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Abstract

The paper presents a stochastic MPC (SMPC) formulation suitable for maximizing the average time until a discrete-time
linear system with additive random disturbance violates prescribed constraints. The SMPC procedure is based on a scenario
tree that encodes the most likely system behavior for a given tree density, where each branch of the tree represents a specific
evolution of the system that occurs with a certain probability. A mixed-integer linear program (MILP) is developed that
maximizes the average time until constraint violation for a given scenario tree. Feedback is provided by reconstructing the
scenario tree and recomputing the MILP solution over a receding time horizon based on the current state of the system.
The average time until constraint violation achieved by the SMPC strategy approaches the optimal value as the scenario tree
density is increased. Two numerical case studies, including an adaptive cruise control problem, demonstrate the effectiveness
of the proposed SMPC strategy compared to dynamic programming solutions.
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1 Introduction

This paper is concerned with the control problem of
maximizing the time before a specified set of constraints
is violated by a given system. Such problems arise in
many engineering applications, in particular, those con-
strained by finite resources (fuel, energy, or, component
life) or where limited control authority is available to
counteract large persistent disturbances, which is com-
mon in underactuated systems as, for example, discussed
by Kolmanovsky and Zidek (2018).

In optimal control theory, such problems are known as
exit-time problems. The properties of exit-time prob-
lems were studied by Lions (1983), Crandall et al. (1984),
Barles and Rouy (1998), Malisoff (2001), Bayraktar
et al. (2010), and Buckdahn and Nie (2016) and in
the references therein. The optimal solution satisfies
the Hamilton-Jacobi-Bellman (HJB) equation in the
so-called viscosity or weak sense, where the notion
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of viscosity solutions to partial differential equations
was described by Crandall and Lions (1983). However,
explicit solutions to the HJB equation only exist for
special problems, see, for example, Kolmanovsky and
Maizenberg (2002) or Clark and Vinter (2012).

The discrete-time formulation of the problem, on the
other hand, is computationally more tractable. In this
context, model predictive control (MPC) appears attrac-
tive as an effective method for solving high-dimensional
constrained control problems. At each sampling time,
MPC exploits a solution to an open-loop optimal control
problem based on a prediction model of the system and
its current state. Only the first element of the solution
sequence is applied to the system as the control input.
The process is repeated at the next sampling time. This
approach provides feedback to compensate for unmod-
eled effects.

A systematic MPC approach to exit-time problems for
deterministic linear systems was developed by Zidek
et al. (2017). In this paper the approach is extended
to stochastic systems where the objective is to maxi-
mize the average time before constraint violation. We
focus on linear systems with additive random distur-
bance, but the developments can readily be applied to
exit-time problems for other classes of stochastic linear

Preprint submitted to Automatica 23 August 2020

© 2020 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0005109820305033
Manuscript_a9c7946955f5f2e3d2464258dfc89894

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0005109820305033


systems. Initial results were published in the conference
paper by Zidek et al. (2018). Compared to the previ-
ous publication, in this paper we extend the theoretical
analysis of the problem and develop additional theoret-
ical results. Moreover, we provide additional practical
considerations and present a comprehensive numerical
case study on stochastic adaptive cruise control.

In the uncertain system case, robust MPC techniques
may be used where the control law only considers the
worst-case disturbance scenario; examples of robust
MPC are given in the papers by Lee and Yu (1997)
and Mayne et al. (2005). On the other hand, a less
conservative variant of robust MPC is Stochastic MPC
(SMPC) which explicitly accounts for the uncertainty of
the disturbances as demonstrated by Couchman et al.
(2006), Primbs and Sung (2009), Cannon et al. (2009),
Di Cairano et al. (2014), and Mesbah (2016). At the
same time, recent developments in hardware and nu-
merical methods may facilitate practical use of SMPC.
We further discuss practical considerations and the po-
tential for fast embedded applications in Section 5.2 of
this paper.

Similar to the developments by Bernardini and Bempo-
rad (2012), we propose an SMPC scheme that uses a
tree structure to encode the most likely disturbance sce-
narios. A mixed-integer linear program (MILP) is devel-
oped that obtains a control policy that maximizes the
average time until constraint violation for a given sce-
nario tree. In order to obtain the current control input,
the MILP solution is recomputed at each sampling time
over a receding time horizon based on the current state
and an updated scenario tree which in turn is based on
the current disturbance values. The average time until
constraint violation for this SMPC law is shown to ap-
proach the optimal value as the number of tree nodes
goes to infinity.

The paper is structured as follows. In Section 2, we for-
mulate the problem and reason about the existence of
a solution. In Section 3, the scenario tree structure is
discussed and an algorithm for constructing a scenario
tree is presented. The MILP that maximizes the average
time until constraint violation for a given scenario tree is
developed in Section 4. Based on the MILP, the SMPC
strategy is stated in Section 5, which also includes a dis-
cussion on the practical applicability of the proposed ap-
proach. Two examples, including a car following prob-
lem, are presented in Section 6, where we also compare
the SMPC solutions against dynamic programming so-
lutions. A conclusion is provided in Section 7.

2 Problem Formulation

2.1 Stochastic Linear System

We consider a stochastic linear discrete-time system rep-
resented by

xt+1 = Atxt +Btut + wt, (1)

where xt ∈ Rn and ut ∈ Ut ⊂ Rp denote the state
and control input vectors, respectively, at a time instant
t ∈ Z≥0,At andBt are time-dependent matrices, and the
set Ut represents prescribed constraints on the control
input vector at time instant t. The variable w denotes
a measured random disturbance that is modeled by a
Markov chain. The disturbance can take values in the
finite set

W = {w1, w2, ..., w|W |}, (2)

of cardinality |W | > 0.

The approach of modeling the disturbance as a Markov
chain with a finite number of states is consistent with
the one adopted in the stochastic dynamic programming
literature, an overview of which is provided by Puter-
man (2014). Markov chains are used in a wide area of
applications, such as physics, chemistry, biology, manu-
facturing, and economics. For example, a Markov chain
was used by Lin et al. (2004) to model the driver de-
mand for hybrid vehicles, Ikonen et al. (2016) employed
a Markov chain model for chemical process control, and
Zidek and Kolmanovsky (2017) used Markov chains to
model the traffic on a two-lane road.

A key characteristic of a Markov chain is that the next
state only depends on the current state, but not on pre-
vious transitions that led to the current state. In this
paper, we denote the transition probabilities by

PW (wj |wi) = PW (wt+1 = wj |wt = wi) ∈ [0, 1], (3)

for all wi, wj ∈W and t ∈ Z≥0.

2.2 Stochastic Optimal Control Problem

In addition to Ut, we introduce the time-dependent set
Gt ∈ Rn that represents prescribed state constraints.
Furthermore, we denote a control policy by

π : Gt ×W × Z≥0 → Ut, (4)

for all t ∈ Z≥0, i.e., the control input vector at a time
instant t is obtained by ut = π(xt, wt, t), where Π is the
set of admissible (i.e., Ut-valued) control policies. For a
given control policy π ∈ Π and initial condition x0 ∈ G0

and w0 ∈ W , the random variable τ , also referred to

2



as the first exit-time, denotes the time instant at which
constraint violation occurs for the first time,

τ(x0, w0, π) = inf{t ∈ Z≥0 : xt /∈ Gt}, (5)

where xt is the response of (1) to the initial condition
x0 and w0 when using the control policy π. Note that
the value of τ is random as it depends on the random
realization of {wt}. The average (i.e., the expected value
of the) first exit-time is denoted by

τ̄(x0, w0, π) = E{τ(x0, w0, π)}. (6)

Then the optimal control problem of maximizing the
average first exit-time is as follows:

max
π∈Π

τ̄(x0, w0, π). (7)

Throughout the paper we make the following assumption
about the sets Gt and Ut.

Assumption 1 The setsGt and Ut are polytopes for all
t ∈ Z≥0, where the set of state constraints, Gt, is given
by

Gt = {x : Ctx ≤ bt}. (8)

2.3 Existence of Maximizing Sequence

The following theorem provides conditions under which
τ̄ is bounded. We adopt the following assumption in this
regard.

Assumption 2 There exists T > 0 and w̄ ∈ W such
that w̄ overpowers any admissible control and the deter-
ministic system,

xt+1 = Atxt +Btπ(xt, w̄, t) + w̄,

exits Gt in at most T steps for all x0 ∈ G0 and π ∈ Π.
In addition, PW (w̄|w̄) > 0 and w̄ is accessible from each
w ∈ W , meaning Prob(wn = w̄, given w0 = w) > 0, for
some n > 0.

Theorem 1 Suppose Assumption 2 holds. Then there
exists T̄ > 0 such that

τ̄(x,w, π) ≤ T̄ ,

for all x ∈ G0, w ∈W , and π ∈ Π.

Proof. Let x ∈ G0, w ∈ W , and π ∈ Π be a given
initial condition and admissible control policy. The cor-
responding average first exit-time may be expressed as

follows:

τ̄(x,w, π) =

∞∑
i=1

iP (τ(x,w, π) = i)

≤
∞∑
i=1

iP (τ(x,w, π) ≥ i),
(9)

where P (τ(x,w, π) = i) and P (τ(x,w, π) ≥ i) denote
the probabilities that the first exit-time is equal to i or
greater than or equal to i, respectively. Using Assump-
tion 2 and

ρw̄,T,i = Prob(w̄ occurs T times in a row

prior to t = i− 1),
(10)

P (τ(x,w, π) ≥ i) is bounded according to

P (τ(x,w, π) ≥ i) ≤ 1− ρw̄,T,i, (11)

where w̄ and T are defined in Assumption 2. Using As-
sumption 2 (in particular: w̄ is accessible from every
wi ∈W ) and denoting

qT = (PW (w̄|w̄))T × Prob(w̄ is reached from w

in at most |W | steps),
(12)

which is greater than zero due to the accessibility of w̄
and PW (w̄|w̄) > 0 by Assumption 2, it follows that

ρw̄,T,i ≥

⌊
i−1

T+|W |

⌋
−1∑

k=0

(1− qT )kqT

= qT

1− (1− qT )

⌊
i−1

T+|W |

⌋
1− (1− qT )


= 1− (1− qT )

⌊
i−1

T+|W |

⌋
,

(13)

where b·c is the floor operator. Hence, (11) becomes

P (τ(x,w, π) ≥ i) ≤ (1− qT )

⌊
i−1

T+|W |

⌋
, (14)

and (9) may be written as follows:

τ̄(x,w, π) ≤
∞∑
i=1

i(1− qT )

⌊
i−1

T+|W |

⌋
≤
∞∑
k=0

(k + 1)(T + |W |)2(1− qT )k

= (T + |W |)2

(
1− qT
q2
T

+
1

qT

)
=

(
T + |W |
qT

)2

= T̄ .

(15)
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Remark 1 Theorem 1 guarantees the existence of a
maximizing sequence for all initial conditions, x ∈ G0

and w ∈ W , i.e., a sequence {πn} in Π such that
τ̄(x,w, πn)→ supπ∈Π τ̄(x,w, π).

For the following developments, it is assumed that the
sequence in Remark 1 converges, meaning a solution ex-
ists, for all initial conditions.

Assumption 3 A solution π∗ ∈ Π (may not be unique)
to problem (7) exists for each x0 ∈ G0 and w0 ∈W .

3 Scenario Tree

Fig. 1. Scenario tree example for 12 nodes, including |SN | = 6
leaf nodes.

In order to optimize over a subset of all possible distur-
bance scenarios, similar to the work by Bernardini and
Bemporad (2012), a scenario tree is constructed that
contains the most likely disturbance scenarios for a given
number of tree nodes. A tree node is denoted by η ∈ TN ,
where

TN = {η0, η1, ..., ηN},
denotes a tree with N +1 nodes. The node η0 is the root
node of the tree. The predecessor of a node η ∈ TN is
given by pre(η). The set of successors of a node η ∈ TN
is denoted by

succ(η) = {ηsucc(η)
1 , η

succ(η)
2 , ..., η

succ(η)
|W | }.

The nodes that do not have a successor node in TN form
the set of leaf nodes, which is given by

SN = {η ∈ TN : succ(η) ∩ TN = ∅}.

Figure 1 shows an example scenario tree,

T11 = {η0, η1, ..., η11},

for a given Markov chain with |W | = 3. For example,

succ(η1) = {η2, η6, η11}, in Figure 1, i.e., η
succ(η1)
1 = η2,

η
succ(η1)
2 = η6, and η

succ(η1)
3 = η11. The set of leaf nodes

in Figure 1 is given by

S11 = {η5, η7, η8, η9, η10, η11}.

With each η ∈ TN , we associate a disturbance wη as well
as a state vector xη, control input uη, and time instant
tη, where wη0 = w0, xη0 = x0, and tη0 = 0 for the root
node. Moreover, for each η ∈ TN \ {η0}, xη satisfies the
dynamics in (1). Consequently,

xη = Atpre(η)xpre(η) +Btpre(η)upre(η) + wpre(η). (16)

The probability of reaching a node η ∈ TN , starting from
the root node, is given by

ρη = ρpre(η)PW (wη|wpre(η)) ∈ [0, 1], (17)

where ρη0 = 1. Algorithm 1 implements the scenario tree
generation suitable for either offline or online use. The
set C contains the candidate nodes that are considered
when adding a node to the tree. At each iteration, the
node η ∈ C with the greatest probability ρη is chosen
from the set of candidate nodes, and the successors of η
are added to the list of candidate nodes. Thus, the tree
is intended to capture most likely scenarios subject to
the total number of nodes constrained to be N + 1.

Algorithm 1 Design of scenario tree TN
1: TN ← {η0}; C ← ∅; ρη0 ← 1
2: tη0 ← 0; xη0 ← x0; wη0 ← w0

3: i← 0
4: while i < N do
5: for j ∈ {1, 2, ..., |W |} do
6: w

η
succ(ηi)

j

← wj (wj ∈W )

7: t
η
succ(ηi)

j

← tηi + 1

8: ρ
η
succ(ηi)

j

← ρηiPW (wj |wηi)
9: end for

10: C ← C ∪ succ(ηi)
11: ηi+1 ← arg maxη∈C ρη (pick any maximizer)
12: TN ← TN ∪ {ηi+1}
13: C ← C \ {ηi+1}
14: i← i+ 1
15: end while

In general, a scenario tree TN contains |SN | ≥ 1 unique
disturbance trajectories/scenarios that are denoted by

{wt}η = {wt : t ∈ Z[0,tη ]}η
= (w0, ..., wpre(pre(η)), wpre(η), wη),

(18)

for each leaf node η ∈ SN . For example, {wt}η9 =
(w0, wη1 , wη6 , wη9) in Figure 1.
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For a given tree TN with initial x0 ∈ G0 and w0 ∈ W
and control policy πN ∈ Π, the deterministic first exit-
time corresponding to the disturbance trajectory {wt}η,
see (18), is defined by

τN,η(x0, w0, πN ) = min{min{t ∈ Z[0,tη ] : xt /∈ Gt}
∪ {tη + 1}},

(19)

for each η ∈ SN , where xt is the deterministic response
of (1) under {wt}η when using the control policy πN ∈
Π. Note that for some {wt}η, xt may not exit Gt for
t ∈ Z[0,tη ]; in this case, τN,η(x0, w0, πN ) = tη + 1 in line
with (19). The average first exit-time for a given scenario
tree TN and a control policy πN ∈ Π is given by

τ̄N (x,w, πN ) =
∑
η∈SN

τN,η(x,w, πN )ρη. (20)

In analogy to problem (7), the optimal control problem
of maximizing the average first exit-time over a subset
of disturbance scenarios defined by tree TN can be ex-
pressed as

max
πN∈Π

τ̄N (x,w, πN ). (21)

The following two sets are defined:

HN,η = {η0, ...,pre(pre(η)),

pre(η), η}, for all η ∈ SN ,
(22)

KN,ξ = {η ∈ SN : ξ ∈ HN,η}, for all ξ ∈ TN . (23)

HN,η is the set of nodes of the disturbance scenario asso-
ciated with leaf node η ∈ SN .KN,ξ is the set of leaf nodes
whose associated disturbance scenarios contain the node
ξ ∈ TN . For example, in Figure 1,

H11,η7 = {η0, η1, η2, η7} and K11,η1 = {η5, η7, η9, η11}.

Moreover, for a given control policy π ∈ Π and scenario
tree TN , N ∈ Z+, with initial condition x = x0 ∈ G0

and w = w0 ∈ W , the set of leaf nodes η ∈ SN with
associated first exit-time τN,η(x,w, π) = i ∈ Z+ is given
by

ZN (π, i) = {η ∈ SN : τN,η(x,w, π) = i}. (24)

To simplify the notations, we drop the dependence on x
and w on the left hand side.

The next result (Theorem 2) shows that, in terms of the
average first exit-time, a solution to problem (21) is ar-
bitrarily close to a solution (if one exists) of problem (7)
for sufficiently largeN . Theorem 2 is based on Lemma 1.

Lemma 1

lim
N→∞

τ̄N (x,w, π) = τ̄(x,w, π), (25)

for all x ∈ G0, w ∈W , and π ∈ Π.

Proof. Let π ∈ Π be a given control policy and x ∈ G0

and w ∈W be a given initial condition. Then, by (20),

lim
N→∞

τ̄N (x,w, π) = lim
N→∞

∑
η∈SN

τN,η(x,w, π)ρη

= lim
N→∞

 tN∑
i=1

i
∑

η∈ZN (π,i)

ρη

 ,

(26)

where tN = max{tη : η ∈ TN} + 1. Since W is a finite
set, it follows from the tree generation procedure (Algo-
rithm 1) that eventually every branch corresponding to
non-zero probability of next disturbance value contin-
ues. Thus, for each i ∈ Z+,

lim
N→∞

∑
η∈ZN (π,i)

ρη = Prob(τ(x,w, π) = i). (27)

Moreover, tN →∞ as N →∞. Consequently, from (26)
and (27) it can be shown that

lim
N→∞

τ̄N (x,w, π) =

∞∑
i=1

iProb(τ(x,w, π) = i)

= τ̄(x,w, π).

(28)

Theorem 2 Suppose Assumption 3 holds. Then, for
each x ∈ G0, w ∈ W , and ε > 0, there exists N̄ > 0
such that

max
πN∈Π

τ̄N (x,w, πN ) + ε ≥ max
π∈Π

τ̄(x,w, π), (29)

τ̄(x,w, π∗N ) + ε ≥ max
π∈Π

τ̄(x,w, π), (30)

where π∗N ∈ arg maxπN∈Π τ̄N (x,w, πN ), for all N ≥ N̄ .

Proof. For a given initial condition, x ∈ G0 andw ∈W ,
let TN be the scenario tree for a givenN ∈ Z+. Moreover,
let π∗ ∈ Π be a solution to problem (7), which exists by
Assumption 3, and let π∗N ∈ Π be a control policy that
maximizes the average first exit-time for TN according
to problem (21), which exists due to the existence of a
solution to (7). It follows that

τ̄N (x,w, π∗N ) ≥ τ̄N (x,w, π∗). (31)
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The optimal average first exit-time of problem (7) may
be written as follows:

τ̄(x,w, π∗) = τ̄N (x,w, π∗) + τ̄Rest,N (x,w, π∗), (32)

where τ̄Rest,N represents the portion of all scenarios not
described by TN . By Lemma 1, τ̄N (x,w, π∗) approaches
τ̄(x,w, π∗) as N → ∞ and thus τ̄Rest,N (x,w, π∗) → 0.
This implies that for every ε > 0, there exists N̄ > 0
such that

τ̄(x,w, π∗) ≤ τ̄N (x,w, π∗) + ε, (33)

for all N ≥ N̄ . It follows from (31) and (33) that

τ̄N (x,w, π∗N ) + ε ≥ τ̄(x,w, π∗), (34)

for all N ≥ N̄ . In analogy to (32), it follows from adding
τ̄Rest,N (x,w, π∗N ) to (34) that

τ̄(x,w, π∗N ) + ε ≥ τ̄(x,w, π∗), (35)

for all N ≥ N̄ , which proves (30).

4 Mixed-Integer Linear Program

4.1 Formulation

In this section, a mixed-integer linear program (MILP)
is proposed that solves problem (21). By Theorem 2, the
average first exit-time of a solution to problem (21) is ar-
bitrarily close to the average first exit-time of a solution
to problem (7) for a sufficiently large N .

In what follows, for a given tree TN , a set of control
inputs that satisfy the control constraints is denoted by

UN = {uη ∈ Utη : η ∈ TN \ SN}. (36)

Likewise, a set of states, xη, for each node of the tree is
denoted by XN .

Furthermore, for each node η ∈ TN , we use a binary
variable δη to indicate the condition that the state con-
straints are violated, i.e., xtη /∈ Gtη . DN denotes a set of
δη values for a tree TN ,

DN = {δη ∈ {0, 1} : η ∈ TN}. (37)

The MILP for a given tree TN is as follows:

min
XN ,UN ,DN

∑
η∈TN

∑
ξ∈KN,η

δηρξ s.t. (38a)

xη = Atpre(η)xpre(η) +Btpre(η)upre(η) + wpre(η),

for all η ∈ TN \ {η0}
(38b)

uη ∈ Utη , for all η ∈ TN \ SN (38c)

δη ≥ δpre(η), for all η ∈ TN \ {η0} (38d)

δη ∈ {0, 1} ⊂ Z, for all η ∈ TN (38e)

Ctηxη ≤ btη + 1Mδη, for all η ∈ TN , (38f)

where 1 denotes the column vector of ones and M is a
large positive number consistent with the “Big-M” ap-
proach described in Section 9.1.3 of the textbook by
Williams (2013). The dynamics of the system are cap-
tured by (38b) which follows from (16). Ctη and btη in
(38f) represent the state constraints as defined in (8).

4.2 Theoretical Results

The following result states conditions for the existence
of a solution to MILP (38).

Lemma 2 For a given TN , N ∈ Z+, suppose M > 0 is
sufficiently large such that (38f) is satisfied for all η ∈ TN
and xη according to (38b) for any UN . Then a solution
to MILP (38) exists.

Proof. Because M is assumed to be sufficiently large,
for a given TN , N ∈ Z+, δη = 1 for all η ∈ TN satisfies
the constraints of the MILP for any UN . Since δη ∈ {0, 1}
and N + 1 is the number of tree nodes, the number of
possible sets DN is 2N+1. Furthermore, ρξ ∈ [0, 1] for all
ξ ∈ TN . Thus, a feasible solution exists for at least one
of the 2N+1 DN sets, i.e., the existence of a solution to
MILP (38) follows.

Section 4.3 further discusses how to select a properM , in
particular: how to chooseM sufficiently large as required
by Lemma 2.

The following Theorem 3 shows that, under suitable as-
sumptions, a solution to MILP (38) is equivalent to a
solution to problem (21). This result is based on the fact
that a solution, UN , of MILP (38) defines a control pol-
icy πUN according to

πUN (xη, wη, tη) = uη ∈ UN , (39)

for each η ∈ TN \SN and xη satisfying (16) with upre(η) ∈
UN . Likewise, a control policy π∗N ∈ Π defines a set of
control inputs for a given tree TN as

UN (π∗N ) = {uη = π∗N (xη, wη, tη) : η ∈ TN \ SN}, (40)
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where xη satisfies (16) for upre(η) ∈ UN (π∗N ).

Theorem 3 Suppose Assumptions 1 and 3 hold and M
is sufficiently large as in Lemma 2. Then U∗N is a solution
to MILP (38) if the control policy πU∗

N
according to (39)

is a solution to problem (21). Likewise, π∗N ∈ Π is a
solution to problem (21) if UN (π∗N ) according to (40) is
a solution to MILP (38).

Proof. Let x = x0 ∈ G0 and w = w0 ∈ W be a given
initial condition and TN be the corresponding scenario
tree, N ∈ Z+. For the first part of the proof, suppose
π∗N is a solution to problem (21). Thus,

τ̄N (x,w, π∗N ) ≥ τ̄N (x,w, π#
N ), (41)

for all π#
N ∈ Π. A solution to MILP (38) exists due to

the assumptions and Lemma 2. Using (40), fix UN =
UN (π∗N ) in MILP (38) and denote the resulting DN by

D∗N = {δη∗ ∈ {0, 1} : η ∈ TN}. Similarly, let D#
N =

{δη# ∈ {0, 1} : η ∈ TN} denote the MILP solution

when UN = UN (π#
N ) is fixed. Hence, by (38d)–(38f), for

each η ∈ SN , δξ∗ = 1 iff tξ ≥ τN,η(x,w, π∗N ), δξ# = 1

iff tξ ≥ τN,η(x,w, π#
N ), δξ∗ = 0 iff tξ < τN,η(x,w, π∗N ),

and δξ# = 0 iff tξ < τN,η(x,w, π#
N ) for all ξ ∈ HN,η.

Consequently, according to (19), it follows that

τN,η(x,w, π∗N ) = tη + 1−
∑

ξ∈HN,η

δξ∗ (42a)

τN,η(x,w, π#
N ) = tη + 1−

∑
ξ∈HN,η

δξ#, (42b)

for all η ∈ SN . Then, using (20), (41), and (42), one
obtains∑
η∈SN

(tη + 1−
∑

ξ∈HN,η

δξ∗)ρη = τ̄N (x,w, π∗N )

≥ τ̄N (x,w, π#
N ) =

∑
η∈SN

(tη + 1−
∑

ξ∈HN,η

δξ#)ρη.
(43)

Consequently,∑
η∈SN

∑
ξ∈HN,η

δξ∗ρη ≤
∑
η∈SN

∑
ξ∈HN,η

δξ#ρη. (44)

By (22) and (23), η ∈ SN and ξ ∈ HN,η iff ξ ∈ TN and
η ∈ KN,ξ. Therefore, (44) is equivalent to∑

ξ∈TN

∑
η∈KN,ξ

δξ∗ρη ≤
∑
ξ∈TN

∑
η∈KN,ξ

δξ#ρη, (45)

which shows that UN (π∗N ),D∗N is a solution to MILP
(38). This completes the first part of the proof.

For the second part of the proof, let U∗N ,D∗N be a solution
to MILP (38), which exists by Lemma 2, where D∗N =
{δη∗ ∈ {0, 1} : η ∈ TN}. Hence,∑

η∈TN

∑
ξ∈KN,η

δη∗ρξ ≤
∑
η∈TN

∑
ξ∈KN,η

δη#ρξ, (46)

for any UN = U#
N fixed in MILP (38) with corresponding

solution D#
N = {δη# ∈ {0, 1} : η ∈ TN}. Now define

πU∗
N

according to (39). Since the dynamics in (1) and

(38b) are equivalent, it follows from (19) and (38d)–(38f)
that, for each η ∈ SN ,

τN,η(x,w, πU∗
N

) = min{min{tξ ∈ Z[0,tη ] :

δξ∗ = 1, ξ ∈ HN,η} ∪ {tη + 1}}
= tη + 1−

∑
ξ∈HN,η

δξ∗.
(47)

Thus, by (20), the average first exit-time of tree TN with
control policy πU∗

N
is given by

τ̄N (x,w, πU∗
N

) =
∑
η∈SN

(tη + 1−
∑

ξ∈HN,η

δξ∗)ρη. (48)

In analogy, define πU#
N

according to (39). Hence,

τ̄N (x,w, πU#
N

) =
∑
η∈SN

(tη + 1−
∑

ξ∈HN,η

δξ#)ρη. (49)

Using (22) and (23), it follows from (46), (48), and (49)
that

τ̄N (x,w, πU∗
N

)− τ̄N (x,w, πU#
N

)

=
∑
η∈SN

∑
ξ∈HN,η

(δξ# − δξ∗)ρη

=
∑
ξ∈TN

∑
η∈KN,ξ

(δξ# − δξ∗)ρη ≥ 0,

(50)

implying that πU∗
N

is a solution to problem (21).

4.3 Choosing M

In practice, choosing M for MILP (38) to be sufficiently
large as required by Lemma 2 may be achieved by set-
tingM to the largest number that can be represented by
a given computer, which may, however, lower the com-
putational performance. On the other hand, underesti-
matingM may also be tolerated in practice since it effec-
tively tightens the state constraints which may result in
potentially more conservative (sub-optimal) solutions.
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Alternatively, the least upper bound for M to be suffi-
ciently large as required by Lemma 2 can be determined
by solving a linear program (LP) for each node of the
tree. The LP for a node ξ ∈ TN has the following form:

Mξ = max
XN ,UN

Ctξxξ − btξ s.t. (51a)

xη = Atpre(η)
xpre(η) +Btpre(η)

upre(η) + wpre(η),

for all η ∈ TN \ {η0}
(51b)

uη ∈ Utη , for all η ∈ TN \ SN , (51c)

where Mξ = [Mξ,1, ...,Mξ,n]> is a column vector. The
least upper bound (LUB) for M to be sufficiently large
is obtained from the solutions to LPs (51) as

MLUB = max
ξ∈TN

max
i∈{1,...,n}

Mξ,i. (52)

5 Stochastic MPC

5.1 Theoretical Results

For a given scenario tree TN with initial w ∈ W and
root node wη0 = w, the control policy πU∗

N
, derived from

the MILP solution U∗N according to (39), maximizes the
average first exit-time τ̄N for a given TN (Theorem 3)
and achieves average first exit-times τ̄ arbitrarily close
to the optimal value of problem (7) for sufficiently large
N (Theorem 2). However, πU∗

N
is only defined for the

disturbance scenarios encoded by tree TN , which are the
most likely scenarios for the specified N according to
Algorithm 1. Thus, starting at w0 = w, wt /∈ {wη : η ∈
TN , tη = t}may occur at some t ∈ Z+, i.e., a disturbance
scenario may occur that is not represented by TN .

Therefore, a stochastic MPC (SMPC) strategy is pro-
posed based on MILP (38), where the solution of the
MILP is recomputed at each time instant for an up-
dated tree TN based on the current state vector. This
approach furthermore provides feedback to compensate
for unmodeled effects and can be effective in the context
of controlling a nonlinear system and/or when the ex-
act disturbance model is unknown. In such a case, the
stochastic linear model in (1) and the Markov chain for
wt serve as an approximation of the nonlinear system
and/or the unknown disturbance model.

For a given x ∈ Gt0 , w ∈W , and t0 ∈ Z≥0, the proposed
SMPC scheme establishes the following control policy
πSMPC,N ∈ Π:

πSMPC,N (x,w, t0) = uη0 ∈ U∗N , (53)

where U∗N is a solution to MILP (38) for the scenario
tree TN with root node η0 and

tη0 ← t0, xη0 ← x, and wη0 ← w,

in Step 2 of Algorithm 1. It follows from Theorems 2 and
3 that, in terms of first exit-time performance, the con-
trol policy πSMPC,N in (53) is arbitrarily close to a solu-
tion (assuming one exists, i.e., Assumption 3) of prob-
lem (7) for sufficienlty large N . This is summarized in
Theorem 4, the proof of which follows from the proofs
of Theorems 2 and 3.

Theorem 4 Suppose Assumptions 1 and 3 hold,
πSMPC,N is as in (53), and M is sufficiently large as in
Lemma 2. Then, for each x ∈ G0, w ∈ W , and ε > 0,
there exists N̄ > 0 such that

τ̄(x,w, πSMPC,N ) + ε ≥ max
π∈Π

τ̄(x,w, π),

for all N ≥ N̄ .

5.2 Practical Implementation

Mixed-integer programming, including MILP, has non-
polynomial complexity in the worst-case, which makes
practical mixed-integer MPC (MI-MPC) applications
with strict real-time constraints challenging. However,
since MI-MPC was introduced about two decades ago,
see e.g., Bemporad and Morari (1999), and initial ap-
plications were presented, such as by Richards and How
(2005), a lot of progress has been made on efficient
solvers suitable for embedded real-time applications.
For example, Bemporad and Naik (2018), Stellato
et al. (2018), Hespanhol et al. (2019), and Marcucci
and Tedrake (2019) have developed branch-and-bound-
based algorithms and efficient warm start strategies for
solving mixed-integer programs for fast embedded MI-
MPC by exploiting the specific structure of the optimal
control problem.

In addition to the improvements in software, computer
processing speeds have increased by several orders of
magnitude due to hardware advancements in field pro-
grammable arrays, multi-core processors, and graphics
processing units as discussed, for example, by Rogers
and Slegers (2013), Phung et al. (2017), Sampathirao
et al. (2018), Grubmüller et al. (2018), and Abughalieh
and Alawneh (2019).

While the recent hardware improvements and solver
developments are encouraging for reducing worst-case
computation times of mixed-integer programs, we also
introduce a relaxed version of MILP (38), a standard
LP, that is used as a fallback to enforce computation
time limits if an allocated time for the MILP solution
is exceeded. The LP for a given tree TN is obtained by
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replacing the integer variables δη in MILP (38) by non-
negative real variables εη for all η ∈ TN . Thus, the LP
is as follows:

min
XN ,UN ,EN

∑
η∈TN

∑
ξ∈KN,η

εηρξ s.t. (54a)

xη = Atpre(η)
xpre(η) +Btpre(η)

upre(η) + wpre(η),

for all η ∈ TN \ {η0}
(54b)

uη ∈ Utη , for all η ∈ TN \ SN (54c)

εη ≥ εpre(η) ≥ 0, for all η ∈ TN \ {η0} (54d)

Ctηxη ≤ btη + 1εη, for all η ∈ TN , (54e)

where XN and UN , see (36), are sets of states and control
values, respectively, corresponding to the nodes of a tree
TN . A set of εη values for a tree TN is denoted by EN =
{εη ≥ 0 : η ∈ TN}. A solution to LP (54) always exists
because εη ≥ 0 can always be chosen sufficiently large
such that (54e) is satisfied for all η ∈ TN .

Our numerical case studies in Section 6 suggest that us-
ing the relaxed LP as a fallback in case the MILP compu-
tation exceeds a prescribed maximum time is effective.
However, the connections between solutions of MILP
and relaxed LP need to be better understood in general.
Further research in this direction is left to future work.

Algorithm 2 SMPC implementation

1: t← 0
2: x,w ← obtain current x(t) and w(t)
3: TN ← output of Algorithm 1 with tη0 ← t, xη0 ← x,

and wη0 ← w in Step 2 of Algorithm 1
4: tcomp ← 0
5: while computing solution of MILP (38) do
6: if tcomp > tmax then
7: Go to Step 12
8: end if
9: tcomp ← update tcomp

10: end while
11: U∗N ← solution of MILP (38); go to Step 13
12: U∗N ← solution of LP (54)
13: u(t)← apply control uη0 ∈ U∗N to the system
14: t← t+ 1
15: Go to Step 2

Algorithm 2 outlines the practical implementation of the
SMPC strategy. At each time instant t, the current state
vector and disturbance are obtained in Step 2 of Algo-
rithm 2. Based on these values, a new scenario tree is
constructed in Step 3 using Algorithm 1. Then a solu-
tion U∗N of MILP (38) is computed. If the MILP compu-
tation time tcomp exceeds a specified upper bound tmax,
solving the MILP is terminated in Steps 6–8, and LP
(54) is solved instead. The root node control input uη0
of the MILP solution U∗N (or the LP solution in case

tcomp > tmax) is applied to the system in Step 13 and
the procedure is repeated at the next time instant t+ 1.

5.3 Selecting the Number of Tree Nodes

The problem of choosing the number of tree nodes is
similar to the problem of selecting the prediction hori-
zon in conventional MPC. Thus, similar to conventional
MPC, N can be selected during the algorithm calibra-
tion and tuning phase based on the trade-off between
performance and computation time. In the offline cal-
ibration phase, numerical experiments may be used to
assess the required N for a specific problem. Typically,
the optimal value of N is where the average first exit-
time dependence onN obtained from simulations begins
to flatten out as N grows. Figures 3 and 7 demonstrate
this pattern for the two numerical case studies in this
paper.

While some general problem-agnostic guidelines exist
for conventional MPC, for example, based on settling
time and relaxed dynamic programming inequality as
discussed by Grüne and Pannek (2017), the development
of similar guidelines in our case is left to future work.

6 Numerical Case Studies

This section provides numerical case studies of appli-
cations of the proposed SMPC strategy in Algorithm
2. In order to reduce computation times, the scenario
trees TN (wi) with wη0 = wi are precomputed offline and
stored for each wi ∈ W instead of constructing TN on-
line at each time instant. All computations involving the
SMPC strategy are performed in MATLAB 2016 on a
laptop, where the Hybrid Toolbox developed by Bem-
porad (2004) (with default settings) is used to solve LPs
and MILPs.

6.1 Case Study 1

In this case study, we investigate the influence of the
number of tree nodes on the solution for a stochastic
linear time-varying system of the form[

r1,t+1

r2,t+1

]
=

[
1 0.1

−0.1 1.2

][
r1,t

r2,t

]

+

[
0

0.5 sin(t/2)

]
ut +

[
0

wt

]
,

(55)

where x = [r1, r2]> denotes the state vector and the
control input is u ∈ [−1, 1].

The disturbancew takes values in the setW = {−1, 0, 1}
with transition probabilities PW (wi|wj) = [PW,Mat]j,i
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(j = row number and i = column number), i, j ∈
{1, 2, 3}, given by the following matrix:

PW,Mat =


0 0.8 0.2

0.3 0.5 0.2

0.35 0.4 0.25

 .
The constraints for the optimal control problem (7) are
given by the set Gt ≡ {x : −2 ≤ r1 ≤ 2,−2 ≤ r2 ≤ 2}.

0 20 40 60
t

-2

-1

0

1

2

r 1

0 20 40 60
t

-2

-1

0

1

2

r 2

0 20 40 60
t

-1

-0.5

0

0.5

1

u

0 20 40 60
t

-1

-0.5

0

0.5

1

w

Fig. 2. Numerical case study 1: sample trajectory showing
the states r1 (top plot) and r2 (second plot), as well as the
control input u (third plot) and disturbance w (bottom plot)
vs. t.

The time limit in Algorithm 2 for solving the MILP is

set to tmax = 10 sec. The following results are for an
initial x0 = [0, 0]> and w0 = −1. Figure 2 shows a
sample trajectory (for N = 200), where the dashed lines
indicate the respective constraints.
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Fig. 3. Numerical case study 1: average first exit-time τ̄ vs.N
(based on 1000 random simulations for each N).
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Fig. 4. Numerical case study 1: average (top) and worst-case
time (bottom) to compute control ut (Steps 2–13 in Algo-
rithm 2) vs. N (based on 1000 random simulations for each
N).

The average first exit-time τ̄ (based on 1000 random
simulations for each N) is plotted against N in Figure 3.
For comparison, a dynamic programming (DP) solution
obtained by conventional value iteration, see Bertsekas
(2005), is shown as a reference in Figure 3 (dashed line).
The DP solution, achieving τ̄ = 32.41 sec, is based on a
discrete grid of the state space using linear interpolation
between the grid points, where a relatively dense grid of
900000 points is used here. The set defining the control
constraints is discretized as well, using an equidistant
grid with 21 points. About 1.8 hours are required to
compute the DP control policy offline when implemented
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in C++11. Due to the dense grid representations of both
Gt and Ut, the DP reference solution is expected to be
close to a solution of the optimal control problem (7).

In line with Theorem 4, it can be seen in Figure 3 that
the SMPC solution improves with increasing N and ap-
proaches the DP solution (which we expect to be close to
an optimal solution), where the DP reference is slightly
exceeded for N ≥ 500. This exceedance is attributed to
the numerical approximation errors. The computation
time (in MATLAB) for the SMPC scheme to compute
the control input at each time instant according to Al-
gorithm 2 (Steps 2–13) is shown in Figure 4 for different
N . The top plot in Figure 4 shows the average computa-
tion time, which increases nearly exponentially with N .
The worst-case / maximum computation time is shown
in Figure 4 (bottom), where the prescribed limit on the
MILP computation time tmax = 10 sec is reached at least
once for N ≥ 400.

6.2 Case Study 2: Car Following

A car following or adaptive cruise control problem is
treated in this case study. The problem involves two ve-
hicles: the lead vehicle and the follower vehicle. With s
denoting the distance between the two vehicles, the ob-
jective is to control the speed of the follower vehicle vf ,
such that the time gap between the two vehicles,

Tg = s/vf , (56)

stays within prescribed bounds for as long as possible.

The speed of the lead vehicle vl is modeled by a Markov
chain that takes values in the set

W = {27, 27.25, 27.5, ..., 32} m/sec,

which contains 21 elements. The system is represented
by the following model:

st+1 = st + ∆t(vl,t − vf,t),

vf,t+1 = vf,t + ∆tat.
(57)

We consider a sampling time of ∆t = 1 sec. The control
input at a time instant t is the acceleration of the follower
vehicle,

at ∈ [−1, 0.3] m/sec2.

The state constraints for this problem are represented
by the set,

Gt ≡ {s, vf : Tg = s/vf ∈ [0.5, 2.5] sec, vf ≤ 30 m/sec}.

The transition probabilities of the lead vehicle veloc-
ity are similar to the values in Kolmanovsky and Filev
(2009), which are based on experimental data. Moreover,

as in Kolmanovsky and Filev (2009), the possibility of
another vehicle cutting in upfront is taken into account
by slightly modifying the model. In this case study, such
an event may occur with a probability of 0.05 if the time
gap Tg is greater than 2.2 sec. In case of another vehi-
cle cutting in upfront, the distance between the vehicles
is set to half of the previous distance. Moreover, the ve-
hicle is assumed to cut in with a speed of 29.5 m/sec.
The model is thus a stochastic hybrid model with state-
dependent probabilities for mode switches.
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Fig. 5. Car following case study, sample trajectory using the
SMPC approach without applying a control input penalty
(β = 0): follower speed vf (top plot), time gap Tg (second
plot), control input a (third plot), and disturbance vl (bot-
tom plot) vs. time t.
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As in the previous example, we compare the results of
the proposed SMPC approach to a DP approach. The
DP approach is able to explicitly account for the hy-
brid characteristics of the system. The SMPC strategy,
on the other hand, uses the stochastic linear model in
(57) as an approximation of the system, while neglect-
ing the possibility of another vehicle cutting in upfront.
SMPC compensates for the unmodeled effects through
feedback.

Both approaches (SMPC and DP) generate frequent ag-
gressive velocity changes which may be uncomfortable
for passengers and inefficient, i.e., wasting fuel. In order
to avoid this, control inputs are penalized by considering
the weighted sum of the absolute values of the control
inputs as an additional objective to be minimized. This
modification of the optimization problem (7) is a follows:

max
π∈Π

τ̄(x0, w0, π)− βE


τ(x0,w0,π)−1∑

t=0

|π(xt, wt, t)|

 ,

(58)
where xt results from applying the control policy π to
(1). The factor for weighting the control input penalty
is denoted by β.

The SMPC approach is modified accordingly by penal-
izing the weighted sum of |uη|. As done in Earl and
D’Andrea (2005), this is achieved by introducing new
variables γη ≥ 0 for each η ∈ TN \ SN , and adding the
following control input constraint to MILP (38) and LP
(54) for each η ∈ TN \ SN :

−γη ≤ uη ≤ γη. (59)

Moreover, the weighted sum of γη values,

β
∑

η∈TN\SN

γη, (60)

is added to the objective functions of MILP (38) and LP
(54).

For numerical reasons, the probability of each scenario,
given by ρη for all η ∈ SN , is normalized by dividing ρη
by the sum of the probabilities of all scenarios of tree
TN , i.e.,

ρη,norm = ρη/
∑
ξ∈SN

ρξ. (61)

which, instead of ρη, is used in (38a) and (54a).

Table 1 shows the average first exit-time τ̄ with the
SMPC approach for different control input penalty
weights β. As expected, τ̄ decreases with increasing β
since a large β emphasizes less intense and less frequent
acceleration/deceleration.

Note that we run 1500 random simulations to estimate
τ̄ for each case since the result does not significantly
change beyond that. The limit on the MILP computation
time is set to tmax = 1 sec.
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Fig. 6. Car following case study, sample trajectory using the
SMPC approach with control input penalty (β = 0.01): fol-
lower speed vf (top plot), time gap Tg (second plot), con-
trol input a (third plot), and disturbance vl (bottom plot)
vs. time t.

β 0 0.01 0.05 0.1

τ̄ (sec) 858 465.1 302.9 13.4

Table 1
Car following case study, SMPC solution with N = 100:
influence of control input penalty weight β on average first
exit-time τ̄ (1500 random simulations each).
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The difference between penalizing the control inputs
vs. not penalizing the control inputs is furthermore
demonstrated in Figures 5 and 6, which show sample
trajectories using the SMPC approach with β = 0 and
β = 0.01, respectively. It is evident that without con-
trol input penalty the control inputs are frequent and
large in value in order to maintain the follower vehicle
speed near its maximum value. In contrast, with con-
trol penalty the control inputs are lower and smaller
in value, resulting in an overall smoother, hence more
comfortable, trajectory.
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Fig. 7. Car following case study: average first exit-time τ̄
vs. N (1500 random simulations each).
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Fig. 8. Car following case study: average (top) and worst–
case time (bottom) to compute control ut (Steps 2–13 in
Algorithm 2) vs. N (1500 random simulations each).

For the remainder of this case study, we use β = 0.01
for the SMPC approach as well as for the DP solution
for comparison. For the DP comparison, we use a uni-
form grid of 33600 points for the state space and linearly
interpolate between the grid points. The control space

is uniformly discretized into 14 points between the min-
imum and maximum values. This setting implemented
in C++11 requires about six hours to compute the DP
control policy offline. The SMPC approach, on the other
hand, is capable to be employed in an online setting. This
can be seen in Figure 8 which shows the online compu-
tation times (average and worst-case values per simula-
tion run) for different tree sizes N . The SMPC solutions
are computed in MATLAB, whereas an implementation
in a lower-level programming language such as C++ is
expected to further improve computation times.

The average first exit-time τ̄ vs. the tree size N is shown
in Figure 7. The DP solution with conventional value
iteration, yielding an average first exit-time of 539 sec,
is also shown for comparison. As in the previous exam-
ple (see Figure 3), the SMPC solution improves with in-
creasing N and approaches the DP solution.

7 Conclusion

A stochastic model predictive control (SMPC) strategy
was developed for solving optimal control problems with
the objective of maximizing the average time until a lin-
ear system with additive random disturbance violates
prescribed constraints on its state variables. The SMPC
strategy is based on a tree structure with a specified
number of tree nodes and a tree generation algorithm has
been defined to emphasize the inclusion of the most rel-
evant scenarios. By repeatedly solving a mixed-integer
linear program over a receding time horizon based on
the current state variables and disturbance, the SMPC
strategy obtains solutions arbitrarily close to the opti-
mal solution in terms of average time until constraint
violation. The effectiveness of the proposed SMPC strat-
egy was demonstrated in two numerical case studies, in-
cluding a car following control problem.
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