
A comparison of hosting techniques for online
cybersecurity competitions

Niccolò Maggioni[0009−0009−3901−8842] and Letterio Galletta[0000−0003−0351−9169]

IMT School for Advanced Studies Lucca, Lucca, Italy
{niccolo.maggioni, letterio.galletta}@imtlucca.it

Abstract. Online cybersecurity competitions have gained significant
traction in the community for educational and evaluative purposes be-
cause they offer dynamic environments for learning intricate technical
concepts in an engaging, non-traditional, and interactive manner. While
such competitions are increasingly popular and frequently held, organizing
them is not straightforward. Developers must design challenges that are
both innovative and balanced in difficulty, ensuring an enjoyable learning
experience. Concurrently, effective hosting, configuring, and managing the
online infrastructure that underpins these games are technical challenges
demanding informed decisions. Unfortunately, no comprehensive resource
exists to guide organizers in choosing suitable hosting architecture and
tools based on their technical proficiency and event scale. This paper
contributes to addressing this gap by examining prevalent architectures
for hosting Capture The Flag (CTF) competitions and evaluating them
using criteria encompassing several factors. These factors include envi-
ronment setup, deployment, configuration, and updates of vulnerable
services, system maintenance, and security mechanisms. Each criterion
is qualitatively assessed with an associated numeric score. Finally, the
paper puts forward recommendations on architecture and tools based on
event size and organizer skills.

Keywords: Cybersecurity games · Capture the Flag · Jeopardy CTF competi-
tions · Hosting architectures · Hosting recommendations.

1 Introduction

Recently, cybersecurity games, especially Capture The Flag (CTF) competitions,
have gained significant popularity within the computer security community for
educational purposes and evaluation objectives. These competitions are widely
considered excellent methods for learning deeply technical concepts in a fun,
non-traditional, and interactive environment. They cater to a diverse range of skill
levels, accommodating beginners, practitioners, and even experts. Participants
are usually organized into teams that compete for a prize or recognition. In
a typical competition, players face a series of hacking challenges presented as
vulnerable remote services. To solve a challenge, players must find an attack to
reveal a secret piece of information, which is then submitted to a scoring server.

2 N. Maggioni and L. Galletta

These competitions are predominantly hosted online, last a limited period of
time, and attract thousands of participants worldwide. The player community
is remarkably active, with new competitions occurring on a weekly basis, as
documented by the reference portal [6].

However, despite the weekly frequency of new competitions, organizing them
is far from a straightforward task. On the one hand, organisers should prioritise
participants’ game experience: they should design challenges that are both innova-
tive and enjoyable, striking a balance between difficulty and accessibility, and that
facilitate players to learn new cybersecurity concepts or subjects. Achieving such
an engaging game experience demands considerable dedication from challenge
developers. On the other hand, organisers must meticulously handle the design
and implementation of the online infrastructure that provides the game environ-
ment to participants. A minor mistake in its setup, configuration, or management
can lead to malfunctions during the competition, detrimentally affecting players’
enjoyment and overall perception of the event. While crafting engaging challenges
remains an art honed by experienced developers, effectively hosting, configuring,
and managing the game infrastructure is a technical matter that necessitates
well-informed decisions during competition design. Although the common choice
is to opt for a public cloud environment to host the CTF event, organisers often
find themselves overwhelmed by the numerous architectures and tools available.
Unfortunately, these options are frequently inadequately documented or are only
available as informal articles scattered across the web [23,14,45,49,13]. To the best
of our knowledge, a comprehensive literature that assists organizers in choosing
the appropriate architecture and tools according to their technical expertise and
the scale of the event is currently missing.

This paper contributes to tackling this issue by examining the prevalent
architectures for hosting CTF competitions and conducting a qualitative assess-
ment based on well-defined criteria. These criteria draw inspiration from those
typically employed for assessing cloud platforms and encompass diverse facets,
including environment setup, packaging, deployment, configuration, and update
of vulnerable services, system maintenance, as well as security mechanisms for
isolating processes and limiting their resource usage. We furnish a qualitative
judgment that elucidates to which extent the architecture meets each criterion
alongside a numeric score that synthesizes our evaluation. Additionally, we assign
an aggregate score to each architecture, computed as the cumulative sum of
criterion scores. The analysis of these scores shows that the architectures provid-
ing a certain level of automation in deploying and managing vulnerable services
are the most suitable for adoption in a context where CTF organisers have no
prior experience or infrastructural preferences. Subsequently, we offer a set of
recommendations about the architecture based on the event size and organizers’
technical skills. We believe that the outcomes of our analysis can assist CTF
organizers in selecting the most appropriate architecture.

In summary, the main contributions of this paper are:

– We examine the prevalent architectures used to host vulnerable applications
in the context of CTF competitions.

A comparison of hosting techniques for online cybersecurity competitions 3

– We present an evaluation methodology and a set of criteria for assessing
different architectures. These criteria encompass various factors, including
environment setup, packaging, deployment, configuration, and updating of
vulnerable services, system maintenance, as well as security considerations
such as isolation capabilities and resource usage limitations.

– We assess each architecture according to the introduced methodology, pro-
viding a qualitative judgment alongside a numeric score for each criterion.
Our analysis indicates that the architectures providing a certain level of
automation in deploying and managing vulnerable services are the most
suitable for adoption.

– We provide a list of recommendations to CTF organisers on the architectures
to use based on the scale of the event and their technical skills.

The rest of the paper is organised as follows. Section 2 introduces the world
of CTF competitions. We present the prevalent architectures to host such com-
petitions in Section 3. Section 4 introduces our methodology and the criteria
we adopt for the assessment, which is carried out in Section 5. We discuss the
results of our assessment in Section 6, and we furnish recommendations to CTF
organisers in Section 7. Section 8 compares our work with the relevant literature,
while Section 9 draws some conclusion and discuss future work.

2 Background

This section introduces CTF competitions and presents the requirements organ-
isers need to meet to host them.

2.1 What CTF competitions are

CTF events are computer security competitions. Participants engage in a series
of hacking challenges consisting of remote services that are designed to contain
security flaws and vulnerabilities, e.g., buffer overflow, Cross-Site Scripting (XSS),
with the goal of uncovering a concealed piece of information known as the “flag.”
Flags consist of a string of characters with a known syntax, serve as evidence of
successful exploitation, and allow earning a certain amount of points. Typically,
participants can either work alone or in teams, and the competition is won
by those who accumulate the largest amount of points. At the start of the
competition, each challenge is worth a predetermined amount of points by the
event organizers. In most competitions, this value decreases exponentially as
more and more participants solve the same challenge: this ensures that the most
difficult challenges retain a high points value and thus enable stronger players to
climb the leaderboards.

There are two types of widely known CTF events: jeopardy and attack-
defence. The first format exposes a list of challenges to the players, who solve
them at their own pace and usually without interacting with other players - at
least not in a real-time manner. Some challenges may require to be solved in

4 N. Maggioni and L. Galletta

a specific order, but players are generally free to approach them in any order
they prefer and to concentrate on those that they feel are the most interesting.
Solving all the challenges is considered a noteworthy achievement but not a
requirement. Concerning the kind of challenges, jeopardy CTFs follow a standard
categorization where the prominent categories include: Binary Exploitation,
Cryptography, Forensics, Reverse Engineering, and Web Security. However, the
organizers of each event are free to tweak them to their needs and add new - or
remove existing - ones if needed. For example, many events propose challenges
concerning smart contract technology or hardware. Jeopardy CTFs typically run
for two to three days, with some special events lasting up to a few weeks.

The attack-defence format is instead oriented on real-time interactions between
teams of players across the network. In this type of competition, each team is
either granted access to a remote machine or is assigned the task of hosting it
on their premises. These hosts, referred to as “vulnboxes,” are connected to the
game infrastructure, and operate using pregenerated OS template images that
the CTF organizers have equipped with vulnerable software. These applications
are the same for all teams and typically range in number from three to six.
The competition runs over a series of rounds called “ticks” that typically last
from 60 to 180 seconds. At the start of each round, a central component of the
game infrastructure managed by the organizers, the game server, interacts with
each team’s services and verifies that they are working as expected. If the check
succeeds, the game server adds new flags to the service. In the meantime, players
must exploit the opponent’s services to extract the flags using a combination
of manual proof-of-concept exploits and, subsequently, automated attacks. The
network structure is designed to make it impossible for players to determine
whether the network traffic is coming from the game server or another player,
forcing them to accurately inspect each packet to identify, block, and eventually
replicate malicious exploits.

This paper focuses on requirements for jeopardy CTFs since they are the
most common type of event on the scene [6]. Organizers who host attack-defence
competitions usually have extensive domain-specific knowledge and build their
infrastructure according to their needs, technical preferences, and availability of
computational resources.

2.2 Requirements for jeopardy CTFs

A typical jeopardy CTF needs the following software components to be functional
and properly organized:

– A public website that allows players or teams to register, access the various
challenges when the competition is running, and see the scoreboard with the
scores of the various teams. Currently, CTFd [5] is the most popular choice,
followed by the relatively newer rCTF [44]; however, teams are free to adopt
custom solutions.

– A real-time messaging platform to let the participants communicate with
the organizers; currently, Discord is the most common solution, but other
approaches that allow direct communication are fine.

A comparison of hosting techniques for online cybersecurity competitions 5

– One or more remote hosts serving the competition website and the challenges.
Hosting both on the same host is typically not recommended since possible
problems with the challenges could damage the website availability or even
the scoring data.

– A set of challenges organized into various categories: each challenge can be
either static, such as a file to be downloaded or other static assets served
through the Internet, or dynamic, such as an entire application responding
to the users’ inputs remotely.

There are also other factors to consider when organising a CTF, for example:

– Organisers should adequately balance the difficulty of the challenges. As a
practical rule, every participant should solve at least one challenge, but only
a small portion of teams should solve the most difficult ones.

– Challenge developers must have a clear and precise understanding of the
flaws they introduce and the consequences of possible exploits; failing to do
so could pave the way for malicious exploitation of the platform. Examples
of issues may include unsafe Inter-Process Communication (IPC), the lack of
isolation for expected Remote Command Execution (RCE) attacks, and the
absence of Denial of Service (DoS) and scraping filters.

– The available budget for organising the event is usually limited: bigger
events can obtain sponsorships from cloud providers or companies active
in the cybersecurity field, but most of the time, the events are self-funded
by the organizing team. The estimation of the necessary budget must take
into account that the environment must be set up ahead of time to allow
the participants to register on the website (one month is enough for most
events), and that it is customary to leave the website with the scoreboard and
challenges online for some time after the end of the competition (typically
from one to three weeks) to allow participants to test and document their
solutions and improve their skills properly.

3 Hosting architectures for CTFs

Here, we briefly survey the most common approaches to hosting vulnerable
applications in the context of a CTF. We list below the architectures ordered
by their level of complexity and required administrative specialization. Their
adoption is documented in the literature [22,40] or in articles that CTF organizers
have informally published throughout the years [23,14,45,3,49,13].

Dedicated server (legacy deployments) We have a bare metal server or a
virtual machine fully dedicated to hosting the CTF challenges. The server must
be equipped with the required computational resources from the beginning
and must be placed in a securely manageable environment. Services are
deployed through a standard pipeline: they are developed on a different
machine, and then their code (source or binary), together with the required
dependencies, are manually copied into the server; setting the execution

6 N. Maggioni and L. Galletta

environment with all the required configuration parameters is performed
manually, as well as restarting the necessary processes. Due to the nature
of CTF competitions, the operating system running on this architecture is
expected to be a Linux distribution.

Dedicated server (containerized deployments) This is the same physical
architecture as above (“Dedicated server (legacy deployments”) but with the
key difference that vulnerable services and their dependencies are deployed
using application containers. These containers typically run on runtimes and
toolchains supported by Docker [10], Podman [36], or equivalent software. A
more detailed explanation of this approach has been described by Merkel [31].
Due to the nature of CTF competitions and container runtimes, the operating
system running on this architecture is expected to be a Linux distribution.

Hyper-converged infrastructure In this case, the infrastructure is made of a
group of (physical or virtualized) servers that feature virtualization, storage,
and advanced networking capabilities and is managed from a single interface.
The concept of individual servers is abstracted as much as possible, giving
operators the feeling of managing a single piece of hardware equipped with the
union of the resources of the involved machines. Here, we consider Proxmox
VE [38] as the reference implementation for this category: it is a browser-
based environment that enables users to manage QEMU [39] virtual machines,
LXC [27] containers, and various types of virtual networks. This solution is
based on Debian GNU/Linux [7].

Simple orchestrator or task runner This architecture consists of software
or a combination of applications that assist users in managing the vulnerable
services interactively and is characterized by static specifications that describe
how to deploy and modify each service. Any changes to the deployment
require changes in such specifications. Concretely, these specifications might
be configuration files, deployment plans, or other assets similar to human-
readable static text files. Here, we consider a combination of HashiCorp
Nomad [20] and Consul [17] as a reference implementation for this category:
their capabilities allow users to manage and monitor QEMU virtual machines,
native Linux containers (LXC and others), application containers (Docker [10],
Podman [36]), and standard processes. This architecture is a simple yet
powerful starting ground for transitioning to more complex ones.

Complex orchestrator This architecture typically consists of a tightly coupled
suite of components that abstracts away the complexities of deploying, scaling,
and managing containerized applications. This kind of orchestrator is usually
meant to handle large-scale deployments, but its abstraction capabilities can
also help in smaller deployments where it is desirable to define precisely the
environment in which each vulnerable piece of software must run. In this
paper, the reference implementation for this category is Kubernetes [46]. It
can orchestrate different loads, but we focus only on application containers
here. Moreover, since many features of this approach are only reliable when
used in the Cloud, all the observations in the following sections assume
that a public cloud deployment has been chosen and that the best practices
recommended by the cloud provider have been followed. If a provide-managed

A comparison of hosting techniques for online cybersecurity competitions 7

offering is incompatible with the CTF organizers’ requirements, it is assumed
that they can operate the chosen complex system appropriately.

4 Assessment methodology

We describe our methodology to assess the various architectures to host CTF
competitions. In our evaluation, we neglect the hardware or platforms where the
deployment is carried out - such as a public or private cloud provider, on-premises
or co-located physical servers, or combinations of the two - since these options
are numerous and constantly changing. Their management can be considered
unavoidable overhead independently of the goal these resources are used for, and
thus, it must not affect the analysis of their characteristics.

We extend the methodology by Maiya et al. [28] on classifying the man-
ageability of cloud platforms. More precisely, we revise the proposed use cases
and metrics to fit the organization of CTF competitions. Indeed, these events
require managing insecure by-design software and executing exploits crafted
by players, with relatively few limitations on what can be done once attackers
have taken control of the target service or machine. Running vulnerable software
inevitably leads to unexpected behavior of challenges during the competition
or unplanned and hard-to-diagnose outages of the game platform. Thus, we
introduce security-oriented criteria regarding the isolation of running processes
and network activities, mechanisms for limiting computational resources, and
tools to quickly servicing internal components when they break. Moreover, we
simplify the scoring system where each characteristic receives an absolute rating
on a scale from 1 to 3: 1 represents the worst value, while 3 is the best one. Thus,
the architecture with the higher score will be considered the most convenient
in a generic use case, namely when CTF organisers have no particular prior
experience or infrastructural preferences. Later in the paper, we provide recom-
mendations for specific use cases and environments that could slightly change
these classifications.

Below, we report the criteria we use to score the various architectures:

Initial setup complexity The complexity, in terms of required domain-specific
knowledge and experience, of the initial bring-up of the whole architecture.
A system with few components and self-explanatory configurations will be
considered simpler than one with more components or harder-to-understand
configurations.

Initial setup duration An estimate of the time required for the initial bring-
up of the whole architecture. Time duration is classified into three segments:
less than an hour, multiple hours, and multiple days. A system with a quicker
bring-up will be better than one requiring a longer process.

Services packaging The complexity of packaging software for deployment or
for making the code running on the developer’s machines ready for deploy-
ment on the production infrastructure. A specific differentiation must be
made between static assets being served directly, either through a persistent

8 N. Maggioni and L. Galletta

network connection or a single-time download, and dynamic services requir-
ing interaction with players. A system with a streamlined, less error-prone
packaging process will be considered better than one with more steps and a
higher probability of errors.

Services deployment The complexity of getting packaged software to run on
the production infrastructure through specific protocols or definitions. A
system with a streamlined, less error-prone deployment process and more
readable deployment specifications will be considered better than one with a
more involved, less risk-averse deployment process and less readable deploy-
ment specifications.

Services updating The complexity of updating and applying patches to either
the code of deployed vulnerable services or their configuration deployment.
A system with a streamlined, less error-prone updating process will be better
than one with more steps and a higher probability of errors.

Services configuration An classification of the capabilities related to adding
and editing external configuration parameters for specific services such as
environment variables, secret tokens, API keys, passwords, and inter-service
dependencies handled separately from the application code. A system that
exposes such elements to deployed applications more easily, reliably, and
securely will be considered better than one that does so in more complex,
unreliable, and insecure ways.

Resources limitation A classification of the capabilities related to placing,
monitoring, and enforcing limits on shared hardware resources like CPU,
RAM, disk space, and network bandwidth. A system that enables operators
to specify more types of limits in more granular ways will be considered
better than one that exposes fewer types of limits in coarser ways.

Isolation & security A classification of the security capabilities of the platform
and their relative complexity. We consider how the solution allows for the
management of exposed interfaces and which mechanisms it provides for
services isolation (from each other, from the operating system of the hosting
machine, and the network), for network filtering and logging, for protection
against scrapers and DoS (Denial of Service) attacks, and for rate limiting.
A system offering more of these capabilities will be considered better than
one offering less.

Changes of state An estimate on the number of ways the solution handles
misbehaving services: automatic restarts after crashes, detection and noti-
fications of repeated failures, exponential back-off timers. A system that
offers more ways of automatically solving unexpected state discrepancies and
more means of notification will be considered better than one that offers less
flexibility.

Scaling A classification of the process of improving a service availability or per-
formance through either vertical (adding more resources to a single instance
of the service or its hosting node) or horizontal (adding more copies of the
service or more hosting nodes) scaling. A more accessible, faster-to-edit, or
more flexible and automated scaling system will be considered better than

A comparison of hosting techniques for online cybersecurity competitions 9

one with more complex, slower-to-edit, less flexible, and automatic scaling
mechanisms.

Introspection and maintenance A classification of the relative complexity of
the system (often referred to as “amount of moving parts”) and the required
competencies for troubleshooting activities. A critical rating factor will be
whether operators can use widely known diagnostic tools or more specialized,
domain-specific solutions that need to be installed and configured beforehand.
A system that allows easy use of commonly available utilities will be considered
better than a more complex one that requires custom diagnostics solutions.

5 Evaluation of the proposed solutions

In this section, we provide a qualitative evaluation of the architectures of Section 3
according to the methodology of Section 4. We make a qualitative judgment for
each criterion and assign it a numeric score.

5.1 Dedicated server (legacy deployments)

Below, we report the scores together with a brief qualitative judgment. The scores
are summarized in Table 1.

Initial setup complexity (Score: 3) Since the physical hardware or a virtual
machine is already provisioned, operators need to set up a customized initial-
ization procedure: they need to install an OS, configure the networking, and
audit the overall security of the system, e.g., authentication and authorization
parameters, remote access and basic firewall rules. While this process can
be tedious to execute on multiple machines, it can be easily automated in a
modular way through tools like Ansible [2]. This makes the chain of setup
operations declarative, repeatable, and possibly idempotent.

Initial setup duration (Score: 2) Independently from the automation of the
setup, the time needed to complete these preliminary operations is measurable
in a matter of hours: performing the setup manually is time-consuming and
error-prone, but writing a good automated solution takes a comparable
amount of time.

Services packaging (Score: 1) While most operating systems use their pack-
aging solutions, such as DEB or RPM archives, the time and effort needed
to package software in such formats correctly make them unsuitable in a
short-lived and highly dynamic environment required by CTF competitions.
Thus, software must be distributed through simpler mechanisms, often using
bare source code archives. This makes packaging artifacts difficult to version,
organize and transfer reliably.

Services deployment (Score: 1) According to the considerations on services
packaging above, the deployment process usually relies on a combination of
custom scripts, code launchers, and custom decisions about the structure
of the filesystem and the management of background processes. This makes
deployments unstable, hardly repeatable, and in need of constant manual
interventions.

10 N. Maggioni and L. Galletta

Services updating (Score: 1) In the context of this architecture, updating
services is similar to a new deployment. Thus, the considerations above apply.

Services configuration (Score: 1) Organizing a service’s configuration files
is a task largely left to its developers: as no standards exist in this context,
in the best-case scenario, a group of system operators and service developers
might agree on a common configuration format (YAML, TOML, INI, CSV,
or other custom syntax) and the path in the file system where files are stored
(relative to the application directory, or absolute). Moreover, run-time checks
that enforce these informal, internal conventions are often missing.

Resources limitation (Score: 1) With no mechanism that supervises the exe-
cution of the services, limiting the resources they have access to can be rather
difficult and may lead to hard to troubleshooting issues in seemingly unrelated
operations inside the service’s logic. Relative scheduling priority and coarse
CPU usage percentage can be limited using standard Unix and Linux tools
like nice and cpulimit, but limiting other resources such as RAM and network
bandwidth cannot be done reliably without recurring to complex features
of modern Linux kernels such as control groups [30]. Therefore, limiting the
consumption of system resources is a complex task.

Isolation & security (Score: 1) Although organizers might choose to dedi-
cate an entire machine or VM to a single service, this usually never happens
due to the enormous amount of resources that would be required for running
multiple copies of the same operating system and other low-level resources.
Similar to what was said above for resource limitation, isolating processes
running on the same host is not an easy task: legacy approaches for this task
were based on chroot in Linux environments and jails in FreeBSD [37], but
the modern standards rely on Linux cgroups. Note that these approaches
have evolved in the containerization techniques and that applying them
manually exposes operators to many nuisances and problems already solved
in dedicated tooling.

Changes of state (Score: 2) The operating system processes responsible for
starting and upkeeping the system itself (called init systems and including
sysvinit, OpenRC, upstart, systemd as the most historically relevant imple-
mentations) can be tweaked and extended to take care of custom services as
well. They can be configured to start services on boot, restart them in case
of crashes, and redirect their logging to appropriate facilities such as system
journals or dedicated log files. While these init systems can be extended to
various degrees, they are still limited by their designs, and any additional
capabilities such as interactive notifications to operators, checking if the
service is replying properly to user requests, or handling misconfigurations
must still be implemented manually by the service developers.

Scaling (Score: 2) The aforementioned init systems can be configured to run
multiple instances of the same service. But this is an immediate solution
only for stateless services that either do not hold a state in their memory or
rely on an external source of data, e.g., a shared database, disk, or memory
area, for all their features. Stateful services that need keep some context
information in the memory, on the other hand, usually need more complex

A comparison of hosting techniques for online cybersecurity competitions 11

Table 1. Scores assigned to the “Dedicated server (legacy deployments)” architecture.

Criterion Score

Initial setup complexity 3
Initial setup duration 2
Services packaging 1
Services deployment 1
Services updating 1
Services configuration 1
Resources limitation 1
Isolation & security 1
Changes of state 2
Scaling 2
Introspection and maintenance 3

Total score 18

mechanisms to be run in parallel: for example, they might need external
load balancers that multiplex network connections or other similar devices to
operate correctly without providing users with incoherent data. In this kind
of architecture, the implementation of such mechanisms is entirely up to the
operators of the competition and to the developers of the challenges. This is
a burden, however, custom implementations have the advantages that they
can be fully inspected, controlled, and understood.

Introspection and maintenance (Score: 3) Although most of the aforemen-
tioned characteristics require system operators to intervene manually, and
challenge developers to know the production system architecture, the bare-
bones dedicated-machine architecture has a great advantage in maintenance:
since the system is fully custom-built, whoever built it has complete knowl-
edge of its inner workings. Such internal mechanisms can also only reach
a certain upper limit of complexity, after which the operators would have
already considered adopting other architectural solutions.

5.2 Dedicated server (containerized deployments)

Below, we list the scores (summarized in Table 2) with a brief judgment.

Initial setup complexity (Score: 3) Setting up a container runtime is usually
straightforward: installing a package through the system’s package manager
is typically enough. For the rest, the same observations of the “legacy” version
also apply here.

Initial setup duration (Score: 2) Container runtimes do not usually need
extensive configuration processes. For the rest, the same observations of the
“legacy” version also apply here.

Services packaging (Score: 3) Each container runtime has its own packaging
mechanism, but the most common one is using Dockerfile [9]. This declar-
ative format originates from Docker but is supported by Podman as well.

12 N. Maggioni and L. Galletta

Independently of the used runtime, the container image built from Dockerfile
is a portable archive that can be easily versioned, transferred, and archived.
Depending on the underlying runtime, each newly built image may reuse
cached parts of the previous builds and images so as to reduce disk usage.

Services deployment (Score: 3) Deploying a container image is rarely more
complex than transferring the image archive to the target machine - usually
either manually or through services called registries - and issuing the appro-
priate shell command to run the image with the needed options (environment
variables, network port bindings, storage volumes). These options can be
tuned during the first deployment and saved for future reference. If the
deployment involves multiple services that interact with each other, tools like
Docker Compose [11] can help the operators coordinate multiple containers.

Services updating (Score: 2) Updating an existing containerized deployment
consists of transferring the new image, stopping the old container, and starting
a new one with the same options. This can lead to short periods of time where
services are not reachable or are restarting, but they can usually be timed
accurately to minimize the impact on users. However, short and infrequent
unavailability bursts are usually not a major concern in CTF competitions.
The downside of this approach is that if the new deployment silently fails, e.g.,
the application runs but cannot interact with users, there are no automated
systems to revert the changes, potentially leaving the service in a broken
state until the operator realizes the problem.

Services configuration (Score: 2) In this architecture, the configuration files
for each service must be either embedded into their respective container images
or copied to the host file system and made available inside the containers
through the facilities offered by the underlying runtime, such as mount points
defined at runtime. Comparing this architecture to the aforementioned legacy
one, the usage of containers brings forward a common standard regarding
the organization of the configuration files: such files can still end up scattered
through the filesystem, but it is always possible to infer their location from
the mounts and the other options for running a container. However, this
convention is not enforceable, and there could be cases where application
configuration files are split into two groups: embedded inside the container
and mounted from the outside. This approach improves the coherence, but
the problem is not solved.

Resources limitation (Score: 2) Typically, container runtimes allow opera-
tors to set specific resource usage limits for core resources: CPU, RAM, and
sometimes GPU. These options are exposed to operators as simpler abstrac-
tions over the mechanisms provided by the Linux kernel - mainly cgroups -
and, hence, they inherit the same limitations and complexities. A container
runtime is not guaranteed to provide all the options (and their combinations)
supported by the kernel, but the main use cases are typically always covered.

Isolation & security (Score: 3) Containerized services run as isolated pro-
cesses by default: they cannot connect to each other, and their memory and
disk spaces are kept separate. Each container can be tied to a specific network
interface or virtual bridge if needed, reducing its access to local or remote

A comparison of hosting techniques for online cybersecurity competitions 13

resources. If a participant of the CTF manages to exploit a containerized
service causing an RCE (Remote Command Execution), the scope of that
exploit can be limited to the single service’s environment. If the targeted
service was properly packaged and deployed, the security breach would not
easily spread to other components of the competition’s architecture.

Changes of state (Score: 1) Container runtimes by themselves have limited
capabilities when it comes to detecting faults, restarting crashed applications,
and keeping track of these events in general. A typical pitfall of these systems
is the handling of fast-failing containers: if a container crashes or stops,
the runtime will immediately purge it and start a new one; if this happens
immediately after it first gets started, a vicious cycle may start in which the
operator does not have enough time to troubleshoot the failing image properly.
The operator has then to resort to patching the source code or editing the
container’s options to override the startup command, usually replacing it
with an infinite delay or some sort of no-op operation to gain enough time
to manually start the service inside the container and investigate the causes
of the crash. Some additional tools like Docker Compose introduce health
checks, but these mechanisms are often rather limited in their modularity
and have their own drawbacks when handling crashes and restarts.

Scaling (Score: 2) Containerizing services make running multiple instances
straightforward, but additional tooling is needed to take advantage of the
improved load capacity correctly since it still does not follow a standard
structure. For the rest, the same observations of the “legacy” version above
still apply.

Introspection and maintenance (Score: 2) The complexity of managing a
container runtime is usually very low, and standard tools can be installed
inside application containers to support troubleshooting. Some peculiarities of
the chosen runtime could make troubleshooting certain issues more difficult,
typically those related to network and storage resources. For the rest, the
same observations of the “legacy” version above still apply.

5.3 Hyper-converged infrastructure

Below, we report the scores with a brief qualitative judgment. Our discussion
considers Proxmox as the reference implementation of this architecture. The
scores are summarized in Table 3.

Initial setup complexity (Score: 3) The setup of a hyper-converged software
solution is typically straightforward and not particularly different from a bare
operating system installation. The installation process of Proxmox is simpler
than a bare Debian Linux distribution, thanks to its graphical installer, the
optimized default configurations, and the selection of preinstalled software
packages. In most cases, the system is fully operational and ready to support
deployments as soon as the installation process is complete.

Initial setup duration (Score: 3) The time required by the initial setup is
comparable to the architectures listed in Section 5.1 and Section 5.2. The setup

14 N. Maggioni and L. Galletta

Table 2. Scores assigned to the “Dedicated server (containerized deployments)” archi-
tecture.

Criterion Score

Initial setup complexity 3
Initial setup duration 2
Services packaging 3
Services deployment 3
Services updating 2
Services configuration 2
Resources limitation 2
Isolation & security 3
Changes of state 1
Scaling 2
Introspection and maintenance 2

Total score 25

can require less than an hour if the CTF organizers have no special require-
ments regarding network topology, storage technologies, or high-availability
capabilities.

Services packaging (Score: 1) Proxmox supports LXC containers and QEMU
virtual machines, both of which do not support advanced packaging tech-
niques. Operators can create LXC container templates similar to Docker
images: they can start from a blank environment and install all the necessary
low-level components of the chosen Linux distribution rather than specify
individual libraries and binaries as dependencies required for the services
being developed. The same considerations are valid for QEMU virtual ma-
chines. These build processes can be automated but are similar to what was
reported in Section 5.1, thus, the score assigned to this metric.

Services deployment (Score: 1) As explained for the previous criterion, the
environment the services will be deployed into is equivalent to the one
described in Section 5.1. Therefore, the score assigned is the same.

Services updating (Score: 1) In the context of this architecture, updating
services can be seen as a new deployment. Thus, the discussion of Section 5.1
still applies.

Services configuration (Score: 2) The considerations for this metric pre-
sented in Section 5.1 apply here because of the nature of LXC containers to
behave like “lightweight virtual machines” and QEMU running actual virtual
machines. As mentioned in Section 5.2, the modularity offered by an arbitrary
external filesystem mounted in a LXC container can be seen as a way to keep
configuration files close together on the main host’s filesystem.

Resources limitation (Score: 3) LXC containers and QEMU virtual ma-
chines allow operators to easily limit CPU (sockets, cores, units, and priority),
RAM (exclusively pre-allocated, reserved, and maximum amounts), and
network (bandwidth and priority) resources available to a given entity. In

A comparison of hosting techniques for online cybersecurity competitions 15

the case of Proxmox, these limits can be quickly specified through its web
interface, and advanced scheduling or limiting algorithms can be chosen.
For example, RAM memory can be allocated to virtual machines through
ballooning devices: these virtual memory spaces can expand and contract
at runtime, recovering unused memory from idle VMs and allocating the
new ones to those VMs needing resources. Storage limits are set during the
creation of the environment and can be extended at will as long as the main
host is left with enough storage capacity.

Isolation & security (Score: 3) Since each service runs in its dedicated envi-
ronment and the resources of the main host are paravirtualized, isolation is
guaranteed on every level. Performance is on par with typical virtual machine
hypervisors. As reported in Section 5.2, malicious exploits can compromise,
at most, the environment of a single service. Lateral movement into other
environments and services is typically caused by misconfigurations of the
main host or failures to keep proper logical bounds between different services.

Changes of state (Score: 1) This architecture typically does not include re-
active monitoring solutions: once LXC containers and virtual machines are
started, they can only crash due to serious kernel malfunctions - just like
a physical machine would. Under very specific circumstances kernel panics
or other irrecoverable errors may be triggered and lock up an individual
environment instead of crashing it, but nevertheless no native insights are
available on the state of the applications running inside those environments.
Moreover, in the case of LXC containers, the kernel is shared with the host
operating system, and a fault at that level would probably hang or reboot
the whole physical machine.

Scaling (Score: 2) Scaling on hyper-converged architectures like Proxmox can
be seen as a combination of the observations reported in Section 5.1 and
Section 5.2: running multiple copies of a given service is a simple task,
but coordinating them to effectively act as a single unit and share the
computational load is a complex effort. The considerations mentioned in the
paragraphs referenced above are also valid for this architecture.

Introspection and maintenance (Score: 2) Maintenance of hyper-converged
architectures can be quite low, especially given the short period of time that
CTF competitions run for. Once the system is set up with the preferred
kernel version and system tools, there are few reasons to update or reboot
the system if its expected lifetime is less than a month. Introspection, on the
other hand, suffers from the multiple layers of abstraction that a single service
may be hidden behind: to troubleshoot a problem within an application,
an operator might have to delve through all abstraction layers in reverse,
starting from the service’s shared libraries and ending up tracing the host’s
kernel behavior.

16 N. Maggioni and L. Galletta

Table 3. Scores assigned to the “Hyper-converged infrastructure” architecture.

Criterion Score

Initial setup complexity 3
Initial setup duration 3
Services packaging 1
Services deployment 1
Services updating 1
Services configuration 2
Resources limitation 3
Isolation & security 3
Changes of state 1
Scaling 2
Introspection and maintenance 2

Total score 22

5.4 Simple orchestrator or task runner

Below, we report the scores with a brief qualitative judgment. In our discussion, we
consider Nomad and Consul as the reference implementations of this architecture.
The scores are summarized in Table 4.

Initial setup complexity (Score: 2) At the time of writing, both Nomad
and Consul are distributed as self-contained binaries that run on top of a
preinstalled operating system. For this reason, all the assumptions regarding
the initial setup reported in Section 5.1 are still valid. The setup process of a
single-node Nomad cluster is fairly simple and well-documented in the official
developer resources. If additional features, e.g., advanced service discovery
and health checks, are required, Nomad can be complemented with a basic
single-node Consul deployment on the same host. Again, this procedure
is fairly well documented and with some experience, it can be deployed
inside Nomad itself instead as a separate service for increased coherence and
modularity.

Initial setup duration (Score: 2) Due to their binary distributions, both
Nomad and Consul are considerably quick to deploy on top of an existing
operating system. The initial setup can be completed and tested in a matter
of hours, even by those operators who never worked with them. This is
because complex features are often optional and can be enabled incrementally
when needed.

Services packaging (Score: 3) Typically, in a CTF competition, developers
will probably use a container-based packaging system. What was reported
about packaging in Section 5.2 therefore also applies to this architecture.
However, the execution of packaging software in Nomad can also be done in
other ways: the platform officially supports task drivers for single binaries,
Docker and Podman containers, Java JAR files, QEMU VMs, and optionally
LXC containers and systemd-nspawn namespaces. These last two options

A comparison of hosting techniques for online cybersecurity competitions 17

are currently maintained by the community but endorsed by HashiCorp. All
in all, the reference implementations support enough packaging styles to
accommodate the needs of most developers.

Services deployment (Score: 3) Similarly to what is described in Section 5.2
about Dockerfiles, Nomad has its own format for a deployment. This file
is called Job Specification [19] and is written in HashiCorp configuration
language [18], or HCL for short, which is a purpose-specific JSON [12] notation.
Deploying a Job is done through the application of this file: the main Nomad
server parses its contents and proactively creates the environment needed to
run the given software package with the specified requirements and limitations.
In the case of containers, this specification includes all the options, storage
mounts, and other flags that would have been specified manually through the
Docker command line interface. The Job Specification format must cover a
wide variety of use cases and is thus intrinsically complex, but in the context
of CTFs it can have a quite readable and maintainable text structure due to
the low amount of functionalities usually needed: once a container has been
defined by its basic characteristics, resource limits have been put in place,
healthchecks and other minor management policies have been set, it is rare
to see other substantial additions to the specification.

Services updating (Score: 3) Updating a deployment can be done by editing
its Job Specification and re-applying it. To assist operators in avoiding critical
mistakes, the Nomad command line interface supports a special “plan” mode,
which does not directly apply the requested changes, but shows a graphical
difference between the current and the new specification, highlighting the
sections that would change. The plan is assigned a progressive id, which
operators can use during re-deployment to ensure that only the previewed
changes will be applied. If the context on the server has changed - for example
another operator has modified the Job or the server was forced to reschedule
it in favor of higher priority tasks - the new deployment will not be accepted,
and the operator will be warned of the discrepancies.

Services configuration (Score: 3) As already mentioned in Section 5.2 and
Section 5.3, configuration files for a service can always be mounted from
external storage into the target container. The Job Specification format
introduces another way of further improving the placement of such files:
embedding them directly into the deployment specifications. With some
experience, operators can statically define the contents of configuration files
and other secret values along the main deployment’s options. This enables
developers and operators to better use versioning tools without manually
cross-referencing different software states with their respective settings.

Resources limitation (Score: 2) While the Nomad orchestrator can techni-
cally limit the resources available to a given deployment, it cannot do so
through its own mechanisms. It depends on the packaging format used by the
developer of a service. The Job Specification file gives operators an abstract
way of specifying such limits, which then get re-implemented by the internal
driver of each packaging format. For example, raw processes will be directly
encapsulated in Linux control groups, containers will have the relevant options

18 N. Maggioni and L. Galletta

passed through to their runtime, and so on. It is not guaranteed that all the
task drivers will be able to enforce all the available resource limits.

Isolation & security (Score: 3) Since the underlying technologies typically
used in a CTF competition (containers and VMs) are the same as the ones
analyzed in Section 5.2 and Section 5.3, the comments made in those sections
are valid for this architecture as well.

Changes of state (Score: 2) Simple orchestrators like Nomad often lack ad-
vanced state management capabilities. While they usually implement simple
techniques for handling application crashes, such as delayed retries and ex-
ponential back-offs, they do not guarantee to react to the changes of the
application state themselves. For example, Nomad must be complemented
with another HashiCorp product, Consul, to provide proper health checking
and interactive service discovery mechanisms. This can greatly enhance the
state management capabilities of this orchestrator at the expense of additional
architectural complexities and increased maintenance costs (both in terms of
time and resources).

Scaling (Score: 2) The number of instances of a single service can be easily
adjusted by changing the count field of its Job Specification, but no additional
networking structures are automatically put in place to distribute the users’
requests. The effort required to put these extra components in place is
comparable to what was described in Section 5.3. A substantial feature of
Nomad over other solutions is the embedded Autoscaler [16] that can handle
the automated scaling of deployments based on resource usage.

Introspection and maintenance (Score: 2) The level of introspectability of
this architecture is comparable to what was analyzed in Section 5.3 and is
subject to the same observations. However, an aspect favoring this solution
is the centralized logging of the most relevant low-level events generated
by Nomad. Maintainability can be considered straightforward: Nomad and
Consul versions can be easily upgraded and rolled back by replacing their
main binary and restarting the corresponding process manually or through
the operating system’s init facilities.

5.5 Complex orchestrator

Below, we report the scores with a brief qualitative judgment. In our discussion,
we consider Kubernetes as the reference implementation of this architecture. The
scores are summarized in Table 5.

Initial setup complexity (Score: 2) Kubernetes heavily relies on cloud-only
technology to operate at maximum efficiency. However, two fundamental
functionalities, Load Balancers, and dynamic Persistent Volumes, that can
be replicated on on-premises, self-managed hardware with considerable ef-
fort and prior knowledge of the inner workings of this solution include. For
completeness, we mention two projects that can be used in self-managed en-
vironments to regain some of such functionalities: MetalLB [32] and Rancher

A comparison of hosting techniques for online cybersecurity competitions 19

Table 4. Scores assigned to the “Simple orchestrator or task runner” architecture.

Criterion Score

Initial setup complexity 2
Initial setup duration 2
Services packaging 3
Services deployment 3
Services updating 3
Services configuration 3
Resources limitation 2
Isolation & security 3
Changes of state 2
Scaling 2
Introspection and maintenance 2

Total score 27

Longhorn [43]. Deploying Kubernetes on cloud platforms can be done man-
ually, but in the context of CTF competitions, it is more convenient and
less expensive to use a minimal provider-managed cluster. Most medium to
large-scale providers offer support for Kubernetes clusters at the moment
of writing [1,8,15,33,35], and some of them are available to sponsor CTF
events. The initial setup complexity of this architecture is very low, although
it does require a considerable amount of preparation and documentation by
the operators.

Initial setup duration (Score: 3) The initial setup of a provider-managed
Kubernetes cluster can be done in a few minutes. Given that a valid account
is already registered with the chosen cloud provider, in some cases, it is even
possible to complete the setup process through a web browser.

Services packaging (Score: 3) Kubernetes is an orchestrator explicitly de-
signed to manage application containers, hence, the considerations on pack-
aging done in Section 5.2 still apply. This orchestrator supports different
container runtimes [24] - newer versions comply with the Container Runtime
Interface (CRI) standard - and consequently, it does not enforce a specific
packaging process: as long as the final result adheres to the Docker image
specifications, the processes or tools employed by developers are immaterial.

Services deployment (Score: 3) In addition to what was reported in Sec-
tion 5.2 and Section 5.4, Kubernetes relies on a custom set of YAML [48]
documents, called manifests, to define and organize its resources. Writing
and understanding manifests can be quite complex: their syntax is not always
obvious, many nested fields have repeated or similar names, and the resources’
specifications are subject to frequent changes. However, the advantage of us-
ing these documents is that all the specifications for the software components
required by a particular service can be contained in a single text file. This
satisfies the requirement of keeping logically separate services in different
images, files, or assets found in all the previously analyzed architectures.

20 N. Maggioni and L. Galletta

Services updating (Score: 2) Updating a service managed by Kubernetes
works similarly as described in Section 5.4, except for the absence of the
“plan” mode: when a manifest file is modified, the new state is applied with
no checks. This approach has the disadvantage of not automatically deleting
old resources: if a specific resource is removed from the manifest and the new
version is applied, it is up to the operator to manually delete the unreferenced
elements from the cluster.

Services configuration (Score: 3) Manifests support the definition of textual
key-value pairs to be used as environment variables or mounted as raw files
inside the application containers via through the usage of entities called
ConfigMaps and Secrets. This feature allows keeping all the resources to run
a service close to its source code and packaging assets. Developers do not
need to worry about where to store configuration files; operators are only
concerned with properly applying a single specification.

Resources limitation (Score: 3) The approach that Kubernetes takes to re-
source limitation is similar to the one that was described in Section 5.4:
CPU, RAM, and storage space limits are defined in the manifest, and the
underlying container runtime is in charge of applying the proper cgroups
configurations to enforce them. Special types of limitations, such as the ones
on network bandwidth, can be enforced through purpose-specific overlays
and external plugins.

Isolation & security (Score: 2) The perceived security of a container orches-
trator is often inversely related to its complexity: due to the large number of
separate components and specifications that make up Kubernetes, operators
need to pay special attention to each of them to ensure that no miscon-
figurations occur in the services publicly exposed and their environments.
Experienced operators can reach a satisfying level of isolation between services
and overall security - both from the outside world and from the inside of the
cluster - in a matter of hours, but for CTF events a more thorough, multi-day
analysis is suggested. Specialized literature [21,29,34] provides many insights
into the key points to be covered during analyses of this kind.

Changes of state (Score: 3) Complex orchestrators, and Kubernetes in par-
ticular, handle state changes very well: thanks to their modular nature, it
is usually possible to develop custom plugins to react to deployments’ state
changes in arbitrary ways. Kubernetes itself handles restarts and exponential
back-offs natively, as well as proper healthchecks for containerized applica-
tions: it can interact with them in various ways to determine their status,
preventing subtle issues and application lock-ups that simpler orchestrators
usually cannot detect. This feature is the cornerstone of the scaling and
introspection features analyzed in the following paragraphs.

Scaling (Score: 3) The complexity of scaling workloads is comparable to what
was described in Section 5.4, with the addition of more advanced techniques
revolving around the management of stateful and stateless applications. Once
the state issue is solved, most applications can be scaled automatically through
Kubernetes’ facilities (load balancers, ingresses, etc.). These components
provide a set of strategies for distributing network traffic to the various

A comparison of hosting techniques for online cybersecurity competitions 21

Table 5. Summary of the scores assigned to the “Complex orchestrator” architecture.

Criterion Score

Initial setup complexity 2
Initial setup duration 3
Services packaging 3
Services deployment 3
Services updating 2
Services configuration 3
Resources limitation 3
Isolation & security 2
Changes of state 3
Scaling 3
Introspection and maintenance 1

Total score 28

instances of an application container, relieving operators from the burden of
manually setting up such mechanisms and reconfiguring them every time the
scaling needs to be adjusted.

Introspection and maintenance (Score: 1) The complexity of these kinds
of orchestrators is both their strength and their weakness: since they consist
of many components, operators need a great deal of experience to recognize
problematic situations and to determine where to intervene, and which tools
fit the situation at hand. For the same reason, it is common for an initially
simple problem to spread across multiple subsystems and become more
complex, creating deadlock situations in which an operator must identify the
first component to troubleshoot and follow the chain of events.

6 Discussion of the results

Figure 1 shows the cumulative scores of the considered architectures in a generic
use case when CTF organisers have no particular prior experience or infrastruc-
tural preferences. By the discussion of Section 5 and the chart in the figure,
we conclude that the architectures providing a certain level of automation in
deploying and managing services obtain higher scores. Moreover, we can observe
that the complexity of the chosen architecture plays a limited role. This is clear
when we compare “Dedicated server (legacy deployments)” and “Dedicated server
(containerized deployments)” with “Complex orchestrator”. In the first case, there
is a 10-point difference between the architectures, which highlights a large margin
of operational improvement at the cost of the greater complexity of the chosen
solution. In the second case, there is only a 3-point difference between the two
architectures, which remarks a less relevant difference between environments
based on application containers. Similarly, the single-point difference between
“Simple orchestrator or task runner” and “Complex orchestrator” shows that

22 N. Maggioni and L. Galletta

0 5 10 15 20 25 30 35

Dedicated server (legacy deployments)

Dedicated server (containerized deployments)

Hyper-converged infrastructure

Simple orchestrator or task runner

Complex orchestrator

18

25

22

27

28

Score

Fig. 1. The cumulative scores of each analyzed architecture.

once a certain level of abstraction over the physical hardware and automation is
reached, the exact technology used has a minor impact in organizing CTF events.

The above observations are strengthened by Figure 2 showing the scores of the
various criteria of Section 4 grouped by architectural solution. The chart supports
the hypothesis that the most complex solutions have similar characteristics
because their scores differ little. For example, the score difference between the
criteria of the “Simple orchestrator or task runner” and the “Complex orchestrator”
architectures is never greater than 1. This difference grows to 2 when considering
the “Dedicated server (containerized deployments)” architecture. Again, this small
difference can be explained by the fact that it is sufficient to reach a certain level
of abstraction and to ensure a certain amount of fundamental functionalities to
reduce the operational burden of the platform.

Finally, it is interesting to consider the case of the “Hyper-converged infras-
tructure”. This solution comes out as a mid-range choice that would present
no real advantages over the alternatives, encouraging organizers to either lower
their operational complexity and go for one of the simpler solutions or raise it by
choosing a more complex but more performant architecture.

7 Recommendations for specific use cases

The previous sections analyzed the various architectures in a generic context
where CTF organisers have no prior experience or infrastructural preferences.
However, these elements are key factors when the organizers are already experi-
enced with automated, large-scale cloud deployments or have essential technical
competencies to carry out such tasks. Below, we provide some recommendations
on the architectures to use based on the scale of the event and the technical skills
of the organisers.

A comparison of hosting techniques for online cybersecurity competitions 23

In
it

ia
ls

et
up

co
m

pl
ex

it
y

In
it

ia
ls

et
up

du
ra

ti
on

Se
rv

ic
es

pa
ck

ag
in

g

Se
rv

ic
es

de
pl

oy
m

en
t

Se
rv

ic
es

up
da

ti
ng

Se
rv

ic
es

co
nfi

gu
ra

ti
on

R
es

ou
rc

es
lim

it
at

io
n

Is
ol

at
io

n
&

se
cu

ri
ty

C
ha

ng
es

of
st

at
e

Sc
al

in
g

In
tr

os
pe

ct
io

n
an

d
m

ai
nt

en
an

ce

3

2

1

Sc
or

e

Dedicated server (legacy deployments)
Dedicated server (containerized deployments)
Hyper-converged infrastructure
Simple orchestrator or task runner
Complex orchestrator

Fig. 2. The cumulative scores of the analyzed architectures, grouped by criterion.

Small scale If an event is restricted to a small (<100), selected group of partic-
ipants and is intended to run for a very limited time (<24 hours), it may not
be worth it to deploy complex technologies if the organizers have no prior
experience with them. Such an event would probably run with acceptable
results even with the “Dedicated server (legacy deployments)” architecture
because the manual burden of setting up and managing the event is tolerable.
However, application containers are strongly suggested to ensure a certain
isolation level among the challenges and limit the scope of eventual dangerous
operations initiated by participants.

Mid-size CTFs When the number of participants (>100, <2000) grows, orga-
nizers may face challenges related to, e.g., heavier concurrency and resource
allocation. Complex architectures may be justified if the organizers have at
least some prior experience with such technologies. Still, the downside of this
choice is the organizational burden of correctly setting up a complex environ-
ment and the number of people who can work on such a process. Application

24 N. Maggioni and L. Galletta

containers are usually a hard requirement at this size since the number of
developers involved in the event organization needs a robust development
and deployment pipeline with as many automated steps and validations as
possible. A simple orchestrator or task runner could be useful in managing
the deployment process, but it is still possible for competent operators to
carefully manage services manually if desired.

Mid-to-Large size CTFs An event with >2000 registered participants is usu-
ally well-known in the field and probably not run for the first time. At this
size, organizers are expected to be already competent with the process of
managing and, more importantly, troubleshooting CTF events: it can be sup-
posed that their past experiences have given them enough confidence in their
architectural choice that only minimal improvements would need each time a
new event is hosted. When it is not ensured that the team who manages the
event is the same each time, a leaner, simpler, well-documented approach
could be preferred over a more optimized, complex, and less documented one.
Operators should prioritize stability and developer experience when choosing
an architectural solution, possibly avoiding approaches that rely on a single
team member being able to complete certain tasks at any given time.

Large-size CTFs or teams with multiple experienced operators Advising
on how to run large-scale CTFs is beyond the scope of this paper since the
organizers of such events already possess enough domain-specific knowledge
and have gained enough experience with the past editions of their events to
have a clear picture of how the whole infrastructure should look and work.
This is especially true for teams that include multiple operators skilled in
the same technologies, as this enables them to split their work and avoid
cognitive stress in the most intense phases of the event. Such teams would
probably favor the progressive introduction of new and potentially unstable
technologies not yet widely used in the CTF field to foster innovation and
push the limits of the typical challenges offered in smaller competitions.

Finally, note that unforeseen complications are common during CTF events:
participants forge more powerful exploits than expected, there is too much com-
putational load - or even not enough, misuse of internal APIs, intentional Denial
of Service attacks, etc. Due to this fact, the most important recommendation to
CTF organizers can be summarized as “use a technology that you are familiar
with.” Time is essential when players flood services with requests and tentative
exploits. When something goes wrong, the time it takes to fix the problem and
get the experience back to normal is directly proportional to the participants’
opinion of the event.

8 Related work

Most of the literature focuses on using CTF competitions for educational purposes,
and only a limited number of papers delve into their organizational aspects and
offer guidance for potential organizers. Herein, we survey select papers regarding
these two investigation lines.

A comparison of hosting techniques for online cybersecurity competitions 25

As regards the organizational aspects, Kucek et al. [25] compare several
game portals, such as CTFd, following a methodology similar to ours. Their
criteria comprehend several factors that must be considered when organizing
a competition regarding customization, installation, setup, and reliability, and
assess open-source solutions available at the time of writing according to them.
In contrast, our work does not consider game portals but focuses on the hosting
architectures that can be used in CTFs. Karagiannis et al. [22] compare the usage
of virtual machines and container technologies (both Linux and application types)
in the context of CTF competitions. Differently, our work does not only analyse
how virtual machines and containers can be used to run vulnerable services in the
context of CTFs, but also considers further aspects such as service configuration,
deployment, and update. Following a similar line of investigation, Raj at al. [41]
explored the usage of application containers for attack-defence CTFs. Although
they consider a different kind of competition, some of the hosting techniques
we considered could also be used for hosting attack-defence CTFs. Raman at
al. [42] proposed a framework to assess the quality of CTF competitions through
subjective and objective metrics. Although the world of these competitions has
changed since the publication of their work, their framework could prove useful
for organisers in evaluating their course of action.

The effectiveness of CTF competitions as introductions to cybersecurity and
ethical hacking for high school and university students has been studied in
several papers in the literature. Lagorio et al. [26] outlines the advantages and
disadvantages of integrating CTFs into higher education courses and the impact
on students’ performances before and after participating in such events. They
point out that this integration requires careful planning for combining theory
and practice. Similarly, Cole [4] studied the impact of this kind of competition on
students’ motivation and exam scores, specifically what happens when classical
exam questions are reformulated into more practical and goal-oriented exercises
akin to the challenges found in CTFs. The author verified the positive impact
of the new learning method on students without prior or advanced technical
skills. Vykopal et al. [47] further corroborated these findings of introducing CTF
completion inside standard lectures but outlined potential pitfalls that could
negatively impact students’ learning and evaluation processes.

9 Conclusions and future work

This paper has surveyed the prominent architectures used to host CTF competi-
tions and provided a qualitative assessment according to a set of criteria ranging
from the complexity of setting up the infrastructures to the security mechanisms
for isolating vulnerable services. Our analysis reveals that the architectures pro-
viding a certain level of automation in deploying and managing services are the
most suitable to be adopted in a generic context where CTF organisers have no
prior experience or infrastructural preferences. Finally, we have provided some
recommendations for adopting architectures based on the event’s size and the
organizers’ prior experience. In any case, the organizers’ judgment of their skills

26 N. Maggioni and L. Galletta

and desire to experiment with new architectures always win on the proposed
recommendations, even if these must always be evaluated in the ever-changing
and surprising context of CTF competitions.

In future work, we plan to implement an automated tool to calculate the best fit
between various architectures, depending on the requirements, the size of an event,
and the competencies of the organizing team. The tool will supply a questionnaire
asking the key requirements and will provide a generic recommendation as
output. The questionnaire could also involve other aspects, such as the size of
the organizing team, whether or not the event is new or has had past editions,
the historical or expected number of participants, the number of operators with
respect to challenge developers, the categories of challenges to be offered, and the
technologies most of the team is already acquainted with. Moreover, this approach
could be further extended to combine the questionnaire results with a static
analysis of the challenges’ source code to automatically determine the packaging
format used for developing and testing the challenges and to guess the standard
category they belong to. Combining these two factors could pre-determine some
of the questionnaire’s answers and guide the users toward solutions that support
the detected technologies with as little manual intervention as possible.

References

1. Amazon Web Services: Managed Kubernetes Service – Amazon EKS – Amazon Web
Services — aws.amazon.com. https://aws.amazon.com/eks/, [Accessed 20-08-2023]

2. Ansible, R.H.: Ansible is Simple IT Automation — ansible.com. https://www.
ansible.com/, [Accessed 15-08-2023]

3. born2scan Team: born2scan – How we hosted DanteCTF 2021: A brief tour of the
infrastructure that supported the first edition of DanteCTF — born2scan.run. https:
//born2scan.run/articles/2021/06/29/How-we-hosted-DanteCTF-2021.html, [Ac-
cessed 12-08-2023]

4. Cole, S.V.: Impact of capture the flag (ctf)-style vs. traditional exercises in an intro-
ductory computer security class. In: Proceedings of the 27th ACM Conference on
Innovation and Technology in Computer Science Education Vol. 1. p. 470–476. Asso-
ciation for Computing Machinery (2022). https://doi.org/10.1145/3502718.3524806

5. CTFd LLC: CTFd : The Easiest Capture The Flag Framework — ctfd.io. https:
//ctfd.io, [Accessed 08-08-2023]

6. CTFtime team: CTFtime.org / All about CTF (Capture The Flag) — ctftime.org.
https://ctftime.org/event/list/past, [Accessed 08-08-2023]

7. Debian: Debian – The Universal Operating System — debian.org. https://www.
debian.org/, [Accessed 15-08-2023]

8. Digitalocean: DigitalOcean Managed Kubernetes — digitalocean.com. https://www.
digitalocean.com/products/kubernetes, [Accessed 20-08-2023]

9. Docker Inc.: Dockerfile reference — docs.docker.com. https://docs.docker.com/
engine/reference/builder/, [Accessed 16-08-2023]

10. Docker Inc.: Home — docker.com. https://www.docker.com/, [Accessed 10-08-2023]
11. Docker Inc.: Overview of Docker Compose — docs.docker.com. https://docs.docker.

com/compose/, [Accessed 16-08-2023]

https://aws.amazon.com/eks/
https://www.ansible.com/
https://www.ansible.com/
https://born2scan.run/articles/2021/06/29/How-we-hosted-DanteCTF-2021.html
https://born2scan.run/articles/2021/06/29/How-we-hosted-DanteCTF-2021.html
https://doi.org/10.1145/3502718.3524806
https://ctfd.io
https://ctfd.io
https://ctftime.org/event/list/past
https://www.debian.org/
https://www.debian.org/
https://www.digitalocean.com/products/kubernetes
https://www.digitalocean.com/products/kubernetes
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://www.docker.com/
https://docs.docker.com/compose/
https://docs.docker.com/compose/

A comparison of hosting techniques for online cybersecurity competitions 27

12. ECMA: ECMA-404: The JSON data interchange syntax, 2nd edition. ECMA
(European Association for Standardizing Information and Communication Systems),
Geneva, Switzerland (12 2017). https://doi.org/10.13140/RG.2.2.28181.14560

13. Extra Good Labs, Inc: How to Run a CTF — jumpwire.io. https://jumpwire.io/
blog/how-to-run-a-ctf, [Accessed 12-08-2023]

14. Goedegebure, C.: Hosting a CTF made easy using Docker and DigitalOcean — co-
engoedegebure.com. https://www.coengoedegebure.com/hosting-a-ctf-made-easy/,
[Accessed 12-08-2023]

15. Google: Google Kubernetes Engine (GKE) | Google Cloud — cloud.google.com.
https://cloud.google.com/kubernetes-engine, [Accessed 20-08-2023]

16. HashiCorp: Autoscaling | Nomad | HashiCorp Developer — developer.hashicorp.com.
https://developer.hashicorp.com/nomad/tools/autoscaling, [Accessed 18-08-2023]

17. HashiCorp: Consul by HashiCorp — consul.io. https://www.consul.io/, [Accessed
10-08-2023]

18. HashiCorp: GitHub - hashicorp/hcl: HCL is the HashiCorp configuration language.
— github.com. https://github.com/hashicorp/hcl, [Accessed 18-08-2023]

19. HashiCorp: Job Specification | Nomad | HashiCorp Developer — de-
veloper.hashicorp.com. https://developer.hashicorp.com/nomad/docs/
job-specification, [Accessed 18-08-2023]

20. HashiCorp: Nomad by HashiCorp — nomadproject.io. https://www.nomadproject.
io/, [Accessed 10-08-2023]

21. Hauber, C.: Taking Over A Kubernetes Cluster: Automating An Attack Chain.
Bachelor’s thesis, Johannes Kepler University Linz (2022), https://www.ssw.uni-linz.
ac.at/Teaching/BachelorTheses/2022/Hauber_Carina.pdf

22. Karagiannis, S., Ntantogian, C., Magkos, E., Ribeiro, L.L., Campos, L.: Pocketctf:
A fully featured approach for hosting portable attack and defense cybersecurity
exercises. Information 12(8), 318 (Aug 2021). https://doi.org/10.3390/info12080318

23. Kimminich, B.: Hosting a CTF event – Pwning OWASP Juice Shop. https://
pwning.owasp-juice.shop/part1/ctf.html, [Accessed 12-08-2023]

24. Kubernetes Documentation: Container Runtimes — kubernetes.io. https://
kubernetes.io/docs/setup/production-environment/container-runtimes/, [Accessed
20-08-2023]

25. Kucek, S., Leitner, M.: An empirical survey of functions and con-
figurations of open-source capture the flag (ctf) environments. Jour-
nal of Network and Computer Applications 151, 102470 (2020).
https://doi.org/https://doi.org/10.1016/j.jnca.2019.102470

26. Lagorio, G., Ribaudo, M., Armando, A.: Capture the flag competitions for higher
education. In: ITASEC. CEUR Workshop Proceedings, vol. 2940, pp. 447–460.
CEUR-WS.org (2021), https://ceur-ws.org/Vol-2940/paper38.pdf

27. LinuxContainers: Linux Containers — linuxcontainers.org. https://linuxcontainers.
org/, [Accessed 10-08-2023]

28. Maiya, M., Dasari, S., Yadav, R., Shivaprasad, S., Milojicic, D.: Quantifying
manageability of cloud platforms. In: 2012 IEEE Fifth International Conference on
Cloud Computing. pp. 993–995 (2012). https://doi.org/10.1109/CLOUD.2012.111

29. Martin, A., Hausenblas, M.: Hacking Kubernetes. O’Reilly Media, Incorporated
(2021)

30. Menage, P.: Control Groups — The Linux Kernel documentation — docs.kernel.org.
https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.html, [Accessed 16-08-
2023]

31. Merkel, D.: Docker: lightweight linux containers for consistent development and
deployment. Linux Journal 2014 (03 2014)

https://doi.org/10.13140/RG.2.2.28181.14560
https://jumpwire.io/blog/how-to-run-a-ctf
https://jumpwire.io/blog/how-to-run-a-ctf
https://www.coengoedegebure.com/hosting-a-ctf-made-easy/
https://cloud.google.com/kubernetes-engine
https://developer.hashicorp.com/nomad/tools/autoscaling
https://www.consul.io/
https://github.com/hashicorp/hcl
https://developer.hashicorp.com/nomad/docs/job-specification
https://developer.hashicorp.com/nomad/docs/job-specification
https://www.nomadproject.io/
https://www.nomadproject.io/
https://www.ssw.uni-linz.ac.at/Teaching/BachelorTheses/2022/Hauber_Carina.pdf
https://www.ssw.uni-linz.ac.at/Teaching/BachelorTheses/2022/Hauber_Carina.pdf
https://doi.org/10.3390/info12080318
https://pwning.owasp-juice.shop/part1/ctf.html
https://pwning.owasp-juice.shop/part1/ctf.html
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://doi.org/https://doi.org/10.1016/j.jnca.2019.102470
https://ceur-ws.org/Vol-2940/paper38.pdf
https://linuxcontainers.org/
https://linuxcontainers.org/
https://doi.org/10.1109/CLOUD.2012.111
https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.html

28 N. Maggioni and L. Galletta

32. MetalLB: MetalLB, bare metal load-balancer for Kubernetes — metallb.universe.tf.
https://metallb.universe.tf/, [Accessed 20-08-2023]

33. Microsoft: Managed Kubernetes Service (AKS) | Microsoft Azure
— azure.microsoft.com. https://azure.microsoft.com/en-us/products/
kubernetes-service, [Accessed 20-08-2023]

34. Minna, F., Blaise, A., Rebecchi, F., Chandrasekaran, B., Massacci, F.: Understand-
ing the security implications of kubernetes networking. IEEE Security & Privacy
19(5), 46–56 (2021). https://doi.org/10.1109/MSEC.2021.3094726

35. OVH: Managed Kubernetes Service — ovhcloud.com. https://www.ovhcloud.com/
en/public-cloud/kubernetes/, [Accessed 20-08-2023]

36. Podman: Podman — podman.io. https://podman.io/, [Accessed 10-08-2023]
37. Project, T.F.: Chapter 17. Jails — docs.freebsd.org. https://docs.freebsd.org/en/

books/handbook/jails/, [Accessed 16-08-2023]
38. Proxmox Server Solutions GmbH: Proxmox - Powerful open-source server solutions

— proxmox.com. https://www.proxmox.com/, [Accessed 10-08-2023]
39. QEMU: QEMU — qemu.org. https://www.qemu.org/, [Accessed 10-08-2023]
40. Raj, A.S., Alangot, B., Prabhu, S., Achuthan, K.: Scalable and lightweight CTF

infrastructures using application containers (pre-recorded presentation). In: 2016
USENIX Workshop on Advances in Security Education (ASE 16). USENIX As-
sociation, Austin, TX (Aug 2016), https://www.usenix.org/conference/ase16/
workshop-program/presentation/raj

41. Raj, A.S., Alangot, B., Prabhu, S., Achuthan, K.: Scalable and lightweight CTF
infrastructures using application containers (pre-recorded presentation). In: 2016
USENIX Workshop on Advances in Security Education (ASE 16). USENIX As-
sociation, Austin, TX (Aug 2016), https://www.usenix.org/conference/ase16/
workshop-program/presentation/raj

42. Raman, R., Sunny, S., Pavithran, V., Achuthan, K.: Framework for
evaluating capture the flag (ctf) security competitions. In: Interna-
tional Conference for Convergence for Technology-2014. pp. 1–5 (2014).
https://doi.org/10.1109/I2CT.2014.7092098

43. Rancher: Longhorn — longhorn.io. https://longhorn.io/, [Accessed 20-08-2023]
44. redpwn: rCTF — rctf.redpwn.net. https://rctf.redpwn.net/, [Accessed 12-08-2023]
45. Rørvik, M.: How to host a CTF? — bekk.christmas. https://www.bekk.christmas/

post/2020/18/how-to-host-a-ctf, [Accessed 12-08-2023]
46. The Linux Foundation: Production-Grade Container Orchestration — kubernetes.io.

https://kubernetes.io/, [Accessed 10-08-2023]
47. Vykopal, J., Švábenský, V., Chang, E.C.: Benefits and pitfalls of using capture

the flag games in university courses. In: Proceedings of the 51st ACM Technical
Symposium on Computer Science Education. p. 752–758. Association for Computing
Machinery (2020). https://doi.org/10.1145/3328778.3366893

48. YAML: The Official YAML Web Site — yaml.org. https://yaml.org/, [Accessed
20-08-2023]

49. Zeyu’s Infosec Blog: Hosting a CTF — SEETF 2022 Organizational and In-
frastructure Review — infosec.zeyu2001.com. https://infosec.zeyu2001.com/2022/
hosting-a-ctf-seetf-2022-organizational-and-infrastructure-review, [Accessed 12-08-
2023]

https://metallb.universe.tf/
https://azure.microsoft.com/en-us/products/kubernetes-service
https://azure.microsoft.com/en-us/products/kubernetes-service
https://doi.org/10.1109/MSEC.2021.3094726
https://www.ovhcloud.com/en/public-cloud/kubernetes/
https://www.ovhcloud.com/en/public-cloud/kubernetes/
https://podman.io/
https://docs.freebsd.org/en/books/handbook/jails/
https://docs.freebsd.org/en/books/handbook/jails/
https://www.proxmox.com/
https://www.qemu.org/
https://www.usenix.org/conference/ase16/workshop-program/presentation/raj
https://www.usenix.org/conference/ase16/workshop-program/presentation/raj
https://www.usenix.org/conference/ase16/workshop-program/presentation/raj
https://www.usenix.org/conference/ase16/workshop-program/presentation/raj
https://doi.org/10.1109/I2CT.2014.7092098
https://longhorn.io/
https://rctf.redpwn.net/
https://www.bekk.christmas/post/2020/18/how-to-host-a-ctf
https://www.bekk.christmas/post/2020/18/how-to-host-a-ctf
https://kubernetes.io/
https://doi.org/10.1145/3328778.3366893
https://yaml.org/
https://infosec.zeyu2001.com/2022/hosting-a-ctf-seetf-2022-organizational-and-infrastructure-review
https://infosec.zeyu2001.com/2022/hosting-a-ctf-seetf-2022-organizational-and-infrastructure-review

	A comparison of hosting techniques for online cybersecurity competitions

