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The advent of social media and microblogging platforms has rad-
ically changed the way we consume information and form opin-
ions. In this paper, we explore the anatomy of the information
space on Facebook by characterizing on a global scale the news
consumption patterns of 376 million users over a time span of
6 y (January 2010 to December 2015). We find that users tend
to focus on a limited set of pages, producing a sharp community
structure among news outlets. We also find that the preferences
of users and news providers differ. By tracking how Facebook
pages “like” each other and examining their geolocation, we find
that news providers are more geographically confined than users.
We devise a simple model of selective exposure that reproduces
the observed connectivity patterns.

computational social science | Facebook | news consumption |
misinformation

A large body of research has addressed news consumption
on online social media and its polarizing effect on public

opinion (1–5). Social media and microblogging platforms have
changed the way we access information and form opinions. Com-
munication has become increasingly personalized, both in the
way messages are framed and how they are shared across social
networks. Furthermore, according to a recent study (6), ∼63%
of users acquire their news from social media, and these news are
subject to the same popularity dynamics as other forms of con-
tent. Recent works (7) provide empirical evidence of the pivotal
role of confirmation bias and selective exposure in online social
dynamics. Users, indeed, tend to focus on specific narratives and
join polarized groups (i.e., echo chambers) (8–10), where they
end up reinforcing their worldview [even if pieces of content are
deliberately false (11, 12)] and dismissing contradictory infor-
mation (13). Discussion and elaboration of narratives in such
a segregated environment elicits group polarization and nega-
tively influences user emotion (14–17). Therefore, in this paper,
to better understand how echo chambers emerge, we explore
the anatomy of news consumption on Facebook. We focus on
how Facebook posts from news outlets are consumed and how
user activity causes connectivity patterns to emerge. We analyze
the interaction of 376 million users with all of the anglophone
news outlets on Facebook listed in the European Media Moni-
tor (18) over a 6-y time span, from January 2010 to December
2015. Using quantitative analysis, we find evidence that selective
exposure plays a pivotal role in shaping news consumption online.
Users tend to focus on a very limited set of pages and thus create
a distinct community structure within these news outlets. We also
find that the perspectives of the news outlets and the users differ.
Our findings suggest that users have a more cosmopolitan per-
spective of the information space than news providers. Examining
how pages “like” each other and taking into account their geolo-
cation, we find geographically confined connectivity patterns. We
conclude by devising a simple model of selective exposure that
reproduces the observed connectivity patterns. We first analyze
user behavior with respect to the information sources. We then
analyze how user activity spans across these sources. Finally, we
introduce a simple model that reproduces the observed dynamics.
Our findings suggest that probably the main driver of misinfor-

mation diffusion is the polarization of users on specific narratives
rather than the lack of fact-checked certifications.

Results and Discussion
Users’ Attention. News items on Facebook appear in posts that
can be liked, commented, or shared by users. A like is usually a
positive feedback on a news item. A share indicates a desire to
spread a news item to friends. A comment can have multiple fea-
tures and meanings and can generate collective debate. The likes,
shares, and comments on Facebook posts present a heavy-tailed
distribution (SI Appendix, 2. Attention Pattern). The lifetime of a
post is the time period between the first and the last comment,
and it presents a peak at 24 h. User activity is heterogeneous
and the number of likes and comments ranges from very few
(the majority) to hyperactivity. The Complementary Cumulative
Distribution Function of the number of likes and comments for
single users exhibits heavy tails (SI Appendix). The overall num-
ber of likes of each user is a good proxy for their engagement
with Facebook news pages and the lifetime of each user can be
approximated by the length of time between the date of their first
comment and their last comment. These measures could provide
important insights about news consumption. Our goal is to quan-
tify the turnover of Facebook news sources by measuring the het-
erogeneity of user activity, and thus we measure the total num-
ber of pages a user interacts with. Fig. 1 shows the number of
news sources a user interacts with for the lifetime (i.e., the dis-
tance in time between the first and last interaction with a post)
and for increasing levels of engagement (i.e., the total number
of likes). For a comparative analysis, we standardized between
0 and 1 both lifetime and engagement over the entire user set.

Significance

Social media heavily changed the way we get informed and
shape our opinions. Users’ polarization seems to dominate
news consumption on Facebook. Through a massive analy-
sis on 920 news outlets and 376 million users, we explore
the anatomy of news consumption on Facebook on a global
scale. We show that users tend to confine their attention on
a limited set of pages, thus determining a sharp community
structure among news outlets. Furthermore, our findings sug-
gest that users have a more cosmopolitan perspective of the
information space than news providers. We conclude with a
simple model of selective exposure that well reproduces the
observed connectivity patterns.
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Fig. 1. Users’ attention patterns. (Top) Maximum number of unique news sources that users with increasing levels of standardized lifetime interacted with
monthly, weekly, and yearly. (Bottom) Maximum number of unique news outlets which users with increasing levels of standardized activity interacted with
monthly, weekly, and yearly.

Fig. 1 shows the results for the yearly time window (first column)
and for the weekly (second column) and monthly (third column)
rates. Note that a user usually interacts with a small number of
news outlets and that higher levels of activity and longer lifetime
correspond to a smaller number of sources. There is a natural
tendency of the users to confine their activity on a limited set
of pages. According to our findings, news consumption on Face-
book is dominated by selective exposure.

Clusters and Users’ Polarization. User tendency to interact with
few news sources might elicit page clusters. To test this hypoth-
esis, we first characterize the emergent community structure of
pages according to the users’ activity. We project the user page
likes to derive the weighted graph Gp

l (and Gp
c ) in which nodes

are pages and two pages are connected if a user likes (or com-
ments on) both of them. The weight of a link on a projected
graph is determined by the number of users the two pages have
in common. Fig. 2 shows the backbone of Gp

l and Gp
c . Colors

indicate node membership, as detected by the Fast Greedy (FG)
algorithm (see Methods for further details). A histogram of com-
munity sizes is provided in SI Appendix, Fig. S5. To validate the
community partitioning, we compare the membership of other
community detection algorithms using the Rand method (19, 20)
and find a high level of similarity (see SI Appendix for further
details). We also compared the communities ofGp

l andGp
c against

each other using different community detection algorithms and
find some level of similarity (see SI Appendix, Tables S3 and S4 in
for further details). By examining the activity of users across the
various clusters and measuring how they span across news outlets,
we find that most users remain confined within specific clusters.
To understand the relationship between page groupings and user
behavior, we quantify the fraction of activity of useru in the largest
communities wu

k , k ∈ {1...5}, and the fraction of activity of user
u in any other community wu

0 = 1 −
∑

k>5 w
u
k . Fig. 3 shows the

activity of users across the five largest communities (Fig. 3, Left)
and compares this with a null model (Fig. 3, Right) in which user
activity is randomly distributed. We find that users are strongly
polarized and that their attention is confined to a single commu-
nity of pages. User interaction to Facebook news outlets indicate
a dominant community structure with sharply identified groups.
Because users tend to focus on a small number of pages, the news
sphere of Facebook is clustered and dominated by a precise com-
munity structure and users tend to focus their attention on a single
group of news outlets.

Users’ and News Outlets’ Perspectives. Facebook pages can like
each other. We use this pattern of favorite pages to create a
graph of page preferences. In news outlets, these preferences can

be used to compare the perspectives of users and news providers.
We use the bipartite projection of the pages that users like Gp

l
and define Np as the network of new outlets that like each other
(i.e., Np is the network in which nodes are pages and links are
pages liking each other). We analyze both networks by deter-
mining the geographical location of each page. Thus, each node
is identified by its region and country, information provided by
the European Media Monitor. To determine the community
structure of both Np and Gp

l , we compare the outputs of dif-
ferent community detection algorithms (see Methods for further
details). Fig. 4 shows the communities Np and Gp

l represented
by taking into account the geographical location of the pages.
In the graph, the external bundle groups pages by region, the
middle bundle by nation, and node colors indicate community
membership as identified by the FG algorithm. Note that in the
plot, we use the backbone structure of the networks for visu-
alization purposes (see Methods for further details). As in the
previous section, we validate the partition found by the FG
algorithm by comparing it with results from other community
detection algorithms (see SI Appendix for further details). Using
refs. 19 and 20, we compare the FG community structure of Np

and Gp
l and do not find significant differences. When comparing

the FG communities of Np and Gp
l (the projection of user likes)

the similarity index is 0.67, for Np and Gp
c (the projection of

user comments), the similarity index is 0.69 (for the comparison
with other community detection algorithms, see SI Appendix).
Fig. 4 shows that in Np , the community structure is more

Fig. 2. Community structure. (Left) Backbone of the projections on pages
of the users’ likes (Gp

l ). (Right) Comments (Gp
c ). The color of the nodes indi-

cate the Fast Greedy community. Nodes in Gp
l are ordered according to the

detected communities, whereas in Gp
c , the nodes follow the same order as

in Gp
l .
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Fig. 3. Users Polarization. (Left) Activity of users across the five largest communities. (Right) Null model where users’ activity is randomly distributed.
Vertices of the pentagon represent the five largest communities and the central point all of the remaining ones. The position of each dot is determined by
the number of communities the users interacts with. The size and transparency indicate the number of users in that position.

confined within geographical boundaries than in Gp
l . Because the

geographical location of pages also defines a community parti-
tioning, we compare pages in Gp

l , Gp
c , and Np according to their

community partitioning as detected by the FG algorithm and to
their grouping according to the geographical location. The Rand
similarity index among the partitions obtained by community
detection algorithms and the partitions based on the geograph-
ical location is 0.71 for Gp

l , 0.72 for Gp
c , and 0.84 for Np (for

the comparison with other community detection algorithms, see

Fig. 4. Pages and users’ communities and locations. Backbone of the projections on pages of the user likes reduced to the pages that appear in Np (Left)
and the network of pages liking each other (Right). Inner nodes represent the pages and their color indicates the Fast Greedy community, middle track
marks the country, and outer track the region as established by the European Media Monitor. Order of the inner nodes in both plots is done by region,
country, and community, in that order. AF, Africa; AS, Asia; CA, Central America; EU, European Union; EU-C, EU Candidate; EU-O, EU Other; GL, Global; ME,
Middle East; NA, North America; OC, Oceania; SA, South America.

SI Appendix). This finding suggests that page communities are
more locally confined than user interaction communities, which
can span across nations and continents.

The Model. Users on Facebook tend to focus on a limited set
of news sources, on a macro scale. This mechanism of selective
exposure generates a clustered and polarized structure. The com-
munity structure that emerges when analyzing the likes among
the pages is different from the community structure defined by

Schmidt et al. PNAS | March 21, 2017 | vol. 114 | no. 12 | 3037
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Fig. 5. Analysis of the synthetic pages-to-pages graphs Gp
sim generated according to our extension of the BCM model. (Left) We show the size of the largest

component Smax and the size of the largest community |Calg
max| versus the tolerance ∆. (Right) We show the number of connected components Ncl and the

number of detected communities Nalg
com; notice that by definition, the number of communities must be Nalg

com ≥ Ncl.

the users’ interaction with the pages. In this section, we provide a
simple model of users’ preferential attachment to specific sources
that reproduces the observed community structure.

The entities of our model are pages p ∈P and users u ∈ I . Each
pagep is characterized by a set of opinions (an editorial line) mod-
eled as a real number cp that ranges [0..1]. We assume that the cp
values are uniformly distributed. Each useru has an initial opinion
that is modeled as a real number θu , which ranges between [0..1]
and is uniformly distributed. We suppose cp and θu to be homo-
geneous such that the quantity |cp − θu | is the distance between
the opinion of user u and the editorial line of page p. We mimic
confirmation bias by assuming that if user u interacts with a page
p and the opinion distance |cp − θu | is less than a given toler-
ance parameter ∆, the preference of user u will converge toward
the editorial line of page p according to the Bounded Confidence
Model (BCM) (21) equation θ′u = (1− µ) · θu + µ · cp where µ is
a simple convergence parameter. To mimic user activity, we give
each user u an activity coefficient au that represents the num-
ber of pages a user can visit. Thus, the final opinion of a user will
average the editorial lines of the pages the user likes. If Ω is the
set of |Ω| pages that matches the preferences of user u , then the
average opinion will be θu = (1− µ) θu + µ|Ω|−1 ∑

p∈Ω cp (i.e.,
θu = |Ω|−1 ∑

p∈Ω cp). To mimic the long tail distribution of our
data, we set the activity distribution to be power law distributed
p(a) ∼ a−γ with exponent γ= 3. We use numerical simulation
to study our model. A user randomly selects a subset of P with
which to interact. The user likes a page only when |cp − θu | < ∆.
When this occurs, the feedback mechanism of the BCM equation
reinforces the user’s page preference. Thus, the final opinion of
a user will be the average of the editorial lines of the pages the
user likes. When a user’s opinion converges, we build in the bipar-
tite graph Bsim = (I ,P ,Esim), where the set of edges Esim are
the couplings (u, p) with which user u likes page p. Hence, Bsim
represents users interacting with their favorite pages, and from
Bsim, we can build the projected graph Gp

sim that links the pages
according their common users. Fig. 5 shows an analysis of Gp

sim as
a function of the tolerance parameter ∆. Each point of the sim-
ulation is averaged over 50 iterations. Fig. 5, Left shows both the
size of the largest connected component Smax and the size of the
largest community |C alg

max| detected by several algorithms on Gp
sim.

Fig. 5, Right shows the number Nclu of connected components
and the number of communities N

alg
com detected by several algo-

rithms of Gp
sim. At ∆∼ 0, Gp

sim is broken down into disconnected
pieces (Nclu is of the order of the number of nodes |P | of Gp

sim),
and the size Smax of the largest component is extremely small.
Although this regime is unlike real online social networks that
are usually dense and strongly connected, Smax increases rapidly
to |P | as ∆ departs from zero, indicating that Gp

sim becomes a sin-

gle connected graph at ∆∼ 0.03. On the other hand, the size of
the largest communities detected by the various algorithms are
consistently smaller than |P | (Fig. 5, Left), and the number of
communities is consistently greater than one and decreases slowly
with increasing ∆ (Fig. 5, Right). Thus, the page–page graph Gp

sim
shows a stable, nontrivial community structure induced by user
preferences even when it is a dense, connected graph like real
online communities.

Conclusions
Using quantitative analysis, we show that the more active a user
is, the more the user tends to focus on a small number of news
sources. Looking at the page clusters generated by user activity,
we find a distinct community structure and strong user polariza-
tion. We provide evidence that preferences of users and news
outlets differ in that communities established by page creators
are more locally confined than communities identified by the
users’ activity, which can span across international borders. This
segregation in distinct communities can be reproduced by a sim-
ple model that mimics the selective exposure of users. Con-
tent consumption on Facebook is strongly affected by the ten-
dency of users to limit their exposure to a few sites. Despite
the wide availability of content and heterogeneous narratives,
there is major segregation and growing polarization in online
news consumption. News undergoes the same popularity dynam-
ics as popular videos of kittens or selfies. The spreading of fake
news and unsubstantiated rumors motivated major corporations
like Google and Facebook to provide solutions to the problem.
Google news decided to flag fact-checked information and to
penalize providers of fake news; others are proposing to use
black lists of sources to automatically limit their spread. How-
ever, often debates, especially on socially relevant issues, are
based upon conflicting narratives. Probably, the main problem
behind misinformation is polarization of users online.

Methods
Ethics Statement. The entire data collection process is performed exclusively
by means of the Facebook Graph application programming interface (22),
which is publicly available. We used only publicly available data (users with
privacy restrictions are not included in our dataset). We abided by the
terms, conditions, and privacy policies of Facebook. We did not seek ethi-
cal approval because the data were preexisting.

Data Collection. The European Media Monitor provides a list of all news
sources. We limit our collection to all those pages reporting in English. The
downloaded data from each page includes all of the posts made from Jan-
uary 1, 2010 to December 31, 2015, as well as all of the likes and comments
on those posts. The European Media Monitor list includes the country and
the region of each news source. For accurate mapping on the globe, we also
collected the geographical location—latitude and longitude—of each page.

3038 | www.pnas.org/cgi/doi/10.1073/pnas.1617052114 Schmidt et al.

D
ow

nl
oa

de
d 

at
 Im

t A
lti

 S
tu

di
 L

uc
ca

 o
n 

M
ar

ch
 2

, 2
02

1 

http://www.pnas.org/cgi/doi/10.1073/pnas.1617052114


A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S

A breakdown of data and the set of pages used in the analysis is provided
in SI Appendix, Table S1.

Definitions. In this section, we provide a brief description of the main con-
cepts and tools used in the analysis.
Projection of Bipartite Graphs. A bipartite graph is a triple B= (A,B,E)
where A = {ai | i = 1 . . . nA} and B = {bj | j = 1 . . . nB} are two disjoint sets
of vertices, and E⊆A× B is the set of edges (i.e., edges exist only between
vertices of sets A and B). A bipartite graph G is described by a rectangu-
lar matrix M, defined as Mij = 1 if there is an edge between ai and bj , and
Mij = 0 otherwise.

We consider bipartite networks in which the two disjointed sets of nodes
are users and Facebook pages. Edges represent interactions among users
and pages. As an example, a like to a given piece of information posted
by a page constitutes a link between the user and the page and Mp,u = 1
will indicate that user u has liked a post on page p. Indicating with P the
set of pages and with U the set of users, we can build the cooccurrence
matrices CP = MMT and CU = MT M that quantify, respectively, the number
of common neighbors between two vertices of P or U.

Community Detection Algorithm. A community detection algorithm is used
to identify groups of nodes in a network. The strategy relies on the mod-
ularity that quantifies the division of a network into separated clusters,
and a high modularity corresponds to a dense connectivity between nodes
in a community and sparse connections between modules. We use four
community-detection algorithms. (i) The fast greedy (FG) algorithm mea-
sures the maximum modularity by considering all possible community struc-
tures in the network. Every vertex initially belongs to a separate community,
and communities are merged iteratively such that each merge is locally opti-

mal (i.e., it yields the largest increase in the current value of modularity). The
algorithm stops when it is no longer possible to further increase modular-
ity (23). (ii) The walk trap (WT) algorithm exploits the fact that a random
walker tends to become trapped in the denser parts of a graph (i.e., in com-
munities). Hence, WT uses short random walks to merge separate commu-
nities (24). (iii) The multilevel (ML) algorithm uses a multilevel modularity
optimization procedure. Each vertex is initially assigned to a community. At
each step vertices are then reassigned to communities and nodes move to
the community in which they have the highest modularity (25). (iv) The label
propagation (LP) algorithm (26) gives a unique label to each vertex, which
is then updated according to majority voting in the neighboring vertices.
Dense node groups quickly reach a consensus on a common label. Finally, to
compare the various community structures, we use standard methods that
compare the similarity between different clustering methods and consider
how nodes are assigned in each community detection algorithm (19, 20).

Backbone Detection Algorithm. The disparity filter algorithm is a network
reduction technique that identifies the backbone structure of a weighted
network without destroying its multiscale nature (27). We use this algorithm
to determine the connections that form the backbones of our networks and
to produce clear visualizations.
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