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Abstract

In this paper, we develop data-driven closure/correction terms to increase the pressure and
velocity accuracy of reduced order models (ROMs) for fluid flows. Specifically, we propose
the first pressure-based data-driven variational multiscale ROM, in which we use the available
data to construct closure/correction terms for both the momentum equation and the continuity
equation. Our numerical investigation of the two-dimensional flow past a circular cylinder at
Re “ 50,000 in the marginally-resolved regime shows that the novel pressure data-driven varia-
tional multiscale ROM yields significantly more accurate velocity and pressure approximations
than the standard ROM and, more importantly, than the original data-driven variational multi-
scale ROM (i.e., without pressure components). In particular, our numerical results show that
adding the closure/correction term in the momentum equation significantly improves both the
velocity and the pressure approximations, whereas adding the closure/correction term in the
continuity equation improves only the pressure approximation.

1. Introduction

Reduced order models (ROMs) have demonstrated to be a key methodology to accelerate the
resolution of numerical problems governed by partial differential equations [45, 17, 38, 8] for both
linear [42] and nonlinear [12, 27, 34] problems. In this article, we focus on projection-based ROMs
for fluids [50, 16, 33, 22, 40, 39, 19, 43], which have been used in a large variety of applications in
industry, geosciences, and biomedicine. Moreover, we exclusively focus on reduced basis Galerkin
ROMs in which the reduced basis space is constructed by using the proper orthogonal decomposition
(POD) [49]. These ROMs are built starting from the general Galerkin framework: start with a set
of basis functions (modes), tϕ1, . . . , ϕru, express the unknown solution as a linear combination of
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these modes, upx, tq “
řr
i“1 aiptqϕipxq, and project the equations onto the space spanned by these

modes. The resulting Galerkin ROM (G-ROM) is a system of equations in which the unknowns are
the coefficients in the linear combination ansatz used above:

at “ fpaq, (1)

where aptq :“ pa1ptq, . . . , arptqq. The main difference between ROMs and the classical Galerkin
methods (of which the quintessential example is the finite element method (FEM)), is that the ROM
basis is a data-driven basis, i.e., a basis constructed from the available numerical or experimental
data, whereas the classical Galerkin methods do not generally use data to build the basis.

There are significant challenges in the development of ROMs for realistic fluid flow applica-
tions. For example, finding a practical compromise between computational effort and accuracy in
the reduced order modeling of realistic flows still remains an elusive goal. Furthermore, ROMs
for computational fluid dynamics (CFD) suffer from different types of stability issues, which are
mainly of two different types: (i) instabilities associated with pressure recovery and non-compliant
inf-sup spaces [53, 7, 11, 15, 5], and (ii) instabilities due to the convection-dominated regime and
turbulence [14]. Finally, one of the most important challenges in reduced order modeling of re-
alistic flows is the under-resolved regime, i.e., using fewer ROM modes than the number required
to accurately approximate the dynamics of the given flow. In classical CFD, the under-resolved
regime is generally associated with spatial and temporal meshes that are too coarse to represent
the underlying dynamics. For example, in the numerical simulation of turbulent flows (which are
multiscale, chaotic phenomena), a standard ROM approximation could require hundreds or even
thousands of ROM modes [3], which would significantly increase the ROM computational cost. To
ensure a low ROM computational cost, ROMs are generally built with relatively few basis functions.
In that case, ROMs are used in the under-resolved regime.

We note that there is also another regime, called the marginally-resolved regime, which is an
intermediate regime, between the under-resolved regime and the fully-resolved regime (i.e., when
the number of modes is enough to represent the underlying dynamics). In the marginally-resolved
regime, the number of ROM basis functions is enough to represent the main features of the under-
lying dynamics, but the standard G-ROM yields inaccurate approximations. One example of ROM
in a marginally-resolved regime is a low-dimensional ROM in the numerical simulation of a laminar
flow (i.e., at a low Reynolds number).

In the marginally-resolved regime and, especially, in the under-resolved regime, one popular
approach to increase the accuracy of the standard G-ROM (1) is to add an extra term, τ , to the
right-hand side of (1):

at “ fpaq ` τ paq. (2)

In the under-resolved regime, the new term in (2), τ , is called the ROM closure term. The same
terminology is used in classical large eddy simulation (LES) [10, 47]. The role of the ROM closure
term is to model the effect of the discarded ROM modes, tϕr`1, . . .u, on the ROM dynamics. In
the marginally-resolved regime, the new term in (2), τ , is called the ROM correction term [31] and
its role is to increase the ROM accuracy.

There are three main approaches to model the closure/correction term τ in (2): (i) Functional
modeling, in which physical insight is used to build a model for τ . (ii) Structural modeling, in
which mathematical methods (e.g., expansions and asymptotics) are used to build a model for τ .
(iii) Data-driven modeling, in which available numerical or experimental data is used to build a
model for τ .

In this paper, we exclusively focus on data-driven modeling of the closure/correction term τ

in (2). Specifically, we investigate the data-driven variational multiscale ROM (DD-VMS-ROM)
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framework put forth in [30, 56]. The classical VMS framework was pioneered by Hughes and his
collaborators more than two decades ago as a means to model multiscale phenomena in science and
engineering. The VMS methodology has become popular in classical Galerkin methods, such as the
FEM. The VMS framework has also been applied in a ROM setting. Functional (physical) VMS-
ROMs were proposed in [9, 55, 20, 21]. The DD-VMS-ROMs, which are the focus of this paper,
are built around a completely different principle: instead of physical insight, they use available
data to construct the closure/correction term τ in (2). (For related, yet different approaches, see,
e.g., [6, 48] in a ROM setting and [36, 37] in a FEM setting.) Specifically, in the offline stage,
we first postulate an ansatz (i.e., a model form) for the closure/correction term τ , and then solve
a least squares problem to find the ansatz parameters that yield the best fit between the exact
closure/correction term τ computed with the full order model (FOM) data and the ansatz. The
DD-VMS-ROM has been successfully used in the numerical simulation of a 2D flow past a cylinder,
the quasi-geostrophic equations, and the 3D turbulent channel flow at Reτ “ 395.

We emphasize that all DD-VMS-ROMs have been developed exclusively for the velocity correc-
tion, i.e., introducing a correction/closure term for term fpaq in (2). In [56, 29, 31], it was shown
that this approach leads to improvements in the velocity approximation accuracy. In this paper, we
propose the first DD-VMS-ROM for the improvement of pressure approximation accuracy. We note
that the importance of pressure approximation in reduced order modeling has been recognized early
on (see, e.g., the pioneering work of Veroy-Grepl and Rozza [44] in the reduced basis method (RBM)
community, and more recent work in the POD community [11, 13, 24, 33, 46]). For example, a
ROM pressure approximation is needed to compute important engineering quantities (e.g., lift and
drag) or when the snapshots used to construct the ROM basis are not weakly divergence-free (e.g.,
when the mass conservation equation is only approximately enforced in the FOM [11, 13]). Thus,
it is important to investigate whether the accuracy of the standard ROM pressure approximation
can be increased. This is precisely the main aim of this paper.

To present the novel pressure DD-VMS-ROM model, we first note that the standard G-ROM (1)
is modified to include a pressure approximation.

#

at “ fpa, bq,

gpaq “ 0,
(3)

where bptq :“ pb1ptq, . . . , bqptqq is the vector of unknown coefficients in the ROM pressure approxi-
mation. Furthermore, there are now two types of ROM closure/correction terms instead of one (as
in (2)):

#

at “ fpa, bq ` τupa, bq,

gpaq ` τ ppa, bq “ 0.
(4)

To construct models for the closure/correction terms τu and τ p in (4), we use again the available
numerical or experimental data. Specifically, in the offline stage, we use the FOM data to compute
the true (accurate) closure/correction terms τu and τ p, we postulate model forms (i.e., ansatzes)
for these two terms, and then we solve one or two least square problems to find the model form
parameters that ensure the best fit between the true models and the ansatzes. Our numerical
investigation shows that the resulting model, which we call the pressure DD-VMS-ROM, yields
significantly more accurate velocity and pressure approximations than the standard G-ROM (3)
and, more importantly, than the original DD-VMS-ROM [30, 56]. In particular, our numerical
results show that adding the term τu in the momentum equation significantly improves both the
velocity and the pressure approximations, whereas the τ p contribution improves only the pressure
approximation.
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The rest of the paper is organized as follows: In section 3, we outline the construction of the
standard Galerkin ROM, presenting two different approaches to construct the ROM basis, both
based on the POD: the first approach (section 3.1) is based on supremizers (i.e., ROM modes
that are added to the standard ROM velocity modes in order to fulfill the inf-sup condition),
whereas the second approach (section 3.2) is based on solving a pressure Poisson equation (PPE).
The PPE approach is used to improve the accuracy of the pressure approximation. In sections 4
and 5, the novel pressure DD-VMS-ROM framework is constructed for the supremizer and PPE
approaches, respectively. Section 6 presents a numerical investigation of the new pressure DD-VMS-
ROM framework in the simulation of a two-dimensional flow past a circular cylinder at a Reynolds
number Re “ 50,000.

2. Full Order Problem

As a mathematical model, we use the Navier-Stokes equations (NSE) for incompressible flows. We
use the following notation: Ω P Rd with d “ 2 or 3 is the fluid domain, Γ its boundary, t P r0, T s
the time, u “ upx, tq the flow velocity vector field, p “ ppx, tq the normalized pressure scalar field
divided by the fluid density, and ν the fluid kinematic viscosity. The strong form of the NSE is the
following:

$

’

’

’

’

’

&

’

’

’

’

’

%

Bu

Bt
“ ´∇ ¨ pub uq `∇ ¨ pνp∇u` p∇uqT qq ´∇p in Ωˆ r0, T s , (5a)

∇ ¨ u “ 0 in Ωˆ r0, T s , (5b)
` boundary conditions on Γˆ r0, T s , (5c)
` initial conditions in pΩ, 0q . (5d)

In the computation of the full order solutions of the NSE in (5), we employ a finite volume
discretization and OpenFOAM. The finite volume method [32] is a mathematical technique that
converts the partial differential equations (the NSE in our case) defined on differential volumes
to algebraic equations defined on finite volumes. The first preliminary step of this method is a
polyhedral discretization of the domain, in order to define the finite control volumes. The second
step is to integrate the NSE over each control volume of the domain of interest. The divergence
theorem is used to convert the volume integrals to surface integrals. Those integrals are finally
discretized as sums of the fluxes at the boundary faces of each control volume.

At the full order level, the Reynolds–averaged Navier–Stokes (RANS) approach is used in the
numerical simulation of the turbulent flow. The RANS approach is based on the Reynolds de-
composition [41], in which each flow field is expressed as the sum of its mean and its fluctuating
part. The RANS equations are obtained by taking the time-average of the NSE in (5) and adding a
closure term to model the Reynolds stress tensor. The closure problem is solved by using an eddy
viscosity model, which is based on the Boussinesq hypothesis. In this paper, the SST κ´ ω model
is used. This model is based on the resolution of two additional transport equations to describe the
kinetic energy κ and the specific turbulent dissipation rate ω. The κ´ ω model is presented in its
standard form in [26], whereas the SST formulation is developed in [28]. For more details on the
SST κ´ ω model equations, we refer to [18].

3. The POD-Galerkin ROM

The online phase consists of the time integration of the G-ROM that is obtained by performing
a Galerkin projection of the NSE onto the POD space. In order to construct a ROM that can
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approximate both the velocity and pressure field, it is required to use stabilization approaches [18].
In this work, we explore two different stabilization strategies:

• the SUP-ROM: a reduced order method based on a reduced version of system (5), in which
additional modes for the velocity space, named supremizer modes, are introduced in order to
fulfill the inf-sup condition [44, 7, 53];

• the PPE-ROM: a reduced order method in which the continuity equation (5b) is replaced by
the pressure Poisson equation [4, 51, 53].

In what follows, for the sake of completeness, we briefly recall the reduced order systems obtained
by the two different formulations.

3.1. The SUP-ROM approach

The first approach we followed is the SUP-ROM approach, first introduced in [44] and explored in
[7, 53], in which additional velocity modes are introduced. The method consists in computing the
FOM solutions for different time instants ttjuNT

j“1; each of the full order solutions is called FOM
snapshot.

The POD is applied to the FOM snapshot matrices

Su “ tupx, t1q, ...,upx, tNT
qu P RN

h
uˆNT , Sp “ tppx, t1q, ..., ppx, tNT

qu P RN
h
pˆNT ,

where Nh
u and Nh

p are the numbers of degrees of freedom for the velocity and pressure fields.
We specify that, since the velocity is a vector field and the pressure is a scalar field, in our case
Nh
u “ 3 ˆ Ncells and Nh

p “ Ncells, where Ncells is the total number of cells of the computational
grid. After a POD modal decomposition is performed, the velocity and pressure POD spaces are
assembled as follows:

VuPOD “ spantrφis
Nu
i“1u, VpPOD “ spantrχis

Np

i“1u, (6)

where Nu ! Nh
u and Np ! Nh

p , and rφis
Nu
i“1 and rχis

Np

i“1 are the velocity and pressure POD modes,
respectively. rspχiqs

Nsup

i“1 are the velocity supremizer modes, which are additional modes introduced
in order to fulfill the inf-sup condition [53].

For each pressure basis function, the corresponding supremizer element can be found by solving
the following problem:

#

∆si “ ´∇pi in Ω,

si “ 0 on BΩ.
(7)

We note that each supremizer mode si corresponds to the Riesz representation in H1
0 pΩq

d of the
linear, continuous functional associated with ∇p, where d is the spatial dimension.

The enrichment of the velocity POD space can be addressed either with an exact or with an
approximated approach [7]. In the exact approach, the problem (7) is solved for each pressure basis
function χi and each solution is added to the velocity space. In the approximated approach, the
problem (7) is solved for each pressure snapshot ppx, tiqNT

i“1, which yields the following supremizer
snapshot matrix:

Ssup “ tspx, t1q, ..., spx, tNT
qu P RN

h
uˆNT .

A POD modal decomposition is then applied to the snapshot matrix in order to obtain the suprem-
izer POD modes pηiq

Nsup

i“1 [53]. In this paper, we adopt the approximated procedure, since it
significantly reduces the computational cost of the offline phase. We note, however, that when an
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approximated approach is used, it is not possible to rigorously demonstrate the inf-sup condition,
which can lead to stability issues, as we will see in section 6.2.

For the sake of simplicity, we denote pηiq
Nsup

i“1 “ pφiq
Nu`Nsup

i“Nu`1 and, considering a generic time
instant tj , we express the approximated velocity and pressure fields as follows:

upx, tjq « urpx, tjq “

Nu`Nsup
ÿ

i“1

aiptjqφipxq, ppx, tjq « prpx, tjq “

Np
ÿ

i“1

biptjqχipxq. (8)

Performing a Galerkin projection of the momentum equation (5a) onto the velocity modes and of
the continuity equation (5b) onto the pressure modes, the following reduced system is obtained:

#

M 9a “ νpB`BTqa´ aTCa´Hb` τ
´

řNBC
k“1 pUBC,kD

k ´Ekaq
¯

,

Pa “ 0 ,
(9)

where a and b are the vectors of the coefficients associated with the velocity and pressure modes,
respectively.

The matrices appearing in the system are defined as follows:

pMqij “ pφi,φjqL2pΩq, pPqij “ pχi,∇ ¨ φjqL2pΩq , pBqij “ pφi,∇ ¨∇φjqL2pΩq,

pBTqij “ pφi,∇ ¨ p∇φjqT qL2pΩq, pCqijk “ pφi,∇ ¨ pφj b φkqqL2pΩq, pHqij “ pφi,∇χjqL2pΩq .

The term τ
´

řNBC
k“1 pUBC,kD

k ´Ekaq
¯

in (9) is a penalization term used to enforce the Dirichlet
boundary conditions at the reduced order level [18, 54]. In the penalization term formula, NBC is
the number of velocity boundary conditions on the k different parts of the Dirichlet boundary, UBC,k

is the velocity nonzero component at the k-th part of the Dirichlet boundary, τ is a penalization
factor, and the matrices Ek and vectors Dk are defined as follows:

pEkqij “ pφi,φjqL2pΓDk
q, pDkqi “ pφiqΓDk

, for all k “ 1, ..., NBC.

3.2. The PPE-ROM approach

The second stabilization technique for the reduced system is the PPE-ROM, which was proposed
in [33] and then used and extended in [4, 51, 53]. In this formulation, the continuity equation of the
reduced system (9) is replaced by the pressure Poisson equation, obtained by taking the divergence
of the momentum equation and leveraging the fact that the velocity field is divergence-free:

#

M 9a “ νpB`BTqa´ aTCa´Hb` τ
´

řNBC
k“1 pUBC,kD

k ´Ekaq
¯

,

Db` aTGa´ νNa´ L “ 0 .
(10)

The additional matrices appearing in system (10) are defined by Galerkin projection as follows:

pDqij “ p∇χi,∇χjqL2pΩq, pGqijk “ p∇χi,∇ ¨ pφj b φkqqL2pΩq,

pNqij “ pnˆ∇χi,∇φjqΓ, pLqij “ pχi,n ¨RtqΓ .

In system (10), the vector R is such that

upx, tq “ Rpxq on ΓInlet ,

where ΓInlet is the inlet boundary of the domain. In the test case considered in the numerical
investigation, the velocity conditions at the inlet do not change as time evolves and the term
pn ¨Rt, χiqΓ is identically zero.

The penalty term τ
´

řNBC
k“1 pUBC,kD

k ´Ekaq
¯

in (10) is a constraint expressing the Dirichlet
non-homogeneous boundary conditions, just as in the SUP-ROM described in section 3.1.

6



4. Data-driven corrections for the SUP-ROM approach

To construct the new correction terms in this section (and in section 5), we leverage the data-driven
variational multiscale ROM (DD-VMS-ROM ) framework [30, 56]. This framework centers around
the following principle, which is also used in LES [10, 47]:

(i) Filter the NSE with a spatial filter;

(ii) Solve the filtered NSE obtained in step (i) to approximate the filtered flow variables.

The motivation for using this approach is that the filtered flow variables can be represented in the
under-resolved (or marginally-resolved) regime, whereas the unfiltered flow variables cannot. In
the DD-VMS-ROM framework, the spatial filter used is the ROM projection [30, 56], i.e., the L2

projection of the FOM variables onto the ROM space.
Specifically, for fixed r and q, given the FOM velocity u and the FOM pressure p, the ROM

filter is defined as follows:

pūr,φiq “ pu,φiq @i “ 1, ..., r, pp̄r, χiq “ pp, χiq @i “ 1, ..., q,

where, in our setting, r “ Nu ` Nsup and q “ Np. We emphasize that, to our knowledge, using
the ROM projection to define the spatially filtered pressure is novel. Next, we use the ROM filters
defined above and the DD-VMS-ROM framework to construct the new correction terms.

The reduced system obtained by projecting the NSE onto the POD modes can be reformulated
as a system of spatially filtered NSE:

$

’

’

’

&

’

’

’

%

´

´
Būr

d

Bt ,φi

¯

` ν
`

∇ ¨
`

∇ūrd ´ p∇ūrdq
T
˘

,φi
˘

´ ppūrd ¨∇qūrd,φiq ´ p∇p̄rd,φiq`
`
`

τSFSu ,φi
˘

`

´

τSFSpp1q ,φi

¯

“ 0 for i “ 1, ..., r,

p∇ ¨ ūrd, χiq `
´

τSFSpp2q , χi

¯

“ 0 for i “ 1, ..., q,

(11)

where the correction terms for the velocity and pressure are defined as follows:

τSFSu “ ´

´

pud ¨∇qud
r
´ pūrd ¨∇qūrd

¯

, τSFSpp1q “ ´

´

∇pd
r
´∇p̄rd

¯

, τSFSpp2q “ ∇ ¨ ud
r
´∇ ¨ ūrd.

(12)
We note that τSFSu P RNcells , τSFSpp1q P R3ˆNcells , and τSFSpp2q P RNcells . In order to reduce the
computational effort, we assume that ud « u and pd « p. Thus, the projection in the filtered NSE
(11) is carried out not starting from the FOM fields, but starting from the fields reconstructed using
a number d and dp of modes, where d and dp are smaller than the rank of the snapshot matrix.
In [56], it was shown that this approach reduces the computational cost of the DD-VMS-ROM
framework without significantly degrading its accuracy.

We note that, since the ROM projection is used as a spatial filter, the filtered variables satisfy
the following formulas:

ūrd “ ur and p̄rd “ pr.

Next, the following terms are introduced:

τu s.t. τui “
`

τSFSu ,φi
˘

, τ pp1q s.t. τpp1qi “

´

τSFSpp1q ,φi

¯

, τ pp2q s.t. τpp2qi “

´

τSFSpp2q , χi

¯

. (13)

We specify that τu P Rr, τ pp1q P Rr, and τ pp2q P Rq.
Adding the correction terms, the dynamical system (9) becomes:
#

M 9a “ νpB`BTqa´ aTCa´Hb` τ
´

řNBC
k“1 pUBC,kD

k ´Ekaq
¯

` τu ` τ pp1q,

Pa` τ pp2q “ 0.
(14)
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The new system obtained in (14) is not a closed system because the correction terms depend on
the fields ud and pd. In order to close the system, a data-driven modeling is adopted, as in [56] and
[29]. The key problem is to find the approximated expressions τu « τupaq, τ pp1q « τ pp1qpbq, and
τ pp2q « τ pp2qpaq.

4.1. Data-driven correction for velocity

In this section, only the correction term for velocity τu is considered in system (14) and its effect on
the dynamical system is evaluated. This technique, which was introduced in [56, 29, 31], is applied
to a new reduced formulation.

The correction term for velocity is modeled as in [56] by using the ansatz

τupaq “ Ãa` aT B̃a, (15)

where B̃ is a three-dimensional tensor. To find Ã and B̃, the following optimization problem is
solved:

min
ÃPRrˆr,

B̃PRrˆrˆr

M
ÿ

j“1

||τu
exactptjq ´ τu

ansatzptjq||
2
L2pΩq, (16)

where M time instances are considered to build the correction term, and the term τ exactptjq is
computed from the snapshot vectors asnapd ptjq, which satisfy the conditions

asnapdi
ptjq “ pudptjq,φiq @i “ 1, ..., d.

The exact correction term is evaluated as follows:

τu
exactptjq “

´

´pasnapd ptjqqTCda
snap
d ptjq

r
¯

´
`

´pasnapr ptjqq
TCasnapr ptjq

˘

,

where the tensor Cd P Rdˆdˆd is defined in the following way:

Cdijk “
`

φi,∇ ¨ pφj b φkq
˘

.

At each time step j, the approximated correction term is evaluated as in (15), but starting from
asnapr ptjq:

τu
ansatzptjq “ Ãasnapr ptjq ` pa

snap
r ptjqq

T B̃asnapr ptjq. (17)

The optimization problem (16) is rewritten as a least squares problem following a procedure similar
to that used in [35]. In particular, the following terms are defined:

• the snapshot matrix X̂ P RMˆr. Denoting with X̂j,¨ the j-th row of the matrix, we have

X̂j,¨ “ asnapr ptjq; (18)

• r vectors ap1qptjq,...,aprqptjq for each time step, such that

apiqptjq “ asnapi ptjq

»

—

—

–

asnap0 ptjq

asnap1 ptjq

...

asnapi ptjq

fi

ffi

ffi

fl

P Ri for i “ 1, ..., r, (19)

where asnapi ptjq is the i-th component of the snapshot vector at time step j;

8



• r different matrices X̂p1q,...,X̂prq, with X̂piq P RMˆi such that

X̂
piq
j,¨ “ apiqptjq; (20)

• the matrix R P RMˆr such that

Rj,¨ “ τu
exactptjq @j “ 1, ...,M. (21)

The optimization problem (16) can be expressed in the following way:

min
ÃPRrˆr,

B̃PRrˆrˆr

||R´ X̂ÃT ´
r
ÿ

i“1

X̂piqpB̃piqqT ||2F , (22)

where B̃piq are blocks of the tensor B̃ of dimension iˆi, and the norm considered in the minimization
is the Frobenius norm. We now define

D “ rX̂, X̂p1q, X̂p2q, ..., X̂prqs, O “ rÃ, B̃p1q, B̃p2q, ..., B̃prqs.

We denote by ` “ r ` p1` 2` ¨ ¨ ¨ ` rq the global number of columns of matrices D and O defined
above. In a more compact form, the optimization problem (22) can be written as follows:

min
OPRrˆ`

||R´DOT ||2F , (23)

Problem (23) can be also seen as a set of r optimization problems

min
oi,i“1,...,r

||ri ´Doi||
2
L2pΩq, (24)

where oi is the i-th row of matrix O and ri is the i-th column of the matrix R. As in [56] and [35],
the problem (23) is ill-conditioned since the matrix D has a large condition number. In order to
solve the least squares problem, a truncated singular value decomposition is applied to matrix D,
just as in step 6 of Algorithm 1 in [56].

After Ã and B̃ are found from the least squares problem, the dynamical system to be solved is
#

M 9a “ νpB`BTqa´ aTCa´Hb` τ
´

řNBC
k“1 pUBC,kD

k ´Ekaq
¯

` Ãa` aT B̃a,

Pa “ 0.
(25)

The ill-conditioning of the least squares problem leads to an ill-conditioning of the dynamical system
(25). In order to mitigate this ill-conditioning, step 5 of Algorithm 1 of [30] is applied: the number
R of singular values retained in matrix D is the optimal one, i.e., the number that minimizes the
error metric

εupL
2q “

M
ÿ

j“1

||usolptjq ´ urptjq||L2pΩq, (26)

where, at each time step, usolptjq “
řr
i“1 aiptjqφi is found from the solution of the dynamical

system (25).

Remark 4.1 We note that the correction term depends on the POD basis considered. Indeed, the
correction term depends on the operators C and Cd, which depend on the POD basis. Further-
more, the correction term depends on the time window used to perform the POD, and on the time
window used to build the correction term. We denote these two time intervals as r0, Tofflines and
r0, Tcorrections, respectively.
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4.2. Constrained data-driven correction for velocity

To increase the ROM accuracy, physical constraints can be added to the least squares problem
for velocity [29]. In this approach, the matrices Ã and B̃ are endowed with the following physical
properties:

• aT Ãa ď 0, i.e., Ã is negative semi-definite;

• aT paT B̃aq “ 0, i.e., B̃ is skew-symmetric.

The optimization problem becomes

min
ÃPRrˆr,

B̃PRrˆrˆr,

aÃaď0,

aT
paT B̃aq“0

M
ÿ

j“1

||τ exactptjq ´ τ
ansatzptjq||

2
L2pΩq. (27)

As shown in [29] and and confirmed in the numerical investigation in section 6, the constrained
method is more accurate than the unconstrained one when the number of modes used for the velocity
and pressure yields a marginally-resolved regime. However, as the number of modes increases, the
unconstrained method seems to produce more accurate results.

Remark 4.2 As extensively explained in [29], the constraints imposed on Ã and B̃ aim at repro-
ducing the constraints of the operators to which our correction is applied. In [29], the correction
term aT B̃a acts on the nonlinear term aTCa, so B̃ inherits the skew-symmetric property of C.
On the other hand, the term Ãa is treated in [29] as a separate correction to the diffusive term
νpB ` BT qa, and inherits the property of that operator. Since our test case has a high Reynolds
number, the diffusive term does not have a significant impact on the system, and thus we do not
consider it in the exact correction τuexact.

4.3. Data-driven corrections for pressure

This section introduces the novel correction terms for pressure in the reduced equations of the
supremizer approach. The system (14) is considered and now the focus is the evaluation of the
closure expressions for τ pp1q and τ pp2q. From the expressions (13) and following a procedure similar
to that used in section 4.1, the ansatzes’ expressions for the corrective terms are written as

τ pp1qpbq “ H̃b, τ pp2qpaq “ P̃a. (28)

We consider two approaches to find the matrices H̃ and P̃ .

1. Solve two different optimization problems, one for each correction term:

min
H̃PRrˆq

||τpp1q
exact ´ τpp1q

ansatz||2L2pΩq, min
P̃PRqˆr

||τpp2q
exact ´ τpp2q

ansatz||2L2pΩq, (29)

where

τpp1q
exactptjq “

´

´Hdb
snap
dp

ptjq
r
¯

´
`

´pHbsnap
q ptjqq

˘

, τpp1q
ansatz “ H̃bsnap

q ptjq,

τpp2q
exactptjq “

´

Pda
snap
d ptjq

r
¯

´ pPasnapr ptjqq , τpp2q
ansatz “ P̃asnapr ptjq.

(30)
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2. Solve a unique optimization problem to find both correction terms:

min
H̃PRrˆq,

P̃PRqˆr

||τp
exact ´ τp

ansatz||2L2pΩq, (31)

where we consider the following compact notation to vertically stack the vectors:

τp
exact “ rτpp1q

exact, τpp2q
exacts, τp

ansatz “ rτpp1q
ansatz, τpp2q

ansatzs. (32)

In both cases, the matrices in the least squares problems are ill-conditioned and the truncated
singular value decomposition is applied to mitigate this issue. As in section 4.1, the number of
singular values retained in each optimization problem is chosen in order to minimize the error
metric εppL2q, defined as

εppL
2q “

M
ÿ

j“1

||psolptjq ´ pqptjq||L2pΩq, (33)

where psolptjq “
řq
i“1 biptjqχi is found from the solution of the dynamical system at each time step,

and pqptjq is the projection of the full order pressure on the space generated by the first q modes.
The reason for choosing a different error metric involving the pressure field is that, in this section,
the pressure corrections are introduced to improve the accuracy of the pressure field.

The dynamical system obtained by adding the new correction terms is the following:
#

M 9a “ νpB`BTqa´ aTCa´Hb` H̃b` τ
´

řNBC
k“1 pUBC,kD

k ´Ekaq
¯

` Ãa` aT B̃a,

Pa` P̃a “ 0.
(34)

In the construction of the correction terms for pressure and velocity, the supremizer modes are not
used since they induce numerical instability. We believe that the reason for this numerical instabilty
is that the supremizer modes are fictitious modes without a physical significance, introduced to fulfill
the inf-sup condition. Since the aim of the correction terms is to model the contribution of the
neglected physical modes, retaining a large number of supremizer modes in the correction terms
can adversely affect the data-driven procedure. Therefore, in the least squares problems (16), (27),
(29), and (31), the number of velocity modes used is r “ Nu instead of r “ Nu `Nsup.

5. Data-driven corrections for the PPE-ROM approach

In this section, the data-driven techniques used in section 4 for the supremizer approach are adapted
to the PPE-ROM approach. This approach constructs new correction terms that model the contri-
bution of the neglected modes inside the Poisson equation, as showed in (35):

$

’

’

’

’

’

&

’

’

’

’

’

%

´

´
Būr

d

Bt ,φi

¯

` ν
`

∇ ¨
`

∇ūrd ` p∇ūrdq
T
˘

,φi
˘

´ ppūrd ¨∇qūrd,φiq ´ p∇p̄rd,φiq`
`
`

τSFSu ,φi
˘

`

´

τSFSpp1q ,φi

¯

“ 0 for i “ 1, ..., r,

p∇p̄rd,∇χiq ` p∇ ¨ pūrd b ūrdq,∇χiq ´ ν p∇ˆ ūrd,nˆ∇χiqΓ ´
`

n ¨Rr
dt
, χi

˘

Γ
`

`
`

τSFSD ,∇χi
˘

`
`

τSFSG ,∇χi
˘

“ 0 for i “ 1, ..., q.

(35)

As pointed out in section 4.3, the number of velocity modes used to build the correction terms is
r “ Nu. The new exact closure terms introduced in system (35) are

τSFSD “ ∇pd
r
´∇prd, τSFSG “ ∇ ¨ pud b udq

r
´∇ ¨ purd b urdq. (36)
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Next, the following terms are introduced:

τDP Rq such that τDi “
`

τSFSD ,∇χi
˘

, τGP Rq such that τGi “
`

τSFSG ,∇χi
˘

. (37)

Adding the new correction terms, the dynamical system (10) becomes:
#

M 9a “ νpB`BTqa´ aTCa´Hb` τ
´

řNBC
k“1 pUBC,kD

k ´Ekaq
¯

` τu ` τ pp1q,

Db` aTGa´ νNa´ L` τD ` τG “ 0.
(38)

In order to close the system (38), the following approximations need to be found: τu « τupaq,
τ pp1q « τ pp1qpbq, τD « τDpbq, τG « τGpa,bq.

5.1. Data-driven correction for the term Db in (38)

The first proposed correction term is that related to the matrix D. For the term τD, the following
ansatzes are proposed and tested:

1. A linear ansatz, τDpbq “ D̃b.

The procedure followed to evaluate matrix D̃ is similar to that used to find H̃ or P̃ in section
4.3. The detailed implementation is described in [23]. After D̃ is found from the least squares
problem, the Poisson equation in the dynamical system is

Db` aTGa` D̃b´ νNa´ L “ 0. (39)

As in the previous cases, the ill-conditioning of the least squares problem is mitigated by
applying a truncated singular value decomposition in which the error metric (33) is minimized.
We note that the error metric to be minimized for the correction terms in the Poisson equation
concerns the pressure field. The reason for this choice is that the correction term Ãa` aT B̃a

aims at improving the results mainly for the velocity field. However, it is numerically shown
that the correction terms added in the Poisson equation have no effect on the velocity field,
but they significantly improve the pressure results.

2. A quadratic ansatz, τDpbq “ D̃b ` bT B̃Pb, where B̃P is a three-dimensional tensor. This
choice is motivated by the velocity correction term in section 4.1.

The Poisson equation of the dynamical system in this case becomes

Db` aTGa` D̃b` bT B̃Pb´ νNa´ L “ 0. (40)

In section 6, the quadratic ansatz 2 is chosen to approximate the exact correction term, since
it provides the best results among the proposed choices.

5.2. Data-driven correction for the term aTGa in (38)

The second proposed correction term is that depending on the matrix G. The ansatz for the term
τG is the following:

τGpaq “ G̃Aa` aT G̃Ba.

This ansatz is similar to that proposed to approximate the velocity correction in the SUP-ROM
approach in section 4.1. The procedure followed to find the matrices G̃A and G̃B is exactly the
same as that used in section 4.1, but considering the following exact term:

τ exactG “ pasnapd ptjqqTGda
snap
d ptjq

r
´ pasnapr ptjqq

TGasnapr ptjq, (41)
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where the tensor Gd P Rdˆdˆd is defined as

Gdijk “ p∇χi,∇ ¨ pφj b φkqq, with i, j, k “ 1, ..., d.

The Poisson equation using just the correction for the term containing the tensorG can be rewritten
as

Db` aTGa` G̃Aa` aTGBa´ νNa´ L “ 0. (42)

5.3. Combined data-driven corrections proposals

We investigate other approaches in order to provide a more compact ansatz in the reduced order
systems. In particular, we approximate more than one correction term with a unique ansatz. The
following ansatzes are proposed and investigated:

1. Joint correction to Db ` aTGa: τ jointDG pa,bq “ D̃pgb ` aT B̃pga. In this case, the following
least squares problem is solved:

min
D̃pgPRqˆq ;

B̃pgPRqˆrˆr

M
ÿ

j“1

||τ exactDG ptjq ´ τ
ansatz
DG ptjq||

2
L2pΩq, (43)

where the exact correction term is

τ exactDG ptjq “ τ
exact
D ptjq ` τ

exact
G ptjq @j “ 1, ...,M. (44)

2. Joint correction toDb`aTGa as a function of the vector of coefficients ab “ pa,bq P RNu`Np :
τ joint, abDG pabq “ ĨAab` abT ĨBab.

Since the term Db depends just on the pressure modes, whereas the term aTGa depends on
both the velocity and the pressure modes, the two terms can be merged into a unique least
squares problem involving the total vector of coefficients ab “ pa,bq. Specifically, denoting
rtot “ r ` q, the least squares problem is

min
ĨAPRqˆrtot ;

ĨBPRqˆrtotˆrtot

M
ÿ

j“1

||τ exactDG ptjq ´ τ
ansatz
joint,abptjq||

2
L2pΩq. (45)

3. Joint correction to Db`aTGa in the Poisson equation and aTCa in the momentum equation:
τ joint,abDCG pabq “ J̃Aab` abT J̃Bab.

In this case, a single least squares problem is solved in order to find three correction terms.
The optimization problem is

min
J̃APRrtotˆrtot ;

J̃BPRrtotˆrtotˆrtot

M
ÿ

j“1

||τ exactDCG,abptjq ´ τ
ansatz
DCG,abptjq||

2
L2pΩq. (46)

The exact term is

τ exactDCG,abptjq “
`

τ exactu ptjq, τ
exact
D ptjq ` τ

exact
G ptjq

˘

@j “ 1, ...,M. (47)

The matrices J̃A P Rrtotˆrtot and J̃B P Rrtotˆrtotˆrtot are computed through a procedure
similar to that used in case 2. The final correction is divided into two vectors:

J̃Aab` abT J̃Bab “ pJ1,J2q , where J1 P RNu ,J2 P RNp .
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The dynamical system with the novel data-driven correction terms becomes
#

M 9a “ νpB`BTqa´ aTCa´Hb` τ
´

řNBC
k“1 pUBC,kD

k ´Ekaq
¯

` J1,

Db` aTGa´ νNa´ L` J2 “ 0.
(48)

Details on all the compact cases are provided in [23].

6. Numerical Results

This section presents the numerical results obtained with the ROMs described in section 3 combined
with the data-driven techniques introduced in sections 4 and 5. The test case considered is the
unsteady turbulent flow around a circular cylinder, which is a typical case study in the field of fluid
dynamics.

Given the two-dimensional nature of the vortex shedding phenomenon, the numerical test case
is set up in two dimensions and the mesh used is composed of 11644 polygonal cells. The mesh and
boundary conditions set for the velocity and pressure are presented in Figure 1 [18]. The diameter
of the cylinder is D “ 1 m, the fluid kinematic viscosity is ν “ 1ˆ 10´4 m2 s´1, and the velocity
at the inlet is horizontal and fixed at Uin “ 5 m s´1. These parameters yield a Reynolds number
Re=5ˆ 104.

(a) (b)

Figure 1: (a) The mesh used in simulations. (b) The mesh zoomed in around the cylinder. Image adapted
from [18].

The open source software OpenFOAM is used in the offline stage to generate the high-fidelity
fields. In particular, we use the unsteady solver pimpleFoam and the κ ´ ω model for pressure-
velocity coupling and turbulence treatment, respectively. In the offline stage, the high-fidelity
snapshots are collected every 0.004 s.

The POD algorithm is then employed to obtain the POD modes for the velocity and pressure
from the respective snapshot matrices, along with the supremizer modes. The following subsections
will discuss the results obtained from simulations. Simulations are computed using both ITHACA-
FV [53, 52] and in-house developed Python scripts. Both the SUP-ROM and PPE-ROM approaches
are considered.

In all the simulations reported, the d value used for the construction of the closure terms is
d “ 50. The results of the FOM simulations are compared with the results obtained by solving
the reduced order dynamical systems with or without the data-driven terms and considering the
parameter τ “ 1000 in (34) and in (38).
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The SUP-ROM dynamical system is written in a more general form:
$

’

’

&

’

’

%

M 9ai “ νpB`BTqa
i ´ paiqTCai ´Hbi`τ

´

řNBC
k“1 pUBC,kD

k ´Ekaiq
¯

` cuτupa
i,biq `

`cpp1qτ pp1qpa
i,biq at each i “ 1, ...,M,

Pai ` cpp2qτ pp2qpa
i,biq “ 0 at each i “ 1, ...,M,

(49)
where M is the total number of time steps in the online phase. The matrices and tensors in (49)
are defined in section 3.1.

In the PPE-ROM framework, the reduced system supplemented with the correction terms is the
following:
#

M 9ai “ νpB`BTqa
i ´ paiqTCai ´Hbi`τ

´

řNBC
k“1 pUBC,kD

k ´Ekaiq
¯

` cuτupa
i,biq at each i “ 1, ...,M,

Dbi ` paiqTGai ´ νNai ´ L` cDτDpa
i,biq ` cGτGpa

i,biq “ 0 at each i “ 1, ...,M.

(50)
The matrices and tensors in (50) are defined in section 3.2. In systems (49) and (50), the additional
parameters cu, cppiq, cD, and cG are set to 1 if the corresponding correction term is included in the
system, and 0 otherwise.

To better guide the reader through all the numerical tests carried out and their specific purpose,
a brief summary of their evolution in this section is provided below.

(1) A necessary preliminary step is that of analyzing the results of the POD modal decomposition.
An analysis of the eigenvalue decay for the pressure and velocity is carried out in order to
identify the under-resolved and marginally-resolved regimes.

(2) The solution of the standard SUP-ROM approach (system (49), with cu “ cppiq “ 0, i “ 1, 2)
is then studied. In particular, the stability issues associated with the number of supremizer
modes are discussed.

(3) The data-driven methods proposed in [56, 29, 31] are then extended to the SUP-ROM ap-
proach. The influence of the term τupa

iq, which we refer to as correction term for velocity,
is analyzed. As will be shown, the dynamical system (49) with cu “ 1 and cpp1q “ cpp2q “ 0

produces a better approximation of the velocity field than the formulation without any cor-
rection term. However, the approximation of the pressure field is not significantly improved
with respect to the solution of the system without the velocity correction term.

(4) Since in important applications it is necessary to obtain an accurate pressure field prediction,
a further test considers new pressure corrections for the SUP-ROM approach. In particular,
the dynamical system (49) with cu “ cpp1q “ cpp2q “ 1 is solved making use of both the
velocity and the pressure correction/closure terms. As will be shown, the results still display
no meaningful improvement of the pressure field. A possible reason for this behavior is that
the correction terms are mainly designed to model effects of nonlinear terms , as is the case
with its velocity counterpart. Since no nonlinear terms involve pressure, the corresponding
correction/closure term is less effective than the velocity correction. Another possible reason
for the inefficiency of the pressure corrections is that the supremizer model does not consider
a dedicated equation for the pressure field, therefore no corrections can directly affect the
pressure approximation.

(5) To investigate effective strategies for the reduced pressure field prediction, the next step is to
consider a different approach where a dedicated equation for pressure is employed. To this
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end, we resort to the PPE-ROM. In the PPE formulation, novel correction terms are added
to the pressure Poisson equation and different ansatzes are proposed. The results lead to an
evident improvement of the reduced pressure field.

(6) Steps (1)-(5) of our analysis serve as a validation of the methods and ansatzes proposed
in this paper, always considering the same time windows for both the POD construction
(Toffline “ 20 s) and the correction terms (Tcorrection “ 2 s).

In this final step, we test the methods considering different time windows, which are selected
according to the Strouhal number, i.e., the frequency of vortex shedding. In our case, the
Strouhal number is defined as follows:

St “
fD

U8
“

D

TU8
“ 0.224.

For clarity of presentation, the models tested in this section are summarized in Table 1.
Finally, two different time integration schemes are considered in the numerical tests. The time

derivative 9ai appearing in the momentum equation in both formulations (49) and (50) is either
computed by making use of an implicit Euler time discretization or with an implicit second-order
time discretization. It is worth remarking that the second-order time discretization corresponds to
the scheme implemented in OpenFOAM and used to solve the full order problem. For the standard
ROM approaches, the results obtained with both discretizations are compared in order to assess if
the FOM-ROM consistency of the second-order time discretization provides increased accuracy. For
clarity of presentation, for the data-driven techniques, our analysis will focus only on the first-order
time discretization. The quantitative evaluation of the ROM accuracy is obtained by means of the
relative L2pΩq error of velocity and pressure. The errors are evaluated with respect to the full order
fields and typically compared with the reconstruction errors, i.e., the errors yielded by projecting
the full order fields on a subspace generated by a given number of reduced modes. The projection of
the full order solution is in fact the best possible result which can be achieved with a given number
of modes. Thus, the solution of the reduced system cannot generally lead to an error lower than
the projection error. The relative errors with respect to the full order fields at the j-th time step
are defined as

εu
fullptjq “

||uabs
r px, tjq ´ uabs

d px, tjq||L2pΩq

||uabs
d px, tjq||L2pΩq

, εp
fullptjq “

||prpx, tjq ´ pdpx, tjq||L2pΩq

||pdpx, tjq||L2pΩq
, (51)

where we used the following quantities:

• the reduced order fields of velocity and pressure, namely

urpx, tjq “
r
ÿ

i“1

aiptjqφipxq, prpx, tjq “
q
ÿ

i“1

biptjqχipxq,

where the coefficients aiptjq and biptjq are the solutions of the dynamical systems (49) (in the
supremizer approach) and (50) (in the Poisson approach);

• the approximated full order field of velocity and pressure, which are evaluated starting from
the first d modes, where d “ 100 when a supremizer approach is considered, and d “ 50 when
a pressure Poisson approach is considered. These terms are written as follows:

udpx, tjq “
d
ÿ

i“1

asnapi ptjqφipxq, pdpx, tjq “

dp
ÿ

i“1

bsnapi ptjqχipxq.
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We remark that when the supremizer approach is considered, tφiu100
i“51 “ tsipχiqu

50
i“1 are the

supremizer modes.

Model Corresponding
section

Reduced order system

Standard SUP-ROM 6.2 System (49) with cu “ cpp1q “ cpp2q “ 0

SUP-ROM with velocity
correction

6.3 System (49) with cu “ 1, cpp1q “ cpp2q “ 0

SUP-ROM with pressure
corrections

6.4 System (49) with cu “ 0, considering the
cases:

$

’

&

’

%

cpp1q “ cpp2q “ 1

cpp1q “ 1, cpp2q “ 0

cpp1q “ 0, cpp2q “ 1

Standard PPE-ROM 6.5 System (50) with cu “ cD “ cG “ 0

PPE-ROMwith pressure
corrections

6.6.1 System (50) with cu “ 0, considering the
cases:

$

’

&

’

%

cD “ cG “ 1

cD “ 1, cG “ 0

cD “ 0, cG “ 1

PPE-ROM with velocity
and pressure corrections

6.6.2 System (50) with cu “ cD “ cG “ 1

Table 1: Summary of the models presented in the numerical results considering the time windows corre-
sponding to Toffline “ 20 s, Tcorrection “ 2 s, and Tonline “ 2 s or 8 s.

6.1. Eigenvalue decay for velocity, pressure and supremizer

Figure 2: Cumulative ignored normalized eigenvalue decay, for velocity, supremizer and pressure eigenval-
ues.
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In Figure 2, the normalized eigenvalue decay is displayed for the velocity, supremizer, and pres-
sure modes. The plot shows that a relatively small number of modes is sufficient in order to retain
most of the energetic information in the snapshots. The plot suggests that the marginally-resolved
regime — in which our numerical investigation will take place — extends between 3 to 8 modes.
However, it must be pointed out that the energetic interpretation for the eigenvalue decay of the
supremizer modes is not as straightforward as that of the velocity and pressure modes. In partic-
ular, the eigenvalues of the supremizer modes cannot be interpreted as an energetic contribution
since these modes are fictitious nonphysical modes added to fulfill a numerical stability condition.
Thus, the number of supremizer modes included in the online simulations is not chosen based on
energetic consideration. Instead, we impose that Nsup ě Np in order to avoid stability issues [53].

6.2. Analysis of the SUP-ROM without corrections

This section is dedicated to the preliminary analysis of the solutions of the dynamical system
without data-driven corrections.

Plots 3(a), (b), (c), and (d) display the time evolution of the relative errors for reduced velocity
and pressure fields. The diagrams are obtained making use, at the reduced order level, of a first-
order time discretization scheme. Different combinations of truncation orders Nu, Np, Nsup for
velocity, pressure, and supremizer modes, respectively, are considered; the expectation is that the
accuracy of the standard Galerkin-ROM improves as the number of modes is increased. However,
the approximated supremizer approach is characterized by stability issues particularly affecting the
pressure field, as specified in section 3.1. As can be seen in Figure 3(b), when we are in the resolved
regime and the number of supremizer modes is Nsup “ Nu “ Np, the reduced pressure solution
error significantly increases. These issues are not as severe when Nsup ą Np, as shown in Figure
3d, where results obtained in the totally-resolved regime show an acceptable accuracy, except for
the case Nu “ Np “ 30 and Nsup “ 50, where stability issues are again observed. Again, such
stability problems are likely associated with the approximated supremizer procedure adopted, and
might be solved resorting to an exact supremizer procedure as suggested in [7, 53]. In this paper,
we chose to adopt an approximated supremizer enrichment procedure, since it allows to reduce
the online computational cost. The corresponding results obtained when considering a second-
order time discretization are presented in Figure 3(e), (f),(g), and (h). The plots suggest that the
second-order time discretization suffers from the same stability issue observed for the first-order
time discretization.

The comparison between Figures 3(c), (d) and 3(g), (h) shows that when a first-order time
discretization is considered the velocity field results are similar to the ones obtained with a second-
order time discretization, except for the error blow up occurring just at the end of simulation for
the case Nu “ Np “ 30, Nsup “ 50. This fact is likely due to the reduced numerical dissipation
associated with the second-order time discretization. Such lower dissipation might in fact make
the system more exposed to the instabilities associated with the approximated supremizer pressure
treatment.

The following sections will focus on the error analysis in the marginally-resolved regime, which
is not affected by stability issues. However, the plots in Figure 3 also suggest that the standard
SUP-ROM consistently leads to velocity field predictions that are significantly more accurate than
their pressure counterparts.; the main goal of the following sections will be to evaluate strategies
to improve the pressure accuracy.
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(a) Velocity error (1st-order time scheme)
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(b) Pressure error (1st-order time scheme)
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(c) Velocity error (1st-order time scheme)
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(d) Pressure error (1st-order time scheme)
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Figure 3: Relative errors represented at different time steps, when solving the reduced system with a first-
order ((a), (b), (c), and (d)) or second-order time discretization ((e), (f),(g) and (h)). The first
and third rows of plots correspond to the case with a number of supremizer modes Nsup “ Np “

Nu, whereas the second and fourth rows display results with the addition of extra supremizer
modes.
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6.3. Effect of velocity correction in the SUP-ROM approach

This section is dedicated to the analysis of the effect of the velocity correction terms discussed in
section 4.1on the solution of the supremizer ROM dynamical system.

The data-driven term is introduced in the supremizer formulation following the two approaches
— unconstrained and constrained — described in section 4.1. In section 6.3.1, these alternative
formulations are compared in terms of accuracy. In addition, for both formulations, we address
the problem of choosing the optimal number of singular values R and Rc retained in the least
squares problem appearing in the data driven optimization of the coefficients. In section 6.3.2, the
prediction efficiency of the method is tested by building the correction terms from snapshots in a
time interval that is smaller than the interval used for the resolution at the ROM level.

6.3.1 Velocity correction: constrained and unconstrained cases

This section aims at making a comparison between the constrained and unconstrained corrections for
the term τu. The parameters appearing in system (49) are set as follows: cu “ 1, cpp1q “ cpp2q “ 0.
The number of modes is fixed at Nu “ Np “ Nsup “ 5. Thus, we are in the marginally-resolved
modal regime.
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Figure 4: Relative errors of the absolute value of velocity (a) and pressure (b) with respect to the full order
simulations, considering Nu “ Np “ Nsup “ 5. Results without any correction term, and with
the unconstrained and constrained corrections, are displayed.

The plots in Figure 4 clearly show that the velocity correction, both in its constrained and
unconstrained variant, improves the approximation of both the velocity and the pressure field with
respect to the standard SUP-ROM. Quite remarkably, the addition of the velocity correction is
able to bring the velocity error to values that approach the projection error. The reduction of the
pressure error, albeit significant, is not as pronounced.

We recall that the constrained correction is derived by including physical conditions in the
optimization problem, which are supposed to positively influence the velocity and pressure fields.
However, the results in our numerical investigation suggest that the accuracy gain associated with
the constrained method appears marginal. Moreover, the addition of constraints to the method is
not sufficient to obtain pressure field error comparable with the projection error.
In order to further lower the pressure error, new correction terms are introduced and evaluated in
the numerical simulations of the following sections.
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We now assess how the accuracy of the solution for system (49) with cu “ 1 and cpp1q “ cpp2q “ 0

is affected by the number of singular values retained in the least square problem appearing in the
optimization process used to obtain the data driven correction coefficients. In particular, we want
to establish whether it is possible to identify optimal values of the truncation orders that can be
conveniently used in the rest of the numerical investigation. In the least squares problems (16)
and (27), the number of singular values retained in the truncated SVD is optimized with respect
to the error metric expressed in (26). The trend of the error metric for different values of R and
Rc is displayed in Figure 5. For both the unconstrained and constrained cases the error metric has
a similar trend with R or Rc. Increasing values of R improves the solution of the reduced system
with respect to the standard case until a minimum in the error metric is reached; too large values
of R lead to a divergence of the reduced solution with respect to the high-fidelity result. In all the
numerical simulations presented in the article, the optimal value of singular values is used to build
the correction terms.

Another important observation is that the selected R value optimizes the error of the velocity
field with respect to the projection of the full order field. Hence, R is chosen a posteriori such that
the velocity solution of the dynamical system is as accurate as possible. Thus, it does not optimize
the error with respect to the exact correction and it can provide better results than the exact
correction. Using the terminology in section VI.A of [3], model regression is utilized to determine
the model form of the correction terms, whereas trajectory regression is used to determine the
optimal parameters in these model forms.

0 5 10 15 20
R = Rc
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ε u
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Figure 5: The metric εupL
2
q for different numbers of singular values retained in the singular value decom-

position.

6.3.2 Velocity correction: predictive accuracy

This section evaluates the performance of the method proposed in sections 4.1 and 4.2 when larger
time windows are considered and time prediction is carried out. In particular, the matrices Ã and
B̃ are built using snapshots taken from a smaller interval that does not cover all the simulated time,
in order to test the predictive capability of the proposed method. Specifically, the time interval on
which we collect the snapshots is r0, 20 ss, the time interval used to test the ROM is r0, 8 ss, and the
velocity correction is built starting from data extracted from r0, 2 ss. The modal regime considered
is Nu “ Np “ Nsup “ 5 and the time discretization is first-order.

The relative velocity and pressure errors are displayed in Figure 6. The plots confirm that
adding the correction term improves significantly both the velocity and the pressure field accuracy,
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Figure 6: Relative errors of the velocity (a) and pressure (b), for Nu “ Np “ Nsup “ 5. Results without
any correction term, with the constrained velocity correction term, and with the unconstrained
velocity correction term. The optimal values R and Rc are 9 and 6, respectively.

especially in the interval r2, 8s seconds. This suggests that, provided that the training time interval
(i.e., the time interval from which the snapshots were collected) contains all the significant frequen-
cies characterizing the flow field time evolution, even a limited number of snapshots are sufficient
to construct the matrices Ã and B̃ in the correction and obtain a significant accuracy improvement
with respect to the case without corrections.

In addition, the ROM approximations for all the test cases in which corrections have been applied
appear to be significantly more stable than the test case without correction. This might once again
suggest that if the training set contains a sufficient number of solution cycles, the correction will
increase the ROM’s ability to lead to stable solutions over time, and extended time integration and
prediction will be possible. However, in such a stable scenario, constraining the minimization for
the calculation of Ã and B̃ does not seem to lead to significant improvements, as can be seen from
Figure 6.

6.4. Effect of pressure corrections in the SUP-ROM approach

The results shown in section 6.3 extend to the RANS setting the data-driven correction terms
tested so far only for LES simulations [56, 29]. In addition, these results show that the velocity
correction significantly improves the accuracy of the velocity field approximations, but the same
cannot be said for the pressure field. We note that, to the best of our knowledge, there are no
similar data-driven correction models that aim at improving the accuracy of the pressure field.
However, in our numerical investigation, the proposed data-driven corrections for the pressure did
not yield completely satisfactory results.

We note that the pressure field is extremely important in many applications that require the
computation of other flow quantities or output values such as forces. Thus, inaccurate pressure
fields can lead to poor fluid flow force predictions, which can in turn make the proposed techniques
ineffective in many applications. The present subsection investigates the effectiveness of the new
methods developed in section 4.3 for increased pressure field accuracy. The following cases for
system (14) are used to produce the results in Figure 7:

• cu “ cpp1q “ cpp2q “ 0, i.e., absence of any correction term;

• cu “ 0, cpp1q “ 1, cpp2q “ 0, i.e., the correction for the term ´Hb is added in the momentum
equation;
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• cu “ 0, cpp1q “ 0, cpp2q “ 1, i.e., the correction for the term Pa is added in the continuity
equation;

• cu “ 0, cpp1q “ cpp2q “ 1, i.e., the pressure corrections are added to the original system.

The plots in Figure 7 represent the relative errors for the velocity and pressure fields predicted with
each method tested, and using Nu “ Np “ Nsup “ 3 modes for velocity, pressure, and supremizers.
We note that for all the simulations using the velocity correction, the constrained data-driven
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Figure 7: Relative errors of the velocity (a) and pressure (b), using Nu “ Np “ Nsup “ 3. Results without
any correction term, with only the velocity correction term, and with both the velocity and the
pressure correction terms are displayed.

correction method is selected, since it provides slightly better results — as pointed out in section
6.3.1. In addition, the number of singular values retained for the matrices in the least squares
problems is the optimal one.

Figure 7 shows that the effect of the velocity data-driven correction is much more evident than
the effect of the data-driven pressure corrections. Indeed, the lines corresponding to the simulations
with only the velocity correction term overlap with the lines corresponding to the simulations with
both velocity and pressure correction terms. In other words, once the velocity correction is activated,
turning on or off all the pressure corrections yields insignificant changes to the ROM error plots.
The ineffectiveness of the pressure correction terms in the pressure field approximation is further
investigated with the following tests: To investigate if the poor pressure reconstruction is a result
of inaccuracies in the minimization problems (29) and (31), or if it is due to the inherent inability
of the correction terms to approximate the pressure field, the performance of the exact correction
terms is evaluated (i.e., an “ideal” data-driven correction [29] is considered.). The rationale for this
investigation is that removing the minimization error will provide insight into the ability of the
pressure correction terms to improve the pressure accuracy. In Figure 8, the effect of the addition
of the exact pressure correction terms is displayed. As can be seen in Figure 8, the pressure
corrections have no effect on the dynamical system obtained with the supremizer enrichment. The
plots in Figure 8 show that the approximations H̃b and P̃a are ineffective because the exact terms
τ exactpp1q and τ exactpp2q are also ineffective. We note that, if there is no improvement with the exact
terms, we cannot hope to obtain an improvement with the approximated corrections. This clearly
suggests that the structure of the corrections, rather than the accuracy of the minimization, must
be improved.

We make the following remarks:
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Figure 8: Relative errors of the velocity (a) and pressure (b) for Nu “ Np “ Nsup “ 3. Results with and
without the exact pressure corrections are presented.

• The terms Hb and Pa are linear, whereas the velocity term aTCa is nonlinear. Thus, we
expect the latter to have a more pronounced effect on the pressure and velocity accuracy.
Similarly, we expect the correction terms for aTCa to have a more significant effect on the
velocity and pressure accuracy than the correction terms for Hb and Pa. (We note, however,
that there can be cases at lower Reynolds numbers where the linear correction terms have a
significant effect on results; for instance, in [25] a linear correction term for the viscous term
in the momentum equation is introduced, producing an improvement for ν values larger than
10´3.)

• The supremizer formulation (9) does not present a specific equation for the pressure variable.
As a result, it is not possible to exploit a term exclusively based on the pressure modes
and modal coefficients. For this reason, given the construction strategy of the data-driven
model, there is no way to build a correction that is directly acting upon the pressure reduced
coefficients through the pressure modes. Instead, the only pressure correction terms that can
be included in the supremizer formulation either involve both pressure and velocity coefficients
within the momentum equation, or the velocity and supremizer coefficients in the continuity
equation.

Thus, a different formulation is taken into account in the following section, in order to understand
whether the presence of a specific equation for pressure offers the opportunity to devise a targeted
correction term, which is able to affect the pressure field. The PPE model, which includes a pressure
equation, naturally offers the opportunity to include different specific pressure corrections.

6.5. Analysis of the PPE-ROM without corrections

In this section, the solution of the dynamical system (50) is investigated for the parameters cu “
cD “ cG “ 0, i.e., the standard PPE approach without any correction terms is considered. The
relative velocity and pressure errors are displayed in Figure 9, where a first- and a second-order
time scheme are used (Figure 9(a), (b) and 9(c), (d), respectively).

From Figure 9(a) and (b), one can note that the accuracy increases as the number of modes
increases, as expected. The stability issue exhibited by the supremizer approach and discussed in
section 6.2 is not observed in this case. However, when a second-order time scheme is used, the
results in Figure 9(c) and (d) appear more unstable, especially when a large number of pressure
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Figure 9: Relative errors of the velocity and pressure, for different combinations of number of modes, with
Nu “ Np.

and velocity modes are used in the reduced simulations. The reason for this could be that already
pointed out in section 6.2, i.e., the numerical damping of the time discretizations.

As was the case with the supremizer approach, in the investigation of the PPE approach we are
also interested in the marginally-resolved regime. Thus, most of the numerical tests in this section
are carried out using Nu “ Np “ 3 or Nu “ Np “ 5. The aim of the next sections will be to
evaluate different strategies for the improvement of the pressure accuracy in the PPE framework.
This will involve comparing three different approaches:

(i) the standard PPE method (i.e., without any correction terms);

(ii) the PPE correction terms proposed in this section and presented in section 5;

(iii) the velocity correction terms developed for the supremizer approach (section 6.3).

6.6. Effect of corrections in the PPE-ROM approach

The present section discusses the results obtained with the PPE approach enhanced with different
data-driven corrections. The following studies are carried out:

• a study of the separate and combined effects of different pressure corrections in the pressure
Poisson equation;

• an evaluation of the combined influence of velocity and pressure corrections, comparing the
approaches presented in section 5.3.
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6.6.1 Effect of pressure corrections in the PPE-ROM

In this subsection, the pressure correction terms for τD and τG, presented in sections 5.1 and 5.2,
are introduced. We recall that these corrections, used in the pressure Poisson equation, are based
on the reduced pressure and velocity vectors, respectively. Their separate and combined effects are
evaluated in this section. In particular, the dynamical system (50) is solved considering cu “ 0.
Figure 10 displays the results for the following cases:

• cD “ 0, cG “ 1;

• cD “ 1, cG “ 0, where the quadratic ansatz for τ is computed;

• cD “ cG “ 1, where the corrections are obtained by solving two different optimization prob-
lems for the pressure corrections presented in sections 5.1 and 5.2;

• cD “ cG “ 1, where a unique optimization problem is solved, using an ansatz with a linear
dependence on a and a quadratic dependence on b (section 5.3 Case 1);

• cD “ cG “ 1, in which a unique optimization problem is solved, considering an ansatz with a
quadratic dependence on the vector ab (section 5.3 Case 2).

The plots in Figure 10 show that when only (one or more) pressure corrections are added to the
system, the accuracy of the pressure field approximation improves, while the velocity approximation
accuracy remains unchanged. In addition, the plots suggest that when the system (50) is solved
including both pressure corrections at the same time, there is a significant improvement in the
pressure accuracy. Finally, Figure 10(b) shows that the results achieved using the method presented
in Case 2 (section 5.3) are slightly better than the results achieved following the method in Case 1.

An important observation is that the pressure corrections tested in the PPE-ROM approach
significantly improve the pressure results, whereas in the SUP-ROM approach the results are un-
changed when pressure corrections are added to the reduced order system (section 6.4). The con-
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Figure 10: Relative errors of the velocity (a) and pressure (b), considering Nu “ Np “ 3. Results in
the following cases are displayed: without corrections ( ); with the correction τD ( );
with the correction τG ( ); and with both τD and τG found from two disjoint least squares
problems ( ), in Cases 1 and 2 of section 5.3 ( and , respectively). Results are
compared with the reconstruction errors, computed from the projected fields ( ).

clusion of the present part is that both pressure corrections added in the PPE-ROM produce a
significant improvement of the pressure accuracy.
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6.6.2 Combined effect of velocity and pressure corrections in the PPE-ROM

The results in the previous subsection confirmed that adding data-driven corrections in the pressure
Poisson equation leads to improvements in the ROM pressure accuracy. Next, we try to understand
if combining the corrections in the Poisson equation and momentum equation yields additional
gains. Thus, in this section, the velocity correction term τu is introduced in system (50). Figure
11 displays results for the following cases:

• cu “ cD “ 1, cG “ 0;

• cu “ cG “ 1, cD “ 0;

• cu “ cG “ cD “ 1, where the method presented in (5.3) (Case 3) is used and a unique least
squares problem is solved to find all correction terms.
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Figure 11: Relative errors of the velocity (a) and pressure (b), considering Nu “ Np “ 3. Results in
the following cases are displayed: without corrections ( ); with the velocity correction τu

( ); with the corrections τu and τD ( ); and with τu and τG ( ), with τu, τD,
and τG in Case 3 of section 5.3 ( ). Results are compared with the reconstruction errors,
computed from the projected fields ( ).

Figure 11 displays the results obtained when the velocity correction is combined with one or both
pressure correction terms. As expected, the left plot confirms that the presence of data-driven
velocity correction terms improves the ROM velocity approximation. In addition, the right diagram
suggests that, as was the case for the supremizer approach, adding a velocity correction term in the
momentum equation leads to more accurate pressure results. These accuracy gains are consistent
with the gains obtained by using the pressure correction terms in the pressure Poisson equation.
As a result, errors obtained when both the velocity and the pressure corrections are active are also
very close to the reconstruction error for the velocity field — which is the best result we can obtain
— as can be seen in the left diagram in Figure 11. In Figure 12, the results obtained combining
the momentum equation correction with all the Poisson corrections forms developed are shown.
In particular, the corrections proposed in section 5.3 are compared; those data-driven terms are
built from the first 2 seconds of the online simulation and in Figure 12 the results for 8 seconds of
simulation are displayed. All the methods produce a pressure reduced solution that is very close
to the projected pressure solution and the results of all methods look similar. However, the most
accurate method is the one presented in section 5.3 Case 3.

The following conclusions can be drawn from the analysis of the correction terms in the PPE-
ROM approach:
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Figure 12: Relative errors of the velocity (a) and pressure (b), considering Nu “ Np “ 3. Results in
the following cases are displayed: without corrections ( ); with τu, τD, and τG disjoint
( ); and with the velocity and pressure corrections in Cases 1, 2, and 3 of section 5.3
( , , and , respectively). Results are compared with the reconstruction errors
( ).

• the velocity correction reduces the error for both the velocity and the pressure fields, whereas
the pressure corrections added in the Poisson equation only improve the pressure field;

• the most significant improvement in the accuracy of the reduced pressure field is reached when
all data-driven corrections are added to the reduced system.

6.7. Flow field qualitative inspection

The effect of the novel correction terms in the reduced formulations is also examined through the
observation of contour plots of the velocity and pressure fields obtained for both SUP-ROM and
PPE-ROM approaches.

The pressure and the velocity magnitude fields are displayed in Figures 13 and 14, respectively,
for different SUP-ROM and PPE-ROM simulations. The corrections used are the constrained
velocity correction examined in section 4.2 for the SUP-ROM, and the joint velocity and pressure
correction presented in section 5.3 (Case 3). The second-order time integration scheme is used to
generate the plots.

The POD is performed on the time interval r79.992, 99.992s seconds and the reduced order
systems (49) and (50) are solved on the time interval r79.992, 87.992s seconds, since the maximum
length of the online simulations carried out is 8 seconds. All the plots display results at the final
time step of online simulations, which is second 87.992.

In order to obtain the reduced fields, the reduced order systems with Nu “ Np “ 5, and
Nsup “ 5 for the supremizer approach, are solved. The reduced fields are computed from the
vectors of coefficients a and b, and the POD modes pφiq

Nu`Nsup

i“1 and pχiq
Np

i“1, as in (8).
The contour plots confirm that there is a significant difference between the fields computed with

the standard ROMs and those including the data-driven terms. Specifically, the fields in Figures
13 and 14(c) and (d) are closer to the full order fields, especially in the region around the cylinder.
We emphasize that the improvement of the error near the circular cylinder is an important gain as
it leads to a better reconstruction of the ROM lift coefficient.
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Figure 13: Representation of the pressure field for the FOM, SUP-ROM, and PPE-ROM simulations with

and without the correction terms.

6.8. Tests with different time windows

In subsections 6.2, 6.3, 6.6, and 6.7, we considered the following time windows: Toffline “ 20 s and
Tcorrection “ 2 s to construct the POD basis and the correction terms, respectively; 2 s to test the
ROMs in the reconstructive regime; and 8 s to test the ROMs in the predictive regime. However,
a single test considering only one time window to build the POD basis does not guarantee the
effectiveness of data-driven corrections. Therefore, in this section we test our method on different
datasets.

We note that, for periodic and quasi-periodic flows, the time windows used for collecting snap-
shots (Toffline) and for building the correction terms (Tcorrection) are generally chosen according to
the Strouhal number, i.e., the time period of vortex shedding. In Table 2 we summarize the tests
presented in this subsection, where the time windows are related to the flow period P „ 0,89 s.
In our numerical investigation, we apply the unconstrained and constrained correction terms for
the SUP-ROM formulation, and both the velocity and the pressure correction in the PPE-ROM
approach, following the ansatz in Case 3 in subsection 5.3. We also emphasize that tests (b) and
(d) in Table 2 investigate the predictive accuracy of the numerical methods. Specifically, in tests
(b) and (d) we test the new methods on time intervals that are longer than the time intervals used
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Figure 14: Representation of the velocity magnitude field for the FOM, SUP-ROM, and PPE-ROM sim-

ulations with and without the correction terms.

to construct the POD basis and correction terms.
From Figures 15, 16, 17, 18, the following conclusions can be drawn:

• The data-driven techniques proposed in the paper lead to improvements in the results, es-
pecially for the DD-PPE-ROM formulation and for the constrained DD-SUP-ROM, when
considering different time intervals for the construction of the POD basis, construction of the
correction terms, and ROM testing.

• The constrained correction in the supremizer approach outperforms the unconstrained one
(Figures 15(a) and 16(a)). In particular, the unconstrained correction is less accurate than
the standard SUP-ROM, especially outside the time window used to compute the correction
terms (i.e., in the time interval rP, 2P s; see Figure 15(a)) and outside the time window used
to build the POD basis (i.e., in the time interval r2P, 8P s; see Figure 16(a)).

• From Figure 17, we can conclude that a time window
“

0, P2
‰

does not provide enough infor-
mation to build the data-driven corrections, since the predictive accuracy, especially for the
pressure field, decreases in the interval

“

P
2 , P

‰

. These results suggest that a time interval of at
least one period is necessary to build the data-driven corrections in periodic and quasi-periodic
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flows.

• The predictive analysis with respect to the POD time interval (Figures 16 and 18) shows that
the data-driven formulation leads to improvements with respect to the standard approaches
both in the SUP-ROM (when considering the constrained correction) and in the PPE-ROM.

Remark 6.1 The proposed strategy significantly increases the standard approach accuracy in the
predictive regime. We emphasize, however, that the test case used in our numerical investigation is
a quasi-periodic flow. Thus, higher Reynolds number test cases need to be carefully analyzed.

Tests Corresponding
Figure

Toffline Tcorrection Tonline

(a) 15 1,78 s „ 2P 0,89 s „ P 1,78 s „ 2P

(b) 16 1,78 s „ 2P 0,89 s „ P 7,12 s „ 8P

(c) 17 0,89 s „ P 0,45 s „ P
2 0,89 s „ P

(d) 18 0,89 s „ P 0,89 s „ P 3,56 s „ 4P

Table 2: Time windows considered in the test cases of section 6.8.
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Figure 15: Relative errors of velocity and pressure for SUP-ROM (Nu “ Nsup “ Np “ 5 modes) and
PPE-ROM (Nu “ Np “ 5), considering Toffline “ 2P .
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Figure 16: Relative errors of velocity and pressure for SUP-ROM (Nu “ Nsup “ Np “ 5 modes) and
PPE-ROM (Nu “ Np “ 5) considering a time window larger than the offline time interval,
i.e., Tonline “ 8P and Toffline “ 2P .
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Figure 17: Relative errors of velocity and pressure for SUP-ROM (Nu “ Nsup “ Np “ 5 modes) and
PPE-ROM (Nu “ Np “ 5), considering Toffline “ P .
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Figure 18: Relative errors of velocity and pressure for SUP-ROM (Nu “ Nsup “ Np “ 5 modes) and
PPE-ROM (Nu “ Np “ 5), considering a time window larger than the offline time interval,
i.e., Tonline “ 4P and Toffline “ P .
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7. Conclusions and Outlook

One popular way to increase the accuracy of Galerkin ROMs in the under-resolved or marginally-
resolved regimes is adding closure or correction terms, respectively. In this paper, we investigated
data-driven modeling of these closure and correction terms. Specifically, we leveraged the data-
driven variational multiscale ROM (DD-VMS-ROM) framework to construct for the first time
closure and correction terms that significantly increase the pressure accuracy. To this end, in the
offline stage, we postulate an ansatz (i.e., a model form) for the closure and correction terms,
and then solve a least squares problem to determine the ansatz parameters that yield the best fit
between the exact (i.e., computed with FOM data) closure and correction terms and the ansatz. We
emphasize that developing accurate ROM pressure models is critical, e.g., in computing important
engineering quantities (e.g., lift and drag) or when the snapshots used to construct the ROM basis
are not weakly divergence-free (e.g., when FOMs enforce the continuity equation weakly).

In our numerical investigation of the novel pressure DD-VMS-ROM, we considered the two-
dimensional flow past a circular cylinder at Re “ 50,000 in the marginally-resolved regime. We also
considered several model configurations.

First, we tested two fundamentally different ROM pressure formulations:
(i) The supremizer ROM (SUP-ROM), in which additional (supremizer) modes for the velocity

approximation are used in order to satisfy the inf-sup condition.
(ii) The pressure Poisson equation (PPE-ROM), in which the pressure approximation is deter-

mined by solving a Poisson equation instead of the continuity equation.
In the SUP-ROM investigation, the introduction of the velocity correction improves the approx-

imations of the velocity and pressure fields with respect to the standard SUP-ROM, as can be seen
in section 6.3. However, the improvement of the approximation of the reduced pressure field is not
as significant as that observed for the reduced velocity field.

In order to further improve the pressure accuracy, pressure correction terms are proposed and
added to the reduced system (section 6.4). These terms do not appear to change the solution in a
significant way and their effect is negligible with respect to the one of the velocity correction term.
One possible reason for this fact is that the SUP-ROM formulation does not include a dedicated
pressure equation, in which a correction term can directly affect the pressure field.

Therefore, a different formulation, the PPE-ROM, is used, in which the Poisson pressure equa-
tion is employed. This formulation allows for the introduction of data-driven pressure correction
terms, which leads to a significant improvement of the reduced pressure accuracy, as can be seen in
section 6.6.

Moreover, the proposed method is certified using different time intervals to collect data for the
POD and for the correction terms (subsection 6.8). We also study the existence of a correlation
between the Strouhal number and the selection of the time intervals. This analysis leads to the
conclusion that one flow period provides enough information to build the data-driven corrections.

The methods developed in this paper can be applied and extended in different research directions.
The pressure data-driven corrections developed in this work, when introduced in the SUP-ROM
formulation, have not significantly improved the results of the standard formulation in terms of
pressure accuracy. However, the supremizer approach, first introduced in [7] and explored in [53],
has been a successful technique for the stabilization of the POD-Galerkin ROMs. Therefore, further
data-driven terms including the reduced pressure coefficients should be explored and tested to
identify an effective pressure data-driven correction for the SUP-ROM formulation.

Moreover, the data-driven techniques developed in this paper are embedded in a fluid dynamics
framework that does not include any turbulence modeling. In [18], instead, turbulence modelling is
studied by including other data-driven terms in the reduced formulation. The present work can be
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extended by comparing and combining the two data-driven techniques in the reduced formulation.
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