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Abstract. To test automated driving systems, we present a case study
for finding critical scenarios in driving environments guided by formal
specifications. To that aim, we devise a framework for critical scenario
identification, which we base on open-source libraries that combine sce-
nario specification, testing, formal methods, and optimization.
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1 Introduction

With the complexity of the automated driving (AD) system and its driving
environment, verification and validation (V&V) is regarded as one of the major
challenges of AD development [25]. Scenario-based testing (SBT) was introduced
as an essential method for facilitating the overall safety assurance of ADs. In
SBT, the expected behavior of an AD system is described by a representative
set of scenarios that are relevant for its safe use. The SBT paradigm facilitates
shifting the AD testing from the physical to the simulation environment. The
use of virtual testing has manifold advantages – more specifically it allows to:
(1) explore efficiently a large number of situations originating from the catalog
of relevant scenarios, (2) reproduce environment conditions (fog, night, rain,
etc.) that are hard to enforce in a physical environment, and (3) play dangerous
scenarios without risk to humans, other vehicles or infrastructure.

Despite significant advances in research and standardization of SBT, there
are still remaining open issues. One of them is to determine the critical scenarios
among the virtually infinite number of scenarios with an abundance of influential
factors ranging from weather or road conditions, to the behaviors of surrounding
road users. A first attempt to keep the number of scenarios manageable is to
restrict the operational design domain (ODD) of the AD system. According
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Fig. 1: Scenario abstraction types according to [17].

to [20], the ODD is defined as the operating conditions under which a given
AD system is specifically designed to function. However, there are some factors,
including the dynamic behavior of the road users, which cannot be controlled in
the ODD. Thus, efficient methods are needed to identify the critical scenarios
from the scenario space within the ODD. An extensive survey study on finding
critical scenarios has been conducted in [25]. With regard to specification-guided
critical scenario identification, our work is closely related to [8,21,23,24].

In this paper, we present a specification-driven framework for critical scenario
identification (CSI) entirely based on open-source software libraries and demon-
strate its benefits with an automated emergency break case study. The proposed
framework, based on the falsification testing paradigm [18], uses optimization-
based methods for finding critical scenarios. We first describe the vanilla work-
flow and show how to tailor it with custom test generation and monitoring
strategies. Hence, our aim is to share our experience in combining existing meth-
ods into a flexible and efficient SBT framework. To innovate the methodology
for SBT within the framework, we investigate the separation between the AD
system and the other road users, modeling their interplay with Assume/Guar-
antee (A/G) contracts. By using A/G contracts, we can improve the search for
meaningful scenarios, assign responsibility for critical situations and distinguish
between invalid behaviors originating from the AD system and from its environ-
ment. In that way, we can detect the violation of environment assumptions in
the simulation execution, and discard the test run. By sharing our experience in
SBT, we intend to nurture the innovation of prospective CSI methods that are
based on specification-guided strategies.

2 Specification-Driven Scenario-Based Testing

2.1 Traffic scenario description

In the operational domain in which the ADS will be deployed, it is exposed to a
potentially infinite number of traffic scenarios. As a consequence, it is impracti-
cal to conduct testing - even in simulation - directly on these traffic scenarios. A
first step towards a successful application of scenario-based testing to assure the
correct behavior of an ADS within its ODD is the abstraction of traffic scenar-
ios. While the argumentation for quality assurance is done on a higher level of
abstraction, the creation of evidence is performed on simulating a variety of con-
crete traffic scenarios derived from the abstract ones. The PEGASUS project “for
the establishment of generally accepted quality criteria, tools and methods as
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Table 1: Supported types and properties of scenario description formats

OSC1.2 OSC2.0 SCENIC

Scenario types

Functional × × ×
Abstract × X X
Logical X X X
Concrete X X X

Properties

Syntax format XML4 DSL5, pythonic DSL, pythonic

Language paradigm imperative mostly declarative
declarative/
imperative

Map-agnostic
scenario definition

× X X

well as scenarios and situations for the release of highly-automated driving func-
tions”, introduced three abstraction types: functional, logical, concrete scenarios
[16]. In this paper, we use an extended classification proposed in [17], see Fig. 1.
Functional scenarios are defined as behavior-based, non-formal descriptions of
traffic scenarios in natural language. Abstract scenarios are a formalization of
functional scenarios using a declarative way to describe the scenario. Logical
scenarios are defined as a parameterized set of traffic scenarios, while concrete
scenarios are instances of a logical scenario with fixed parameters. They have a
fixed scenery and road user behavior, that is based on the ego-vehicle movement.
Abstract, logical, and concrete scenarios are machine-readable, and various real-
izations of traffic scenario description formats exist for simulation. In the follow-
ing, we give a comparison between three non-proprietary, and openly available
scenario description formats: OpenSCENARIO®1.2 (OSC1.2) [3], OpenSCE-
NARIO®2.0 (OSC2.0) [4], and Scenic [12], see Tab. 1. With regard to the
overall traffic scenario, their focus is on the initial placement and the dynamic
behavior of the actors. The description of the scenery, such as the map, is de-
fined outside these formats. OSC1.2 is mainly used for describing concrete traffic
scenarios that can be directly run by the simulator. The actors’ placement and
behavior are defined in an imperative fashion using pairs of actions and triggers
that evoke these actions. OSC2.0’s and Scenic’s main intent is to define abstract
scenarios, which can be concretized by a dedicated scenario generation engine.
OSC2.0’s description is mostly declarative by constraining the road users’ behav-
ior. The probabilistic programming language Scenic is declarative in the initial
actor placement with a rich instruction set for relationships between entities,
and uses an imperative description for behaviors. All three languages support
parameterization of scenario parameters to describe logical scenarios. A distinc-

4 Extensible Markup Language
5 Domain-specific language
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Fig. 2: Critical scenario identification framework with tool architecture.

tive feature of OSC2.0 and Scenic compared to OSC1.2 is that the location of
the scenario does not need to be specified within the scenario definition. Instead,
the scenario generation engine will find a suitable segment on the road map, on
which the scenario can be executed with all actors in the simulator.

Based on the scenario format, a database of abstract/logical scenarios needs
to be created that covers all the relevant features in the considered ODD of
the AD function. In this paper, we selected Scenic as our scenario format, due
to both its flexibility in expressing abstract scenarios and the availability of an
open-source testing framework [9] that is provided for Scenic.

2.2 Critical scenario identification

This section introduces the test framework to find critical concrete scenario
instances within a specified abstract scenario efficiently and in a flexible manner.
The framework depicted in Fig. 2 indicating the overall workflow is based on
open-source software components highlighted in bold. It assumes two inputs, the
abstract scenario given in the Scenic format, and a formal specification of the
AD system defined in signal temporal logic (STL), that we use as a test oracle.
The technical details on the formal specification are introduced in Sec. 2.3.

Workflow The test execution framework is based on Berkeley’s VerifAI [9].
By applying a sampling strategy, VerifAI generates concrete scenarios from the
Scenic scenario that are executed in the CARLA simulator [7]. To evaluate the
resulting trajectories, we integrated RTAMT - an STL monitoring library [19]
- into the VerifAI-based testing framework. RTAMT provides the automated
generation of robustness monitors from STL specifications and therefore facili-
tates checking simulation traces against the formal specification. The robustness
measure is then fed back as a criticality indicator to the scenario sampler that
determines new test parameters that constitute the next concrete scenario to be
simulated. Depending on the sampling strategy, the scenario search can be of
explorative or exploitative nature. Instead of using the sampling strategies pro-
vided by VerifAI, we integrated an external sampling strategy, that is based on
the global optimizer GLIS [5]. The details about GLIS are outlined in Sec. 2.4.
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2.3 Formal Specifications

Concrete scenarios are typically evaluated against requirements. These require-
ments can cover various aspects, including safety, legal, comfort and ethical con-
siderations. In order to avoid ambiguities and facilitate their evaluation, there is
a need to formulate requirements using a formal specification language. In this
paper, we adopt signal temporal logic (STL) [15] as our specification formalism.
There are several motivations to choose STL for requirement formalization: (1)
an existing body of work already captures AD system requirements using STL,
(2) STL admits quantitative semantics that can be used to guide the search
for critical scenarios, and (3) there are runtime verification tools that enable
evaluation of STL properties. The syntax of STL is given by the grammar

ϕ ::= > | f(R) > 0 | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 UI ϕ2 | ϕ1 SI ϕ2 ,

where f(R) are terms in Θ and I are real intervals with bounds in Q≥0 ∪ {∞}.
As customary we use ♦I ϕ ≡ >UI ϕ for eventually, �I ϕ ≡ ¬♦I ¬ϕ for always,
QI ϕ ≡ >SI ϕ for once and `I ϕ ≡ ¬QI ¬ϕ for historically. The timing
interval I may be omitted when I = [0,∞) or I = (0,∞). STL can be naturally
equipped with quantitative semantics based on the infinity norm [6] that measure
how far is the observed behavior from satisfying or violating a requirement.

The evaluation of an AD system cannot be performed in isolation from its
environment. For instance, an AD system cannot guarantee safety requirements,
such as RSS, in presence of other road users that do not behave in a reasonable
manner. The relation of the AD system and the environment under which it
operates can be formalized in terms of a contract C = (ϕ,ψ), a pair of properties
where ϕ represents the assumptions on the environment and ψ guarantees of the
system under these assumptions. This classical interpretation of C is given by
the temporal logic formula

�ϕ→ �ψ.

According to the above formula, any violation of the assumption by the envi-
ronment results in the (vacuous) satisfaction of the contract, even if the system
also violates its guarantee. However, this definition neglects that these two vio-
lations may not be causally related – the violation of ψ by the system at time
t before the violation of ϕ by the environment at time t′ > t still results in the
satisfaction of the contract. To address this situation, we propose a more refined
notion of a contract that takes the intended temporal causality between the en-
vironment and the AD system into account. We denote our refined contract by
Ĉ and capture its meaning using the formula:

�((`[0,T ] ϕ)→ ψ)

where T specifies the maximum duration within which we consider the violation
of ϕ to be causally related to the violation of ψ.
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2.4 Sampling Strategy

Different sampling strategies may be used to identify the parameters of the
next concrete scenario to simulate. These strategies can be broadly divided into
näıve (passive) and guided search (active) sampling strategies [25]. The näıve
search strategies, such as random sampling, involve the independent selection
of test parameters. In contrast, the guided search, such as optimization [11,10],
make the selection based on a specific selection criterion and the information of
existing samples. Näıve search sampling strategies are useful if the simulation is
computationally cheap to run since parallelization of the procedure is possible
due to the independence among testing samples. On the other hand, when the
test case simulation is computationally expensive to run and/or when the test
cases interested (critical test cases in this case) are in a small region of the search
domain, the guided search sampling strategies can be more sample efficient.

For the current study, guided-search sampling strategies such as surrogate-
based black-box optimization methods are appropriate to efficiently identify rel-
evant critical concrete scenarios for the AD system. It is because a closed-form
expression of the KPI in terms of the test parameters is often unavailable. Specif-
ically, we use the global optimization algorithm GLIS (Global optimization via
Inverse distance weighting and Surrogate radial basis functions) [5] as the active
guided-search sampler to identify the next test parameters of a concrete scenario
for testing. The procedure of GLIS includes an initial sampling stage and an ac-
tive learning stage. In the initial sampling stage, Ninitial different test parameters
are randomly selected within the search domain, and the corresponding concrete
scenarios are simulated. The resulting quantitative evaluation of each test pa-
rameter from RTAMT monitors is fed back to GLIS (c.f. Fig. 2). A surrogate
radial basis interpolation function (RBF) representing the correlation between
the test parameters and the KPI is fitted to the initial samples. In the active
learning phase, at each iteration, we identify a new test parameter, simulate the
corresponding concrete scenario, and refit the surrogate function by including
the newly identified test parameter and its KPI. The new test parameter is ob-
tained by optimizing an acquisition function, which trades off the exploitation of
the fitted RBF surrogate and exploration of an inverse distance weighting (IDW)
function. IDW is a distance-based exploration function that promotes visiting
points far away from the existing samples, which helps prevent the solver from
being trapped in the local optima. GLIS terminates when the maximum allowed
iteration is reached, or another user-defined criterion is met.

GLIS is chosen for this study, as it easily incorporates constraints and has
a low computing cost [5]. If the computing cost is reasonable, GLIS may be re-
placed by other surrogate-based active samplers, such as Bayesian optimization.

3 Automatic Emergency Braking Case Study

To illustrate the methodology, we focus on testing a simple Automatic Emer-
gency Braking (AEB) functionality using a highway scenario.
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Fig. 3: (left) Snapshot of CARLA simulator running the AEB function test on a
highway. (right) Example of telemetric data collected from all actors.

Scenario description The functional scenario is an ego vehicle following a leading
vehicle on a highway, when suddenly the leading vehicle brakes abruptly. The
ego vehicle is equipped with a simplistic distance-based AEB function which is
activated when the ego is less than safeDist meters from the leading vehicle.
Figure 3 shows a snapshot of the scenario running in CARLA v9.10.

The abstract scenario, depicted in Listing 1.1, is formulated using Scenic6.
The scenario first specifies the sampler and the map used to generate concrete
simulations (lines 1 and 2). Then, it defines parameter variables that we partition
into: (1) the constant variables (lines 3-4) that do not change across concrete
scenarios and (2) the optimization variables (lines 6-7) that are fed to an external
(VerifAI) sampler in order to find critical scenarios in a controlled fashion. There
are also what we call implicit variables that are not explicitly part of the Scenic
abstract scenario but still need to have a concrete value in the simulator. For
example, the weather conditions, the exact starting position and orientation of
each vehicle, the vehicle model, etc. In this case study, there are more than 25
implicit parameters. The scenario also defines the behavior of the ego (lines 9-12)
and of the lead vehicle (lines 14-18). Both the ego and the lead vehicle follow the
lane with some target speed as their default behavior. However, the lead vehicle
abruptly breaks at regular intervals, while the ego breaks when it approaches
any object at some minimum distance. The two vehicles are spawned at some
uniformly chosen part of the map (line 20) that is sufficiently far away from an
intersection (line 25). The lead car is initialized at some pre-defined distance in
front of the ego vehicle (lines 22-23).

1 param verifaiSamplerType = ‘glis ’ # specify sampler

2 param carla_map = ‘Town04 ’ # specify map to use

3 initDist = 30 # constant

4 leadSpeed = 10

5

6 The shown scenario is simplified to facilitate presentation.
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6 safeDist = VerifaiRange (25 ,45) # optimization variable

7 egoSpeed = VerifaiRange (9 ,11) # optimization variable

8
9 behavior AEB_Behavior: # define ego behavior

10 try:

11 FollowLaneBehavior(egoSpeed)

12 interrupt when withinDistanceToObjsInLane(self , safeDist):

take SetBrakeAction (1), SetThrottleAction (0)

13
14 behavior Brake_Behavior: # define behavior of lead car

15 try:

16 FollowLaneBehavior(leadSpeed)

17 interrupt when simulation ().currentTime > delay:

18 take SetBrakeAction (1), SetThrottleAction (0)

19
20 spawnPt = Uniform (* HighwayRoads) # Highway part of map

21
22 ego = Car at spawnPt , with AEB_Behavior} # spawn ego

23 leadCar = Car at spawnPt + initDist , with Brake_Behavior #

lead

24
25 require (distance from leadCar to intersection > 50)

26 # extra requirements for rejection sampling

Listing 1.1: AEB highway scenario in Scenic

Formalized Requirements We illustrate the formalization of the requirements
with the contract C = (ϕ,ψ), which captures the assumption ϕ about the
maximum allowed deceleration of the lead vehicle and the guarantee ψ as the
Responsibility-Sensitive Safety (RSS) property of the ego vehicle. The assump-
tion ϕ originates from the IEEE Standard 2846-2022 [1], that describes the
minimal set of assumptions on the road users for safety-related models of AD.
From the assumptions described in the standard, we focus on the maximum
deceleration specification

ϕ = β ≤ βmax.

The Responsibility-Sensitive Safety (RSS) rule specifies, under minimal as-
sumptions, what longitudinal and lateral distances the ego vehicle must keep
from other road users to ensure no collisions [22]. The RSS rules were formalized
into temporal logic by [2] [14]. We adopt the STL specification from [2] for an
ego vehicle (back) to keep a safe longitudinal distance to another vehicle (front):

� (vfront ≥ 0 ∧ vback ≥ 0)

� (afront ∈ [amax-Br, amax-Acc] ∧ aback ∈ [amax-Br, amax-Acc])

� (d(front, back) < dsafe → aback ∈ [amax-Br, amin-Br])
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where a, v are correspondingly acceleration and velocity. Similarly amax-Acc,
amax-Br, amin-Br are assumed maximum acceleration, maximum braking, and
minimum braking acceleration. Finally, dsafe is determined dynamically depend-
ing on the velocities of both vehicles, and the reaction time τ of the ego vehicle:

dsafe =

(
vbackτ +

amax-Accτ
2

2
+

(vback + amax-Accτ)2

2amin-Br
− v2front

2amax-Br

)
.

The safety distance is calculated in order to ensure that a collision is avoided as
long as the ego vehicle is sufficiently far away from the leading vehicle. If it is
momentarily closer than dsafe then a collision will still be avoided if the ego is
reacting appropriately (by braking with at least amin-Br).

3.1 Simulation Results

In this section we present our evaluation outcomes. Fig. 4 shows the results from
simulating the abstract scenario 70 times using the described tool chain. Each
point in the scatter plots represents a simulated concrete scenario, where the
RSS longitudinal distance was monitored. If the ego vehicle managed to react
adequately by braking in time, then this is represented as a blue circle, otherwise
(if the specification was violated) it is represented by a red cross (the intensity
of the color represents the robustness degree).

Fig. 4: Comparison between Halton sampling (left) and GLIS sampling [5](right)
for 70 concrete scenarios. The GLIS parameters are: α = 1, δ = 0.5, εSVD = 0.01,
and an inverse-quadratic basis function with ε = 0.2 was used.

Furthermore, we compare two different sampling strategies to find critical
scenarios. In this case, we compare a passive sampling strategy (i.e. agnostic
to feedback) which is based on Halton sequences [13], to an active strategy
based on the GLIS optimization sampling. As expected, sampling scenarios with
GLIS leads to the discovery of more critical scenarios (11 compared to 2 with
Halton), and suggests variable regions which should be further investigated. In
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our example, the optimizer clearly was trying to exploit around the region of
higher egoSpeed, and lower safeDist (as expected). In practice, both strategies
are used to obtain a clear picture of the performance of the ADAS functionality.

Fig. 5: Evaluation with A/G contracts.

In Fig. 5, we illustrate the discrepancy between the classical and the refined
interpretation of A/G contracts. The figure depicts two simulations showing
the deceleration β of the lead vehicle and the maximum allowed deceleration
threshold βmax = 2m/s2 (top) and the distance between the ego and the lead
vehicle, as well as the safe distance between them (bottom). We see that in
the two simulations both the assumption ϕ and the guarantee ψ are violated
(purple and red stipes, respectively). In the first simulation (left), there is a clear
causality between the abrupt breaking of the lead vehicle and the longitudinal
RSS violation – it follows that the contract is satisfied under both the classical
and the refined interpretation. In the second simulation (right), the violation
of the longitudinal RSS requirement happens before the lead vehicle breaks.
Intuitively, we expect the contract to be violated since the behavior of the lead
vehicle did not cause this critical scenario. However, under the classical contract
interpretation, the contract is satisfied because the lead vehicle does violate the
assumption at a later stage. On the other hand, the refined contract rightly
indicates the contract falsification.

3.2 Lessons Learned

In this section, we share our experience about the scenario-based testing frame-
work and collected during the case study evaluation.

Passive vs. active sampling Both passive and active sampling have their merits
in testing AD systems. Passive sampling methods such as Halton provide a
coverage of the parameter space, facilitate detecting interesting patterns, if any,
and help identifying parameter regions that are interesting to further explore.
In contrast, active sampling methods such as GLIS can accelerate the detection
of critical scenarios.
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Level of scenario abstraction Balance between keeping a scenario abstract, and
letting the tools sample different variables, and having consistent concrete sce-
narios. If too many variables are left unspecified, drawing meaningful conclusions
from the experiments is difficult, but if too many parameters are specified, there
is a risk of missing out on potential critical scenarios that are relevant (and it
also needs more development time).

Optimization with implicit variables It is interesting to note that from the point
of view of the optimizer, the robustness function the of concrete scenario is non-
deterministic. That is, there are many different concrete scenarios that result
from having the same egoSpeed and safeDist which result in different robust-
ness values. This is mostly due to different implicit parameters impacting the
robustness, which the optimizer does not directly see (e.g. road geometry).
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