornholdt construct a Hamiltonian by rationalizing a
number of energy contributions from the edges between
nodes within the same community and nodes in different
communities:

Hð~σÞ ¼ −X
i;j

aijAijδðσi; σjÞ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{internal links

þ
X
i;j

bijð1 − AijÞδðσi; σjÞ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{internal non-links

þ
X
i;j

cijAij½1 − δðσi; σjÞ�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
external links

−
X
i;j

dijð1 − AijÞ½1 − δðσi; σjÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
external non-links

; ðA1Þ

where the contributions from the various types of links can
be tuned through the set of coefficients aij, bij, cij, dij.
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Instead of directly maximizing the modularity Qð~σÞ
defined in Eq. (18), Reichardt and Bornholdt minimize
the Hamiltonian Hð~σÞ. The latter (under certain conditions
and some simplifying assumptions) can be condensed to

Hð~σÞ ¼ −X
i;j

½Aij − hAiji�δðσi; σjÞ; ðA2Þ

where Aij is the observed value and hAiji is the corre-
sponding null model for that edge. The actual search over
spin configurations is done using simulated annealing [76],
which is an approximate technique that, in general, returns
a different solution each time it is used.
In the same vein, introducing a Hamiltonian correspond-

ing to our correlation-based modularity is equally straight-
forward; however, we need to ensure that the logic and
derivation that were used to develop the original network-
based Hamiltonian hold true for a network created from
time-series data. For a correlation-based network, we have
the situation where every node is connected to every other
node, in principle eliminating the energy contributed by
nonlinks in Eq. (A1) above. However, as is ordinarily done
when applying the Potts model to weighted networks, we
can replace the energy contribution of nonlinks with the
energy contribution of links whose weight is less than
expected, allowing us to immediately introduce our null
model. Maintaining the balance between internal and
external edges (aij ¼ cij and bij ¼ dij) as was done by
Reichardt and Bornholdt in their original derivation of the
Hamiltonian, we end up with a variant of Eq. (A2) directly
derived from a complete weighted network where Aij and
hAiji are replaced by the observed correlation Cij and one
of our three null models hCijil defined in Sec. IVA, giving

Hlð~σÞ ¼ −X
i;j

CðlÞ
ij δðσi; σjÞ: ðA3Þ

Apart from the absence of Cnorm, the right-hand side of the
above expression is the opposite of the right-hand side of
Eq. (36). Therefore, our optimization method using the
Potts model will attempt to find the lowest value of the
Hamiltonian, which will correspond to the highest modu-
larity. For the rest, our algorithm is identical to the
procedure described by Reichardt and Bornholdt [42,50].
Therefore, the Potts model is a simple algorithm to adapt

to correlation matrices, the reason being that although the
modularity of the system is explained using a spin-glass
model, the actual optimization process is performed using
simulated annealing, which keeps working even if we use
our redefinition of modularity as the cost function [76].

2. Modified Louvain method

We now consider a second approach to the problem
of modularity optimization. Possibly one of the most
successful approaches, the Louvain method [51] (named
after the university from which it emerged), is a simple,

greedy, agglomerative algorithm whose strength lies in the
fact that it is computationally fast. Unlike the spin-glass
model, the Louvain method does not set up a framework for
its optimization problem. It simply starts from the defi-
nition of modularity specified in Eq. (18) and derives a new,
more computationally efficient equation for testing the
relative gain in modularity by moving a node from one
community to another. It is this equation that allows the
Louvain method to perform so well.
The method initially considers all nodes as placed in

individual communities and then calculates (sequentially
for each node i) the gain of modularity associated with
moving node i to the same community where each of its
neighbors j belong. The algorithm explores all possible
such moves and implements those that give the maximum
gain in modularity, and the first iteration stops when no
further improvement is possible. Then, a new “renormal-
ized” network is built by merging all nodes within the
previously found communities into a single “hypernode,”
and the algorithm is iterated again until there are no more
possible changes and a maximum of modularity is attained.
To do so, the renormalized weight of the link between two
hypernodes is defined as the sum of the weight of the links
between nodes in the corresponding two communities.
Links between nodes of the same community lead to self-
loops for the corresponding hypernode.
The key requirement of the Louvain method is that the

system can be properly renormalized, i.e., that successive
coarse-grainings of the system remain consistent with the
meaning of the modularity at the corresponding level of
aggregation. In an ordinary network, this is relatively
straightforward to show; i.e., a hypernode obtained merg-
ing two or more nodes can be legitimately interpreted (from
the point of view of the modularity function) as a coarse-
grained node with a self-loop to itself and renormalized
interactions to all other (hyper)nodes. It is, however, not
intuitively obvious whether our modularity defined in
Eq. (36) admits an equivalently consistent definition of
renormalized time series obtained by merging two or more
time series. And even if such a definition exists, one should
also understand how to correctly define the renormalized
interactions and self-loops. To this end, we recall from
Eq. (10) that if Xi and Xj are two standardized time series,
then Cij ¼ Cov½Xi; Xj�. We can therefore exploit the fact
that the covariance is a bilinear function of its arguments to
calculate the following renormalized interactions between
two hypernodes (communities) A and B:

X
i∈A

X
j∈B

Cij ¼
X
i∈A

X
j∈B

Cov½Xi; Xj�

¼ Cov

�X
i∈A

Xi;
X
j∈B

Xj

�
: ðA4Þ

The above formula shows that, if we define the renormal-
ized time series of community A as
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~XA ≡X
i∈A

Xi; ðA5Þ

then we can consistently define the renormalized inter-
actions as

~CAB ≡X
i∈A

X
j∈B

Cij ¼ Cov½ ~XA; ~XB� ðA6Þ

and the renormalized self-loops as

~CAA ¼ Cov½ ~XA; ~XA� ¼ Var½ ~XA�: ðA7Þ
We therefore find that, for a graph composed of financial
time series, renormalized interactions have a correct inter-
pretation in terms of covariances, rather than correlations.
They also show that the summation of a group of time
series yields something that resembles an index fund of the
set of stocks, so the concept of aggregating nodes maintains
a strong grounding in reality.
We now have to check whether the modularity function

remains consistent with the null model when defined at the
level of renormalized nodes. Note that the linearity of the
definition of ~CAB ensures that, given any of our null models
defined in Sec. IVA, we can write

h ~CABil ¼
X
i∈A

X
j∈B

hCijil: ðA8Þ

This means that the filtered quantity Cij − hCijil can be
similarly renormalized as

~CðlÞ
AB ≡X

i∈A

X
j∈B

CðlÞ
ij ðA9Þ

for each of the three cases in Eq. (37). Now, imagine that in
subsequent iterations of the model, the hypernodes are
further merged into “communities of communities.” The

resulting “metapartition” can be specified by a vector ~~σ of
dimension smaller than (or equal to, if the metapartition is
trivial) any of the original vectors ~σ. Each element ~σA
denotes the community to which the hypernode A is placed
by the metapartition. If ~σ denotes the underlying (node-level)

partition identified by the metapartition ~~σ (i.e., σi ¼ ~σA for
all i ∈ A), we can define the renormalized modularity

~Qlð~~σÞ≡ 1

~Cnorm

X
A;B

~CðlÞ
ABδð ~σA; ~σBÞ

¼ 1

~Cnorm

X
A;B

X
i∈A

X
j∈B

CðlÞ
ij δð ~σA; ~σBÞ

¼ 1

~Cnorm

X
i;j

CðlÞ
ij δðσi; σjÞ

¼ Qlð~σÞ; ðA10Þ
where, in analogy with Eq. (38), we have defined

~Cnorm ≡X
A;B

~CAB ¼
X
A;B

X
i∈A

X
j∈B

Cij ¼
X
i;j

Cij ¼ Cnorm:

Equation (A10) coincides with the original modularity
defined at the level of individual nodes. This means that
the modularity is manifestly invariant under renormaliza-
tion, implying that we can indeed consistently redefine a
coarse-grained modularity at each iteration of the Louvain
method.
The second requirement of the Louvain method is the

fact that the change in the modularity obtained by adding a
previously isolated node to a given preexisting community
can be easily calculated. This ensures the computational
efficiency of the algorithm. In adapting the model to
correlation-based networks, we must start from Eq. (36)
and check whether this is still the case and, if so, arrive at a
new corresponding expression for the modularity change.
We will do so by directly using the invariant modularity
defined in Eq. (A10) so that we are sure that the result
will hold at any aggregation level. Given the modularity
~Qlð~~σÞ, we denote the modularity change obtained by

adding the (hyper)node I to the community J by Δ ~QðI→JÞ
l

and calculate it as the difference between ~Qlð~~σ0Þ for a

(meta)partition ~~σ
0
[where I is part of the community J (i.e.,

~σ0I ¼ J)] and ~Qlð~~σ00Þ for a (meta)partition ~~σ
00
[where I is

isolated in its own community (i.e., ~σ00I ≠ J)]. Since
~σ0A ¼ ~σ00A for all A ≠ I and δð ~σ00I ; ~σ00AÞ ¼ 0 for all A ≠ I,
we can write this difference as

Δ ~QðI→JÞ
l ¼ ~Qlð~~σ0Þ − ~Qlð~~σ00Þ

¼ 1

Cnorm

X
A;B

~CðlÞ
AB½δð ~σ0A; ~σ0BÞ − δð ~σ00A ~σ00BÞ�

¼ 1

Cnorm

X
A

~CðlÞ
IA½δð ~σ0I; ~σ0AÞ − δð ~σ00I ; ~σ00AÞ�

¼ 1

Cnorm

X
A∈J

~CðlÞ
IA

¼
~CðlÞ
IJ

Cnorm
: ðA11Þ

In other words, the change in modularity obtained from
adding a (hyper)node I to a preexisting community J is
simply proportional to the renormalized interaction
between I and J, i.e., the sum of the (filtered) correlations
of all time series within I with all those within J. Note
that, in the above formula, the notation A ∈ J implies
A ≠ I since I does not (yet) belong to J.
Similarly, it is possible to calculate the change in

modularity −Δ ~QðI→J0Þ
l obtained when a (hyper)node I

belonging to a community J0 is disconnected from the
latter and placed in its own isolated community. Combining
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these two contributions, we can easily calculate the change
in modularity

−Δ ~QðI→J0Þ
l þ Δ ~QðI→JÞ

l ¼
~CðlÞ
IJ − ~CðlÞ

IJ0

Cnorm
ðA12Þ

obtained by moving a (hyper)node I from a community J0
to a different community J. So our reformulation above also
satisfies the second requirement of the Louvain method at
all aggregation levels and allows us to define a computa-
tionally efficient method to detect communities of time
series.

3. Modified spectral method

We now come to the third and final method of optimizing
the modularity cost function. Spectral optimization is the
process of using matrix eigendecomposition to recursively
bisect a network into communities of nodes according to
the principle of maximizing the modularity function [52].
The matrix that is the subject of the eigendecomposition is
the so-called modularity matrix appearing in Eq. (18) and
having entries Bij ¼ Aij − ðkikj=2mÞ. In other words, the
modularity matrix B is the difference between the observed
network, represented by the adjacency matrix A, and the
null model hAi. In the spectral method, the modularity
matrix is eigendecomposed into its constituent eigenvalues
and eigenvectors, the intent being to isolate the eigenvector
corresponding to the largest eigenvalue and use the signs of
the elements of this vector to infer an optimal partition.
Specifically, the network is split into two communities,
each comprising the nodes corresponding to eigenvector
components with the same sign. The process is imple-
mented recursively in each partition (deriving a new
modularity matrix for every community), until no further
increase in modularity is obtained.
We need to extend this algorithm to accommodate

correlation-based networks. In our case, as is clear from
Eqs. (36) and (37), the modularity matrix is CðlÞ, i.e., the
filtered matrix defined using one of our three null models.
We will therefore adapt the procedure outlined by Newman
in the original paper and implement the spectral optimi-
zation method by iteratively bisecting the network into two
subcommunities (say A and B). Each such bisection can be
denoted either by an appropriate partition vector ~σ or,
equivalently, by a vector ~s having elements si ¼ −1 if node
i belongs to (say) community A and si ¼ þ1 if i belongs to
communityB. The correspondence between these vectors is
given by

δðσi; σjÞ ¼
sisj þ 1

2
: ðA13Þ

Given a bisection, we can therefore rewrite our unified
correlation-based modularity Qlð~σÞ defined in Eq. (36) as

Qlð~sÞ ¼
1

Cnorm

X
i;j

CðlÞ
ij

sisj þ 1

2

¼ 1

2Cnorm

X
i;j

CðlÞ
ij sisj

þ 1

2Cnorm

X
i;j

CðlÞ
ij : ðA14Þ

In Newman’s original formulation, the last term sums to
zero because the network-based modularity matrix B has
the property that all of its rows sum to zero. However, this is
not the case with our correlation-based modularity matrix
CðlÞ defined in Eq. (37). So we retain the second term and,

defining CðlÞ
tot ≡P

i;j C
ðlÞ
ij , rewrite our modularity in matrix

form as

Qlð~sÞ ¼
hsjCðlÞjsi
2Cnorm

þ CðlÞ
tot

2Cnorm
: ðA15Þ

The vector ~smaximizingQlð~sÞ is easily found as the vector
matching the signs of the components of the eigenvector
of CðlÞ corresponding to the largest eigenvalue. Clearly,

neither Cnorm norCðlÞ
tot has an effect on the result, making the

original procedure of the spectral algorithm consistent with
our reformulation.
After the initial bisection, we need to calculate the

potential modularity change ΔQl obtained by further
subdividing the communities yielded in the previous step.
Let us consider the case where one community (say, A)
among the ones obtained thus far in the algorithm is further
subdivided into two new communities (say, A1 and A2).
If ~s is a vector (restricted to the vertices in A only) denoting
the bisection of A into A1 and A2, then the modularity
change associated with such bisection reads

ΔQðA1jA2Þ
l ¼ 1

Cnorm

�X
i;j∈A1

CðlÞ
ij þ

X
i;j∈A2

CðlÞ
ij − X

i;j∈A
CðlÞ
ij

�

¼ 1

Cnorm

�X
i;j∈A

CðlÞ
ij

sisj þ 1

2
− X

i;j∈A
CðlÞ
ij

�

¼ 1

2Cnorm

�X
i;j∈A

CðlÞ
ij sisj −

X
i;j∈A

CðlÞ
ij

�

¼ hsjCðlÞ
A jsi

2Cnorm
− ~CðlÞ

AA

2Cnorm
; ðA16Þ

where CðlÞ
A represents the submatrix of CðlÞ restricted to the

subset of nodes within community A, and the notation ~CðlÞ
AA

is borrowed from Eq. (A9). As with the initial bisection, ~s is

chosen to maximize ΔQðA1jA2Þ
l by selecting its elements to
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match the sign of the eigenvector corresponding to the

largest eigenvalue of the matrix CðlÞ
A .

As for the original algorithm, our modified spectral
method proceeds by iterating the above procedure until no
further bisection can make the modularity increase.
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