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Abstract

In this study, we explore the use of SIMP topology optimization and the phase field approach to fracture
to maximize fracture resistance in functionally graded materials (FGMs) in the presence of a second phase.
We derive a mathematical formulation using a consistent derivation of the second law of thermodynamics to
maximize the external work under the constraints of volume fraction. We also demonstrate that, for every
distribution of the density function, the topology optimization problem Γ−Converges. We highlight the
significant difference between the fracture resistance in FGMs and homogeneous materials. We investigate
the crack propagation path along with the optimum topology for the FGM under different grading profiles,
elastic mismatch ratio, strength mismatch ratio, and inclusion mismatch ratio. We present several numerical
examples to demonstrate the predictive capability of the presented model. A comparison between the initial
design guess and the final optimized design is also provided for each example, to further assess the model’s
capability.

Keywords: A.Topology Optimisation, B.Phase-field Method, C.Functionally Graded Materials, D.Finite
Element Method, E. Fracture Resistance

1. Introduction

Functionally Graded Materials (FGMs) have gained notable popularity in the engineering community
and industry [1] due to their ability to prevent interfacial stress concentration and improve fracture resistance
[2]. FGMs are composed of two materials with spatial composition, which means that the material properties
vary continuously within the specimen domain, typically by grading between two homogeneous constituents.
This leads to a modified stress field and stress intensity factors, ultimately affecting the behavior of cracks
in the material [3].

The crack propagation behavior in FGMs is fundamentally different from that in homogeneous materials
[4, 5] and, therefore, can be especially complex. Numerous factors affect crack growth behavior, such as elas-
tic mismatch [6], strength variations [7], geometry, residual stresses, grading laws, and more. Additionally,
studies have shown that the crack propagation behavior can depend on the orientation of the crack relative
to the grading profile [7–10]. Cracks oriented perpendicular to the grading profile experience asymmetric
loading at the crack tip, which can lead to changes in crack propagation direction and induce mode mixity.
On the other hand, grading parallel to the crack leads to straight propagation [7].
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With recent advancements in 3D printing and additive manufacturing [11], it is possible to obtain on-
demand geometries of multi-materials with desired structures. This has led to the exploration of new
possibilities in the design of composites with enhanced functionalities, such as increased fracture resistance,
suitable for applications in aircraft, automotive, and biomechanical engineering, among many others. Com-
bining the advantages of 3D printing and additive manufacturing, topology optimization (TO) has become
of extreme importance. TO has been widely studied and employed in both academic research and industrial
applications since its invention [12].

Within this context, TO can be mainly categorized into three categories based on the optimization: 1)
Solid Isotropic Material with Penalization (SIMP) [13–15], 2) level set method [16–19], and 3) evolutionary
structural optimization (ESO) [20]. For a detailed review, see [16, 21–24]. TO can also be categorized
based on the objective function, which includes 1) Minimization of compliance [22, 25–29], 2) Minimization
of weight/volume [30], 3) Minimization of stress/energy [31–33], 3) position and shape of stiff inclusions
[34–37] and 4) Maximization of fracture resistance [38–43].

The phase field method has recently advanced as an alternative tool for understanding nonlinear phenom-
ena associated with cracks. Energy-based considerations in the phase field approach offer several advantages,
such as the ability to predict crack nucleation and propagation, crack branching, and handling multiple cracks
without any ad hoc methods [44]. This approach has been applied to brittle materials [45], ductile materi-
als [46–48], composites [49–56], hydrogen-assisted cracking [57, 58], fatigue [59–62], and thermo-mechanical
loadings [63–68]. The extensions of these models to functionally graded materials can be seen in [66, 69, 70].
For a detailed review of the phase field method, see [71].

TO has been employed in conjunction with the phase field to leverage its advantages. Specifically, the
work in [34, 35, 72] extends TO to enhance fracture resistance in composites by considering both interfacial
and bulk fracture. The analysis of full fracture initiation and propagation within the structure until failure
[73] with BESO. In the case of composites, an extension to SIMP is presented in [14, 37, 74]. The optimization
problem is formulated to minimize the total volume or volume and fracture energy while ensuring the
fulfillment of the fracture energy dissipation constraint [75, 76]. Furthermore, a level set method based on
TO is proposed for enhancing the brittle fracture resistance of two-phase composite materials [16, 17, 77].
Within the context of phase field, TO optimization has been used to find the optimum location of particles
[78]. Recently, a solid mathematical foundation for maximizing fracture resistance in both ductile and brittle
materials through the level set approach has been laid out in [79].

This work aims to achieve two objectives. The first objective is to present a mathematical foundation for
maximizing fracture resistance within the context of the SIMP Phase field approach. It is demonstrated that
the phase field formulation always Γ−converges for every distribution of the density function. The second
objective is to apply the aforementioned formulation to functionally graded materials in order to increase
their fracture resistance as a matrix and the third stiffer material as a second phase material (inclusion).
Furthermore, the compliance and fracture resistance variations due to the topology optimization problem
are compared to their homogenous surrogates to evaluate the potential of developing new materials with
increased fracture resistance (as well as compliance) in this direction while taking into account volume
constraints. It should be noted that the objective of this study is not to minimize the weight of the design
but to obtain an optimal design under volume constraints in the case of compliance minimization and to
modify the topology of the inclusion phase under the volume constraint.

The article is structured as follows. Section 2 presents a systematic mathematical formulation of topology
optimization. Section 2.1 delves into the phase field formulation and its associated numerical methods. In
Section 2.5, we discuss the Γ−Convergence of the problem. The Numerical Examples are divided into
two parts. The first part (Section 3.1) explores the minimization of compliance for FGM using several
representative examples without the phase field approach. The second part (Section 4) focuses on maximizing
fracture resistance using the phase field approach with two representative examples. We consider a plate
with a notch to investigate the effect of various factors on the topology optimization problem, including
crack tips, elastic mismatch, strength mismatch, and inclusion ratio. An asymmetrical notch is used to
evaluate the effect of asymmetry, the influence of grading, and the effect of grading on the crack path on the
topology optimization problem. Both numerical examples are compared to their homogeneous surrogates
to show the differences. Additionally, we evaluate the performance and capability of the proposed model in
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the presence of an initial guess by considering several initial designs.

2. Mathematical Formulation

The objective of this section is to modify the topology under the constraint of volume fraction of a
second phase material such that, for a prescribed load, mechanical work is maximised. For this, let Ω ⊂
Rndim (ndim = 1, 2, 3) be a body in ndim Euclidean space Rndim whose delimiting boundary is defined as
∂Ω ⊂ Rndim−1. Let Γ ⊂ Rndim−1 be a crack set. The kinematic displacement of the body is characterised
as a vector field u(X, t) : Ω × [0, t] → Rndim for all x ∈ Ω, and infinitesimal strain tensor ε(x, t) : Ω ×
[0, t] → Rndim × Rndim defined as a symmetric gradient of the displacement field u, i.e ε(x) := ∇su(x),

with ∇su =
∇u+∇uT

2
. The external boundary is split into two disjoint sets, ∂ΩE and ∂ΩF such that

∂ΩE ∪ ∂ΩF = ∂Ω, and ∂ΩE ∩ ∂ΩF = ∅. Here, an external load is applied via prescribed displacement ū(x)
for all x ∈ ∂ΩE .

Here E and F are described as essential and free boundaries respectively. The external work P(u(x))
due to the applied loading ū(x) takes the form

P(u(x)) :=

∫
Ω

fv · ūdV, (1)

where fv : Ω → Rndim is the body force/external force response for all x ∈ Ω, due to the load ū, in
x ∈ ∂ΩE .

Define a scalar damage variable d : Ω → [0, 1] such that d = 0 represents a intact material state, whereas
d = 1 represents a fully broken state. Define a continuously differentiable density function ρ(x) : Ω → [0, 1]
associated with inclusion phase, such that ρ(x) = 1 denotes inclusion phase and ρ(x) = 0 denotes matrix
phase for all x ∈ Ω. Based on the existence of density function ρ(x), the interior of the open set Ω is
subdivided into three parts, namely (i) Ωinc with ρ(x) = 1 for all x ∈ Ωinc, (ii)Ωmat with ρ(x) = 0 for
all x ∈ Ωmat, and (iii) Ωtrans with ρ(x) ∈ (0, 1) for all x ∈ Ωtrans, such that the union of these partitions
make up the interior, and the domain do not overlap. This can be written as Ωmat ∪Ωinc ∪Ωtrans = Ω and
Ωmat ∩ Ωinc ∩ Ωtrans = ∅.

The variational approach to fracture is seen as regularisation of the Griffith’s energy potential. Within
this context, the energy within the system can be seen as a competition between elastic energy Ψu(u) created
by external load and surface energy/ crack energy ΨS created due to creation of new surface. In this context,
the quasi-static displacement u and the crack set Γ at any given discrete time instance t ∈ [0, T ] can be
determined as the following minimisation problem

Π(u,Γ) = Ψu(u) + ΨS(Γ)− P(u(x)), (2)

(ut,Γt) = argminΠ(u,Γ)S :=

∫
Ω\Γ

Ψ(ε) dV +GCHndim−1(Γ ∩ Ω\∂Ωt), (3)

with S := [u = ū on ∂Ωu, Γt ⊃ Γt−1] , Hndim−1(Γ) is the Hausdorff (ndim − 1) dimensional measure of
crack set Γ, GC is the critical energy release rate that depends on fracture toughness, and Ψ(ε) is the elastic
energy density which can be defined using constitutive relationship via strain field ε(x).

Due to the existence of density function, owing to topology optimisation framework, specifically SIMP
approach, every material property is a function of density function. i.e
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E(ρ) = ρ(x)pEinc + (1− ρ(x))pEmat, (4a)

GC(ρ) = ρ(x)pGC,inc + (1− ρ(x))pGC,mat, (4b)

Ψu(ρ) = ρ(x)pΨu,inc + (1− ρ(x))pΨu,mat, (4c)

(4d)

where Einc, GC,inc are Youngs’ modulus and energy release rate for the inclusion phase and Emat, GC,mat

are Youngs’ modulus and energy release rate for the matrix phase. In general, Ψu,inc and Ψu,mat are the
elastic energy associated with the inclusion and matrix phase respectively.

Notice that for all x ∈ Ωinc, each function in Eq. (4) F (ρ) = Finc, and for all x ∈ Ωmat, the function
F (ρ) = Fmat, and for x ∈ Ωtrans, the functions in Eq. (4) are linear/non-linear (depends on p) combinations
of the properties of matrix and inclusion phase.

Hence, the total energy function is now density-dependent. Within the context of FGM, it is evident
that the material properties exhibit a spatial variation within the specimen domain Ω. Assuming that the
FGM is added only in the matrix phase, consider a grading profile Vf = Vf (x), for all x ∈ Ω|Ωinc, all
the material properties can be expressed as spatial variation, i.e Fmat = Fmat(x, Vf ) = Fmat(x) for each
material property F . Accomodating the functionally graded materials in the Eq. (4) leads to

E(ρ,x) = ρ(x)pEinc + (1− ρ(x))pEmat(x), (5a)

GC(ρ,x) = ρ(x)pGC,inc + (1− ρ(x))pGC,mat(x), (5b)

Ψu(ρ,x) = ρ(x)pΨu,inc + (1− ρ(x))pΨu,mat(x). (5c)

(5d)

Here, the functions Fmat(x) is defined using volume fraction of the functionally graded materials. With
this at hand, the total Griffith’s energy in Eq. (3) can be defined as

Π(u,Γ,x, ρ) :=

∫
Ω\Γ

Ψ(ε(x, ρ)) dV +GC(x, ρ)Hndim−1(Γ ∩ Ω\∂Ωt). (6)

For prescribed displacement load, maximizing the fracture resistance is equivalent to maximizing the
mechanical work. For the applied load ū on ∂ΩE whose external response is Fext(t), define the total
mechanical work J(ρ,u,Γ)

J(ρ,u,Γ) =

∫ t

0

Fext(s) · ū(s)ds. (7)

Then for each t ∈ [0, T ], with T corresponds to maximum loading time. i.e for ū(T ) = ūmax, the topology
optimisation problem can be described as

Maximize: J(ρ,u,Γ), (8a)

Subjected to: argmin
S

Π(u,Γ,x, ρ) for each t ∈ [0, T ] (8b)

f inc =
V (Ωinc)

V (Ωmat)
≤ C

100
. (8c)

4



with S := [u = ū on ∂ΩE , Γt ⊃ Γt−1 , 0 ≤ ρ(x) ≤ 1], for some constant C. Here V (Ωinc) is the volume
defined as

V (Ω) =

∫
Ω

ρ(x)dx. (9)

Notice that mechanical work is defined as a time integral, whereas energy minimisation problem is defined
in a quasi-static setting. Hence, the energy minimisation problem has to be solved at every time step. Also,
note that for this reason, the minimisation and the maximisation problems are not interchangeable.

Under the absence of crack Γ, the mechanical problem presented in Eq. (58) resembles that of the
optimisation problem maximizing work with the inclusion phase.

2.1. Phase-field approximation

Since, Γ in the Eq. (58) is unknown a priori, numerical approximation of the function can be treated as
Ambrosio-Torterelli elliptical regularization of the free discontinuity problem [80]. In this framework, the
crack set Γ is replaced by a (Hndim−1, ndim − 1) rectifiable borel jump set of u, S̄(u). Then a sequence
of all C1 hyper surfaces are used to cover the jump set S̄(u) by introducing a scalar damage variable d
(phase-field), such that the surface energy in Eq. (58) is approximated as

ΨS(Γ) =

∫
Γ

GC(ρ,x)ds = GC(ρ,x)Hndim−1(Γ ∩ Ω\∂Ωt) ≈
∫
Ω

GC

4cw
γ(d; ∇d) dV, (10)

where, γ(d; ∇d) is the crack surface energy density function defined as

γ(d; ∇d) :=
α(d)

ℓ
+ ℓ |∇d|2 . (11)

Here, cw :=
∫ s

0

√
α(s)ds is a normalizing parameter. α(d) is a continuous monotonic function referred

as geometric crack function that determines the distribution of phase-field model. ℓ ∈ R+ is characteristic
length scale that governs the width of the diffusive crack. The surface energy density function is equipped
with a non-local part ℓ |∇d|2 that distinguish phase-field from the local damage theories.

Due to the phase-field approximation of Γ by d, the elastic energy is degraded using an energetic degra-
dation function g(d) : [0, 1] → [1, 0] such that g(0) = 1, g(1) = 0, dg

dd < 0. i.e

Ψu(u, d,x, ρ) =

∫
Ω

g(d)Ψ(ε(u),x, ρ) dV, (12)

Then, the total regularised energy functional of the solid in Eq. (3) takes the form

Πℓ(u, d,x, ρ) =

∫
Ω

[g(d)] Ψ(ε,x, ρ) dV +

∫
Ω

GC(x, ρ)

4cw

[
α(d)

ℓ
+ ℓ |∇d|2

]
dV−

∫
Ω

fv · ū dV. (13)

The thermodynamic consistency of the total energies can be ensured by considering rate dissipation of
potential density function leading to Clausius-Duhem inequality

Ḋ = [S− ∂εΠℓ] : ε̇− ∂dΠℓ : ḋ ≥ 0. (14)

Expanding the second term ∂dΠℓ : ḋ leads to
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∂dΠ : ḋ =

[
−g′(d)

∂Ψ(ε,x, ρ)

∂g
−GC

[
∂γ

∂d
−∇ · ∂γ

∂∇d

]]
: ḋ.

In order for the Eq. (14) to hold, naturally −g′(d)
∂Ψ(ε,x, ρ)

∂g
≥ 0, ḋ ≥ 0, and fd(d,∇d) ≥ 0 with

fd(d,∇d) =

[
−g′(d)

∂Ψ(ε,x, ρ)

∂g
−GC

[
∂γ

∂d
−∇ · ∂γ

∂∇d

]]
: ḋ. (15)

The choice of functions g(d), α(d) and Ψ(ε,x, ρ) leads to the first order stability condition or often
refereed to as KKT condition,

ḋ ≥ 0; fd(d,∆d) ≥ 0; fd(d,∆d) · ḋ = 0. (16)

Here, −g′(d)
∂Ψ(ε,x, ρ)

∂g
is coined as energetic driving force. The choice of functions can be described as

1. The geometric crack density function α(d) = d2 is chosen so that phase-field problem renders linear
within the staggered scheme.

2. The energetic degradation function g(d) degrades the equilibrium states satisfying g(d) : [0, 1] → [1, 0]
takes the form

g(d) = (1− d)2. (17)

3. The stored energy functional that describes the equilibrium state of the solid under load takes the
form

g(d)Ψ(ε,x, ρ) = g(d)Ψ+
0 (ε,x, ρ) + Ψ−

0 (ε,x, ρ), (18)

with

Ψ±
0 (ε(x, ρ)) :=

1

2
λ⟨tr(ε(x, ρ))⟩2± + µε(x, ρ)± : ε(x, ρ)±, (19)

with λ and µ are standard lame parameter. Due to the polar decomposition theorem, strain tensor
can be split written in terms of principle strains (eigenvalues) εn and the corresponding eigenvector
pn (for n = 1, 2, 3)

ε =

3∑
n=1

εnpn ⊗ pn = ε+ + ε−, (20)

with positive and negative counterparts taking the form

ε+ =

3∑
n=1

⟨εn⟩pn ⊗ pn, ε− =

3∑
n=1

−⟨−εn⟩pn ⊗ pn, (21)

with ⟨εn⟩± =
1

2
(ε± |ε|).

6



The solution to the total energy functional in Eq. (13) can be obtained by solving it as minimization
problem:

Find, (u∗, d∗) such that

(u∗, d∗) = argmin
S

Πl(u, d,x, ρ), (22)

with S := [u = ū on ∂ΩE , ḋ ≥ 0] for a given density ρ(x) distribution. Naturally, the set (u∗, d∗) in Eq.
(22) can be obtained by taking the first variation of the total energy functional assuming enough regularity
of the involved fields. For the admissible test functions δu ∈ Bu, and δd ∈ Bd, the first variation leads to
the following residual

Ru(u, d,x, ρ, δu) =

∫
B0

g(d) [∂εΨ(ε,x, ρ) : δε(x, ρ)] dΩ−
∫
Ω

fv · δu dV = 0, (23)

for all δu ∈ Bu with Bu = {δu ∈ H1(Ω), δu = 0 on ∂ΩE}. The residual associated with the phase field
problem takes the form

Rd(u, d,x, ρ, δd) =

∫
B0

GC

[
d

ℓ
δd+ ℓ∇d · ∇δd

]
dΩ−

∫
B0

2(1− d)Ψ(u,x, ρ)δd dΩ = 0, (24)

for all δd ∈ Bu, with Bd = {δd ∈ H1(Ω)
∣∣∣δd ≥ 0 ∀ X ∈ Ω}. With this, the topology optimisation problem

in Eq. (58) can be modified as

Maximize: J(ρ,u, d), (25a)

Subjected to: Ru = Rd = 0 for each t ∈ [0, T ] (25b)

f inc =
V (Ωinc)

V (Ωmat)
≤ C

100
. (25c)

The residuals Ru and Rd can be solved using the well known finite element method.

2.2. Finite Element Discretization

Define discretization of the functional space Ω with ne non-overlapping elements Ω =≈
⋃ne

e=1 Ω(e) such
that partition of unity holds. The discrete position is interpolated via standard trilinear shape function
N(ξ) in local reference and as

X ≈
8∑

I=1

N I(ξ)XI = N(ξ)X̃,

for global vector X̃. The interpolation of the fields (u, d) and their respective variations (δu, δd) takes
the form

u ≈ N(ξ)d; d ≈ N(ξ)d̃; δu ≈ N(ξ)δd; δd ≈ N(ξ)δd̃.

The strain tensor ε and the gradient of the phase-field ∇xd are interpolated as

εu ≈ Bud; ∇xd ≈ Bd(d)d̃,
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where Bu and Bd are suitable gradient operators of the interpolation matrix N. The discretization of
the residuals results in the following discrete system of equations

[
Ku 0
0 Kd̃

] [
d
d

]
=

[
Fu

Fd

]
, (26)

with

Ku =

∫
Ω

g(d)BuTCBu dΩ; Kd̃ =

∫
B0

[
GC

ℓ
H
]
NTN dΩ +

∫
B0

GCℓB
dTBd dΩ, (27)

where C is the undamaged elastic stiffness matrix, whereas the residual force vectors takes the form

Fu =

∫
Ω

NT · fv dΩ; Fd =

∫
Ω

NTH dΩ. (28)

2.3. Discrete Topology Optimisation

For each element density ρe(x) = ρ1, ρ2, . . . ρne
, the discrete optimisation problem takes the form

Maximize: J∆u(ρ,u, d),

(29a)

Subjected to: Ru = Rd = 0, (Kn
u · dn = Fn

u, Kn
d · dn = Fn

d) for each n = 1, 2, .., nload

(29b)

with f inc =

∑Ne

e=1 ρeVe∑Ne

e=1 Ve

.

(29c)

for each 0 ≤ ρe ≤ 1, for each element e = 1, . . . Ne. Here, the superscript n refers to the nth iteration with
nload. Ve is the volume of the eth element. The external load function J∆u in Eq. (29) can be approximated
as

J∆u =

Nload∑
n=1

∆Ju =
1

2

Nload∑
n=1

(Fn
ext + Fn−1

ext )T∆un, (30)

where Fext is the external load response at nth step and ∆un is the prescribed load increment at load
step n.

2.4. Sensitivity Analysis

In order to solve the optimisation problem in Eq. (29), the sensitivity of the objective function J(ρ,u, d)

with respect to the design variable ρ(x),
∂J

∂ρ
must be determined. The sensitivity analysis is carried out

using adjoint method via introduction of a Lagrangian

J∆u =
1

2

Nload∑
n=1

(Fn
ext + Fn−1

ext )T∆un + (λn
1 )

TRn
u + (λn

2 )
TRn−1

u + (λn
3 )

TRn
d + (λn

4 )
TRn−1

d , (31)
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where Ru and Rd are residuals as in Eqs. (23), (24) and superscript n and (n − 1) represents the load
increments. Moreover Rndim ∋ λi for i = 1, 2, 3, 4 are Lagrangian multipliers.

Naturally, the sensitivity of the objective function J with respect to design variable ρe(x) at elemental
level takes the form

∂J

∂ρe(x)
≈ 1

2

Nload∑
n=1

[
∂(Fn

u + Fn−1
u )T

∂ρe
∆un + (λn

1 )
T ∂Rn

u

∂ρe
+ (λn

2 )
T ∂Rn−1

u

∂ρe
+ (λn

3 )
T ∂Rn

d

∂ρe
+ (λn

4 )
T ∂Rn−1

d

∂ρe

]
. (32)

The derivatives of the residuals at the equilibrium takes the form

∂Rm
u

∂ρe
=

∂Fm
u

∂ρe
− ∂Km

u

∂ρe
· um −Km

u · ∂u
m

∂ρe
, (33)

∂Rm
d

∂ρe
=

∂Fm
d

∂ρe
− ∂Km

d

∂ρe
· dm −Km

d · ∂d
m

∂ρe
. (34)

Also, notice that due to external boundary conditions,

∂um

∂ρe
=

0, for all x ∈ ∂ΩE

∂um
F

∂ρe
, otherwise

, (35)

∂Fm
u

∂ρe
=


∂Fm

u,E

∂ρe
, for all x ∈ ∂ΩE

0, otherwise
. (36)

Hence,

∂Fm
u ·∆um

∂ρe
=

∂Fm
u,E

∂ρe
∆um

E + Fm
u,F

∂∆um
F

∂ρe
=

∂Fm
u,E

∂ρe
∆um

E . (37)

Now, with this at hand, the total work takes the form

αe =
∂J

∂ρe(x)
=

1

2

Nload∑
n=1

∂Fn
u,E

∂ρe
(∆un

E + λn
1,E)

T +
∂Fn−1

u,E

∂ρe
(∆un

E + λn
2,E)

T + (λn
1 )

T

(
∂Kn

u

∂ρe
un +Kn

u

∂un

∂ρe

)
− (λn

2 )
T

(
∂Kn−1

u

∂ρe
un−1 +Kn−1

u

∂un−1

∂ρe

)
− (λn

3 )
T

(
∂Kn

d

∂ρe
dn +Kn

d

∂dn

∂ρe

)
− (λn

4 )
T

(
∂Kn−1

d

∂ρe
dn−1 +Kn−1

d

∂dn−1

∂ρe

)
.

(38)

Set λ1,E = −∆un
E and λ2,E = −∆un

E to eliminate the terms involving
∂un

∂ρe
, the term (λiKu) can be

split into λiKu = λiEKu,FE + λiFKu,FF . Then, choosing λ1,F = (Kn
u,FF )

−1Kn
u,FE∆un

E and λ2,F =

(Kn−1
u,FF )

−1Kn−1
u,FE∆un−1

E , λ3 = λ4 = 0 leads to the following final objective derivative function.

αe = −1

2

Nload∑
n=1

{
(λn

1 )
T ∂Kn

u

∂ρe
un + (λn

2 )
T ∂Kn−1

u

∂ρe
un−1

}
. (39)
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Notice that, due to the choice of the function J defined in terms of mechanical work, the Lagrangian
multipliers associated with phase-field, i.e λ3 and λ4 are null. In order to include the effect of the Phase-field
variable, the objective function can be reformulated as

J̃∆u =
1

2

Nload∑
n=1

{
(Fn

u + Fn−1
u )T∆un + (Fn

d + Fn−1
d )T∆dn

}
, (40)

where sensitivity leads to the following final objective derivative function

α̃e =
∂J̃

∂ρe(x)
= −1

2

Nload∑
n=1

{
(λn

1 )
T ∂Kn

u

∂ρe
un + (λn

2 )
T ∂Kn−1

u

∂ρe
un−1 + (λn

3 )
T ∂Kn

d

∂ρe
dn + (λn

4 )
T ∂Kn−1

d

∂ρe
dn−1

}
. (41)

for each element e. Notice that
∂J

∂ρe(x)
is a scalar quantity that indicate the sensitivity of the eth element.

The differences regarding the choice of the objective functions are explained in the sequel. Computationally,
at each time step, if the sensitivity at (n− 1) step is known, then αn

e is computed as

αn
e = αn−1

e +∆αe, (42)

with

∆αe = (λn
1 )

T ∂Kn
u

∂ρe
un + (λn

2 )
T ∂Kn−1

u

∂ρe
un−1 + (λn

3 )
T ∂Kn

d

∂ρe
dn + (λn

4 )
T ∂Kn−1

d

∂ρe
dn−1, (43)

for each n ∈ {1, . . . , nload}. The instabilities such as checkerboard patterns are eliminated via smoothing
the sensitivity αe by means of filtering scheme, i.e.,

αe =

∑Ne

j=1 Wejαj∑Ne

j=1 Wej

, (44)

where the linear weight factor Wej is defined as the non-negative distance between prescribed filter radius
rmin and the element centre-to-centre distance ∆(e, j). i,e Wej = max(0, rmin −∆(e, j)).

2.5. Γ-Convergence Analysis

The idea of this section is to show that for every distribution of the function ρ(x), the phase-field
approximation presented in this section Γ−converges. The details of the proof is now standard, hence only
results are presented, whose detailed proof is a simple extension of the results in [80–83]. Due to the nature
of topology optimisation framework presented in this article, the following assumptions can be made. The
same notations as in [83] are used and detailed definitions are omitted here for the sake of brevity.

1. The displacement u is uniformly bounded in L∞(Ω;Rndim). i.e ∥u∥L∞(Ω;Rndim ) ≤ M., for some
constant M . Notice that the constant M can be easily defined as a function of applied displacement
ū on ∂ΩE .

2. Due to the definition of chosen energetic function and the split, assume [u](x) · υ ≥ 0, for Hndim−1-
a.e, x ∈ Ju. This can be viewed as a linearized non-interpenetration condition due to the split [84].
Here, [u](x) is the jump at x and υ is the normal to the jump at x, which is wel defined in Hndim−1-
a.e on the jump set of u, Ju.
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Then, for any distribution ρ(x), the total energy functional takes the form

Πℓ(u, d) =
∫
Ω
(νl + (1− d)2)(2µ(x, ρ)|E+(u)|2 + λ(x, ρ)(Tr(E+(u))2) (45)

+(2µ(x, ρ)|E−(u)|2 + λ(x, ρ)(Tr(E−(u))2)dΩ

+
∫
Ω

GC(x,ρ)
4

[
d2

ℓ + ℓ |∇d|2
]
dV. (46)

Note that, ℓ can also be ℓ(x, ρ) can also be used, see [69] for more details. In this case, from Eq. (4)
leads to ℓ(ρ) = ρ(x)pℓinc + (1 − ρ(x))pℓmat. Let ℓ = min(ℓinc, ℓmat) without renaming the parameter that
goes to zero, then ℓinc = ℓ · C̃1 and ℓmat = ℓ · C̃2, making ℓmat, ℓinc goes to zero as ℓ goes to zero.

The functional

ΠM
ℓ (u, d) =

{
Πℓ(u, d), if u ∈ H1(Ω;Rndim), d ∈ H1(Ω;Rndim),∥u∥L∞(Ω;Rndim ) ≤ M.

+∞, otherwise
, (47)

Γ−converges to

ΠM
0 (u, d) =

{
Π0(u), if u ∈ SBD(Ω), [u](x) · υ ≥ 0,Hndim−1 − a.e,x ∈ Ju

+∞, otherwise
, (48)

as ℓ → 0, assuming limℓ→0
νl
ℓ

= 0, with

Π0(u) =
1

2

∫
Ω

2µ|ed(u)|2 + λ(Tre(u)
2
)dΩ +GCHndim−1(Ju). (49)

The idea of the this proof is based on the fact that µ, λ and GC do not play any role in the proof, but are
scalars. By the definition of the decomposition of domain Ω, the domain Ω can be split into three parts based
on the density function ρ(x). i.e Ωinc, Ωmat, and Ωtrans such that the union of these partition make up Ω,
and the domain do not overlap. This can be written as Ωmat∪Ωinc∪Ωtrans = Ω and Ωmat∩Ωinc∩Ωtrans = ∅.
Note that since Ωs = {Ωmat,Ωtrans,Ωmat} is a closed set, and each of the set is bounded by the constant M
from the L∞ bound on u, each set Ωs is compact. Moreover, since Ω is the finite combination of the closed
sets, Ω is closed as well. Then, the energies ΠM

ℓ (u, d) can be defined as

ΠM
ℓ (u, d) = ΠM

ℓ (u, d)

∣∣∣∣∣
Ωinc

+ΠM
ℓ (u, d)

∣∣∣∣∣
Ωtrans

+ΠM
ℓ (u, d)

∣∣∣∣∣
Ωmat

. (50)

From the definition of material properties as in Eqs. (4), (5), µ, λ, GC are scalars. Moreover, due to the
closed set Ωs, the H1(Ωs;Rndim) and the jump sets takes the form Js

u. Invoking the Γ−convergence results
for each set individually, the following results can be readily seen

ΠM
ℓ (u, d) =

ΠM
ℓ (u, d)

∣∣∣∣∣
Ωinc

+ΠM
ℓ (u, d)

∣∣∣∣∣
Ωtrans

+ΠM
ℓ (u, d)

∣∣∣∣∣
Ωmat

if u ∈ H1(Ωs;Rndim), d ∈ H1(Ωs;Rndim),∥u∥L∞(Ω;Rndim ) ≤ M.

+∞, otherwise

,

(51)

Γ−converges to
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ΠM
0 (u, d) =

Π0(u, d)

∣∣∣∣∣
Ωinc

+Π0(u, d)

∣∣∣∣∣
Ωtrans

+Π0(u, d)

∣∣∣∣∣
Ωmat

if u ∈ SBD(Ω), [u](x) · υ ≥ 0,Hndim−1 − a.e,x ∈ Ju

+∞, otherwise

,

(52)

as ℓ → 0, assuming limℓ→0
νl
ℓ

= 0. Here, the Eq. (52) can be further expressed as

Π0(u, d)

∣∣∣∣∣
Ωinc

+Π0(u, d)

∣∣∣∣∣
Ωtrans

+Π0(u, d)

∣∣∣∣∣
Ωmat

=
1

2

∫
Ω
2µ|ed(u)|2 + λ(Tre(u)

2
)dΩ +GC(ρ,x)Hndim−1(J inc

u ) +(53)

GC(ρ,x)Hndim−1(J trans
u ) +GC(ρ,x)Hndim−1(Jmat

u ), (54)

Notice that the sets Ωs is compact. From the fine properties of the Hausdorff measure [81, 85], for every
compact disjoint subsets Ωi of Ω, for i = {1, 2, . . . n}, therefore positive distance from each other, we have

n∑
i=1

Hα(Ωi) = Hα

(
n∑

i=1

(Ωi)

)
, (55)

using the additivity of the Hausdorff measure, see [85, 86]. Hence, we have that

Hndim−1(J inc
u )+Hndim−1(J trans

u )+Hndim−1(Jmat
u ) = Hndim−1(J inc

u +J trans
u +Jmat

u ) = Hndim−1(Ju). (56)

which concludes the proof.
Remark: Notice that as s → S̃ [of optimisation], due to the constraint f inc ≤ C, maximization of J can

leads to limit case of f inc = C, then Ωtrans → ∅, and Ω = Ωinc ∪ Ωmat, from definition, and ρ(x) is binary.

3. Numerical experiments-without fracture

To obtain a comprehensive understanding of the behavior of functionally graded materials, this section
has been divided into two distinct parts: topology optimization of compliance with FGM and SIMP topology
optimization using phase field. These two sections serve different purposes.

Section 3.1, focuses on optimizing the topology of functionally graded materials to achieve minimum
compliance while taking into account the available material constraints. On the other hand, Section 4,
concentrates on maximizing the fracture resistance of the structure that consists of functionally graded ma-
terials and a homogeneous second phase material (inclusion) geometry. The formulation for this optimization
approach is already presented in Section 2.

Both of these sections provide different insights into the behavior of functionally graded materials and
their deisgn optimization, making them as a valuable contribution to the field of material engineering.

3.1. Minimization of compliance

In this section, the topology optimization problem under consideration is a simple modification that in-
corporates functionally graded materials (FGM) into a density-based approach. Each element e is associated
with a density ρe and a volume fraction Vf , which determine the property of Young’s modulus as:

Ee(ρe, Vf ) = Emin + ρpe(E(Vf )− Emin), for ρe ∈ [0, 1]. (57)
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Here, E(Vf ) is defined as:

E(Vf ) = E1 + (E2 − E1)× Vf (x),

where E1 and E2 denote Young’s modulus of homogeneous materials of one and two respectively, and
Vf (x) is the volume fraction function of the FGM at a given x. The exponent p is typically set to p = 3 for
compliance minimization problems, see [26, 27] for more details.

This modification allows for the incorporation of FGM into the optimization problem, providing a pow-
erful tool for designing structures with enhanced mechanical properties. The mathematical formulation for
minimum compliance problem takes the form

minimise: c(x) = UTK(x)U =

N∑
e=1

UT
e Ke(xe)Ue, (58a)

Subjected to:
V (x)

V0
= f(x), (58b)

K(x)U = F (x). (58c)

In the above equations, c represents the total compliance, U and F are global displacement and force
vectors, respectively, and K(x) is the global stiffness matrix that varies with the material properties over
the domain x ∈ Ω.

It is important to note that the material properties E(ρe,x) are constant for each element xe, i.e.,
E(ρe,x) = Ei, where Ei depends on ρe and x. Here, N is the total number of elements, V (x) and V0 are
the material and design domain volumes, respectively, and f is a prescribed volume force.

To solve the optimization problem, the optimality criteria method is used along with the filtering method
suggested in [27], we omit the details of the finite element analysis, construction of stiffness matrix, displace-
ment and force vectors, and filtering schemes for the sake of brevity. Interested readers are encouraged to
refer to [26, 27] for a detailed explanation of these concepts.

3.2. Half Three-point bending

In this section, the well-known half-three-point bending example is considered. For the sake of computa-
tional cost, only the right half of the asymmetric beam is considered with material properties E1 = 210Gpa

is fixed and E2 is computed as
E1

E2
= R. The domain is meshed with 200 × 100 (L × W ) in x- and y-

direction. Here each mesh is considered to be the dimension of the domain as in the original problem [27].
The material property of Young’s modulus is computed as

E(x) = E1 + (E2 − E1) ∗ Vf (x). (59)

For the grading in x-direction, the volume fraction (of grading) tales the form

Vf (x) =
( x
L

)z
,

where z is a grading constant. For the grading in the y-direction, the volume fractions of FGM take the
form

Vf (x) =
( y

W

)z
.
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Figure 1: The Design domain, boundary conditions, external load for optimization of a symmetric MBB beam along with the
optimised design for FGM with grading in x-direction for different grading profiles.

14



Figure 2: The Design domain, boundary conditions, external load for optimisation of a symmetric MBB beam along with the
optimised design for FGM with grading in y-direction for different grading profiles.
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Figure 1 presents the design domain boundary conditions, external load, and grading profiles in the x-
direction. Additionally, the optimized designs for functionally graded materials (FGM) with various Young’s
modulus ratios of E1

E2
= 1

100 ,
1
10 ,

1
2 , 2, 10, and 100 are presented, along with their variation of grading power

z = 1, 2, and 4 along with the homogeneous optimized designs with a filter radius Rmin = 4 and f = 5%
are also included for comparison.

FGMs exhibit different behavior as compared to homogeneous materials. When E1

E2
< 1, E1 (left) has the

lowest Young’s modulus, and E2 (right) has the highest. The optimum design for FGM is thicker towards
the load application area (i.e., the side with the lowest Young’s modulus), and the thickness requirement
for the connecting strut decreases towards the highest Young’s modulus side (E2). For E1

E2
= 1

100 , the left
side (E1 side) is the thickest, and the right side (E2 side) is the thinnest. As the grading power z increases,
this trend becomes more pronounced while increasing compliance. Furthermore, total compliance decreases
as the E1

E2
ratio decreases and increases as z increases.

In other words, the compliance of the optimum design in FGM for E1

E2
< 1 is directly proportional to the

grading power z and inversely proportional to the E1

E2
ratio.

For E1

E2
> 1, E1 (left) has the highest Young’s modulus, and E2 (right) has the lowest. The reinforcement

is required towards the right (E2) side, whereas compromise and material towards the left (E1) side can
be made. This behavior is also reflected in the results presented in Fig 1. The compliance is directly
proportional to E1

E2
and inversely proportional to z. i.e.,

c α


z

E1/E2
, for

E1

E2
≤ 1

E1/E2

z
, for

E1

E2
≥ 1

 . (60)

Depending on the problem, the grading pattern can be selected to optimize the design. Figure 2 depicts

the optimized design for the variation of
E1

E2
ratio and z for the grading in the y-direction. As observed

in the grading x-direction, when
E1

E2
< 1, E1 (top) has the highest stiffness, whereas it has the lowest

stiffness when
E1

E2
> 1. The existence of boundary conditions on the top right corner (external loading)

and rolling support on the bottom right corner affects the optimum topology depending on the boundary

conditions. For the case where
E1

E2
< 1, the structure is reinforced more towards the bottom as compared

to the homogeneous solution. The opposite is observed when
E1

E2
> 1. The compliance follows the relation

presented in Eq. (60), similar to the grading in the x-direction. The same methodology can be applied
to obtain similar results for other structures. Appendix 7 provides examples of multi-objective topology
optimization for half three-point bending with hole.

4. Topology optimisation of FGMs to fracture resistance

In this section, we present several two-dimensional examples to demonstrate the capacity, applicability,
and convergence of the proposed method in maximizing fracture resistance. To highlight the similarities
and differences between FGM and its homogeneous counterpart, two examples are considered for different
purposes.

The first example involves a notched plate, and is used to investigate the effects of crack tips on de-

sign optimization, as well as the influence of grading and Young’s modulus ratio
E1

E2
and inclusion ratio

Einc

max(E1, E2)
. We also examine the differences between FGM and homogeneous solutions, and evaluate the
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Homo1

FGM z=4

FGM z=2

FGM z=1 FGM z=0.5

FGM z=0.25
Homo2

Case-A: Grading in x direction

E1 E2

E1 z=4 z=2 z=1 z=0.5 z=0.25 E2geometry

Optimum design

Figure 3: Grading in x-direction for 5 percent volume fraction of inclusion for Case-A

convergence of the topology optimization problem. Furthermore, we compare the FGM design obtained
using the topology optmisation framework with the initial design guesses to demonstrate its superior design.

The second example concerns a plate with two asymmetrical notches, which is subjected to asymmetrical
loading and crack propagation. We investigate the effect of asymmetry on design optimization, as well as
the influence of grading and Young’s modulus ratio. Additionally, we examine the effect of grading on the
crack path.

In all numerical examples, we use quadrilateral bilinear elements with plane strain conditions. The phase
field characteristic length scale ℓ is chosen to be twice the finite element size (he), in order to satisfy the
mesh requirements in the phase field models, and the filter radius is set to Rmin = 2 ∗ he, i.e. twice the
finite element size.

4.1. Plate with Notch

Crack propagation in FGMs differs significantly from homogeneous surrogates. Within this context, an
initial characterization of the FGM can be based on two fundamental properties - (i) the Young’s modulus
ratio or elastic mismatch, and (ii) the apparent strength mismatch. Additionally, the characteristic length
scale, ℓ, can also be considered a material property for FGM characterization. In this study, the charac-
terization of the FGM is performed using (i) elastic mismatch, and (ii) apparent strength, while keeping ℓ
constant. As the optimization problem focuses on maximizing fracture resistance by including a stiffer ma-

terial (inclusion), the mismatch between the elastic properties of
E1

E2
and the inclusion must be considered.

The ratio of the highest Young’s modulus of the FGM, E′ = max(E1, E2), and the inclusion,
Einc

E′ , is used
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Case-A: Grading in y direction

Optimum design
Homo1

FGM z=4
FGM z=2 FGM z=1

FGM z=0.5

FGM z=0.25
Homo2

E1 z=4 z=2 z=1 z=0.5 z=0.25 E2geometry

E1

E2

Figure 4: Grading in y-direction for 5 percent volume fraction of inclusion for Case-A

FGM in x, z=1
FGM in y, z=1

density PF
1 10

Figure 5: Evolution of the optimum topology in Case-A for the grading in X-direction and Y-direction for the volume fraction
of 5% and z = 1 in y-direction for 5 percent volume fraction of inclusion.
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Case E1 E2 σc,1 σc,2 Elastic
mismatch
E1

E2

Inclusion
mismatch
Einc

E′

Strength
mismatch
σc,1

σc,2

Inclusion
strength
mismatch
σc,inc

σ′
c

Case-A 10.4 5.2 0.01 0.005 2 5 2 3
Case-B 5.2 10.4 0.005 0.01 0.5 5 0.5 3
Case-C 10.4 20.8 0.01 0.02 0.5 2.5 0.5 1.5

Table 1: Material properties and their corresponding mismatch ratios for different cases.

geometry

E1 E2

E1 z=4 z=2 z=1 z=0.5 z=0.25 E2

Homo1
FGM z=4

FGM z=2

FGM z=1

FGM z=0.25

FGM z=0.5Case-B: Grading in x direction

Optimum design

Homo2

Homo2

Figure 6: Grading in x-direction for 5 percent volume fraction of inclusion for Case-B

to characterize the FGM, referred to as the (iii) inclusion mismatch. A similar statement can be made about
apparent strength to extract the (iv) inclusion strength mismatch [69, 70].

It should be noted that in the linear elastic regime, it is easy to prove that FGMs are bounded between
their homogeneous surrogates in terms of both elastic energy and fracture energy [69]. In the case of plates
with a notch, the length and placement of the crack can significantly affect the material response of FGMs.
Therefore, we fix the geometry for the entire analysis. The geometry consists of a plate with dimensions
of L = 100 mm and W = 50 mm, with a crack width of Wc = 15 mm placed at the center, as shown in
Figure 3 (geometry). The model has been uniformly meshed with a 120 × 60 (L × W ) mesh, with finite
element size he = 0.833. The initial density (ρ0) across the domain Ω is set to be constant and equal to
f inc. During the entire optimization process, the volume fraction f inc (of optimization) is fixed, while the
densities ρe are allowed to evolve. The structure considered in this work is composed of an FGM material
matrix made up of a combination of two homogeneous materials with properties E1, E2, σc,1, and σc,2, and
we seek to find the optimal shape of an inclusion (with material properties Einc and σc,inc) that provides
the maximum fracture resistance for the entire composite structure. The pre-existing crack is enforced by
prescribing a Dirichlet boundary condition of ϕ = 1 along the crack.

For a comprehensive understanding of the impact of elastic mismatch, inclusion mismatch, and apparent
strength mismatch, three different cases are examined. In each case, the inclusion properties are kept
constant, with a Young’s modulus of Einc = 52 GPa and an apparent strength of σc,inc = 0.03 GPa.
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Homo1

Homo2

FGM z=1
FGM z=2

FGM z=4

FGM z=0.25

FGM z=0.5

Case-B: Grading in y direction

Optimum design

geometry

E1

E2

E1 z=4 z=2 z=1 z=0.5 z=0.25 E2

Figure 7: Grading in y-direction for 5 percent volume fraction of inclusion for Case-B

FGM in x, z=2
FGM in y, z=2 density PF

1 10

Figure 8: Evolution of the optimum topology in Case-B for the grading in X-direction and Y-direction for the volume fraction
of 5% and z = 2 in y-direction for 5 percent volume fraction of inclusion
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However, the matrix properties and their corresponding mismatch ratios are provided in Table 1 for each
case.

It is worth noting that in all cases, E1 is located on the left/top, and E2 is located on the right/bot-
tom for grading in the x-/y-directions, respectively. This affects the material properties at the crack tip
and consequently, the crack propagation behavior, ultimately leading to changes in the optimal inclusion
topology.

Figure 3 shows the iteration Vs. work for the grading in x-direction for case-A along with the optimum
designs for FGM with z = 4, 2, 1, 1

2 ,
1
4 along with their homogeneous surrogates for f inc = 5%.

First, notice that E1 has the highest Young’s modulus, resulting in a decrease in resistance to fracture
as we move away from the crack tip. As a consequence, inclusion densities are concentrated towards the
crack tip to increase the stiffness of the crack propagation path.

It is easy to notice that, as z → ∞, the grading of FGM resembles that of E1, while as z → 0, it behaves
as E2. It can be observed in Figure 3 that FGM’s are sandwiched between their homogeneous constituents
in terms of fracture resistance. However, the different resistance offered at the crack tip results in different
optimum geometries for FGMs.

Figure 4 depicts the grading in the y-direction for Case-A, along with the optimum design for grading
profiles with z = 4, 2, 1, 1

2 ,
1
4 and their homogeneous surrogates. In the y-direction, the properties at the

crack tip along the line of the crack are nearly constant. However, the crack propagates towards the lowest
Young’s modulus side, i.e., E2. Grading functions with z = 4 and z = 2 on the lowest Young’s modulus side
offer poor fracture resistance, necessitating the strengthening of the lowest E side in the optimum design.
For the z = 1 case, the optimum design contains a leg that extends below due to the crack tending to
go towards the bottom, increasing the fracture resistance by deviating the crack path. In the z = 1

2 and
z = 1

4 cases, crack propagation tends to be less skewed compared to the other z’s, but the optimum design
is still dominated towards the lowest Young’s modulus side. Additionally, the total work of FGM materials
is sandwiched between their homogeneous surrogates in this case.

Figure 5 illustrates the evolution of optimum topology in Case-A for grading in the x- and y-directions,
with z = 1. When graded in the x-direction, the crack propagates straight without any inclusion geome-
try, but later iterations demonstrate that the adjustment of density diverts the crack reaching an optimal
topology with better fracture resistance. For the grading in the y-direction, crack propagation starts with a
skewed crack towards the lowest Young’s modulus side, slowly building inclusion densities around the less
stiff areas to increase the fracture resistance during evolution.

Figures 6 and 7 show the iterations vs. work plots along with the optimum topology for FGM for Case-B
with a volume fraction of f inc = 5% in the x- and y-directions, respectively. Since E1 is the side with the
lowest Young’s modulus, the resistance to fracture increases along the crack path for the grading in the x-
direction. However, the initial crack also causes stress concentration, which forces the crack to grow towards
the side with the highest Young’s modulus. This competition is apparent in the optimum topology design
in Figure 6. When z = 4, 2, the optimum design is more focused on enhancing the stiffness on the left side
to avoid crack growth from the middle and close to the crack tip. For z ≤ 1, stress concentration dominates,
and the inclusion topology is more focused on preventing crack growth at the crack tip. Interestingly,
FGMs offer more resistance in terms of work compared to their homogeneous surrogates in Case-B. This is
readily seen in the iterations vs. work graph presented in Figure 6. A similar observation can be made for
grading in the y-direction in Case-A, where the crack is propagated towards the side with the lowest Young’s
modulus (upper). In this case, only z = 0.25 performs better than its homogeneous surrogates, whereas
the other FGMs are sandwiched between the homogeneous solutions. Comparing Case-A and Case-B, an
improvement in terms of work can be readily seen in both x- and y-direction grading. The evolution of the
optimum topology for grading in both x- and y-directions for z = 2 is shown in Figure 8.

A similar analysis can be conducted for Case-C. Due to its similarity to Case-B, with the only differences
being inclusion mismatch and apparent inclusion mismatch, small differences in results can be obtained and
are presented in Appendix 8. For the sake of brevity, the analysis is omitted.

Given the improved performance in Case-B, the optimum topology for grading in the x- and y-directions
for volume fractions of f inc = 10% and f inc = 15% for z = 2, 1, and 1

2 are presented in Figure 9. The
homogeneous solution for f inc = 10% is also presented for reference.
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z=2

z=1

z=0.5

x y
density=15%

grading 

E1 E2
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E1

E2
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Figure 9: Optimum topology in Case-B for the grading in X-direction and Y-direction for the volume fraction of 10%, and
15% for the variation of the z = 2, 1, 0.5 along with their homogeneous solutions with 10% volume fraction of densities.
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Figure 10: a) Force Vs. displacement of Design-1 with improved performance for Case-A, and b) Final optimum solution from
the initial design along with the corresponding crack propagation.
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Figure 11: a) Force Vs. displacement of Design-2 with improved performance for Case-A, and b) Final optimum solution from
the initial design along with the corresponding crack propagation.

It is evident that the optimum topology strongly depends on the primary: (i) elastic mismatch, as
evidenced by the comparison of Case-A and Case-B, and (ii) inclusion mismatch and secondary apparent
strength mismatch, as shown by the comparison of Case-B and Case-C.

4.2. Performance evaluation with an initial design guess

In this section, the improvement of fracture resistance in FGMs is evaluated by comparing an initial
guess design to an optimized design in terms of load-carrying capacity. Note that, fracture resistance is
directly proposed to load-carrying capacity. For the example of a notched plate, two initial guess designs
are proposed, referred to as Design-1 and Design-2.

Design-1 consists of a horizontal block with a total volume fraction of the inclusion as f inc = 5% located
in front of the crack tip. This design increases the resistance to fracture in front of the crack tip and
thus hinders crack propagation. Figure 10a) provides the force vs. displacement curve for the initial and
final design for both grading directions in Case-A, while Figure 10b) provides the initial and final designs
along with their respective crack propagation. It is noticed that for the grading in the x-direction, the load
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Figure 12: a) Force Vs. displacement of Design-1 and Design-2 with improved performance for Case-B, for grading in x-
direction, and b) Final optimum solution from the initial design along with the corresponding crack propagation.
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Figure 13: a) geometrical description of the asymmetrical notched specimen, b) crack propagation in the asymmetrical notch
for homogeneous material medium.

carrying capacity of the specimen increases by 19.6070% from the initial design, whereas for the grading in
the y-direction, the load carrying capacity increases by 25.9371%.

Design-2 consists of a vertical block with volume fraction of f inc = 5% of inclusion material located in
front of the crack tip, as shown in Figure 11b. The load carrying capacity of the specimen is increased by
7.2298% for grading in x-direction and 9.3620% for grading in y-direction, as observed from the Force vs.
displacement curve provided in Figure 11a.

For Case-B, Figure 12 presents the initial guess and final optimized designs for the grading in x-direction.
For Design-1, the load carrying capacity increases by 20.0759%, whereas for the initial guess of Design-2,
load capacity increases by 10.3306%.

In conclusion, the proposed method shows significant improvement in fracture resistance with respect to
the initial guess designs.

4.3. Asymmetrical Notch

With the analysis of the plate with notch at hand, this section presents an analysis of a plate with
an asymmetrical notch containing two cracks, as illustrated in Figure 13 a). The plate has dimensions of
L = 133 and W = 100, and is meshed with (80×60) elements of size he = 1.66 mm using the same conditions
for ℓ, rmin, and the cracks condition as in the previous example.

Three cases are considered, using the same material properties as in the previous section, as shown in
Table 1. It is worth noting that, in the case of a homogeneous material, crack propagation in such an
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Figure 14: Grading in x direction for 10% volume fraction of inclusion for case-A
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Figure 16: Evolution of the optimum topology in Case-B for the grading in X-direction and Y-direction for the volume fraction
of 10% and z = 1.

asymmetrically notched specimen with two cracks is symmetrical, as depicted in Figure 13 b). However, in
the cases where Functionally Graded Materials are used, one crack is dominant due to differences in material
properties. As a result, the growth of one crack is faster than the other, resulting in asymmetrical crack
growth.

Figure 14 presents the optimal solution for Case-A with f inc = 10% for the variation of grading in the x-
and y-directions with different z values. For Case-A, the fracture resistance decreases from E1 to E2 side,
as shown in Figure 14. Therefore, crack propagation from the E2 side is longer, and the optimal topology
indicates that densities are concentrated towards E2. For grading in the y-direction, both cracks tend to
move towards the lowest Young’s modulus (bottom), resulting in the densities being concentrated in the
bottom half of the structure. It is worth noting that, for grading in both x- and y-directions, the optimal
topology is sandwiched between its homogeneous surrogates.

Figure 15 shows the optimal solution for Case-B with f inc = 10% for the variation of grading in the x-
and y-directions at different z values, along with their corresponding homogeneous surrogates. In contrast
to the notched plate, the work for FGM is bounded by its homogeneous constituents. This can be seen as a
consequence of two stress concentration areas, where one area resists crack growth while the other promotes
it, making the optimization problem harder. As a consequence, the densities are concentrated towards the
right side due to the increased Young’s modulus on that side for grading in the x-direction. On the other
hand, for grading in the y-direction, the densities are concentrated on top due to the crack deflection towards
the weaker E1 (top) side.

Figure 16 demonstrates the crack evolution and optimum topology for Case-B with grading in x- and
y-directions for f inc = 10% and z = 1. The figure clearly displays the differences between homogeneous and
FGM materials.

Figure 17 provides an overview of the optimal topologies for a volume fraction of f inc = 5%, along
with their corresponding homogeneous surrogates, to exhibit the effects of elastic mismatch and inclusion
mismatch for grading in the x- and y-directions. The material properties in line with Table 1 are E1 = 5.2
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Figure 17: Overview of the optimum topologies for volume fraction of 5% for different cases and different z with E1 = 5.2,
E2 = 10.4, and E3 = 20.8
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Figure 18: a) Force Vs. displacement with improved performance for Case-A, and b) Final optimum solution from the initial
design along with the corresponding crack propagation.
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Figure 19: a) Force Vs. displacement with improved performance for Case-B, and b) Final optimum solution from the initial
design along with the corresponding crack propagation.

GPa, E2 = 10.4 GPa, and E3 = 20.8 GPa. The difference in the elastic mismatch and inclusion mismatch
can be clearly in comparison with the optimum solution of case-A and Case-C.

4.4. Performance assessment from an initial guess

Performance assessment based on the initial design
This section aims to evaluate the performance of topology optimization by comparing the final optimized

design with the initial design guess for an asymmetrical notched specimen. The initial design guess considered
in this study contains a block of inclusion material blocking both the crack tip and obstructing the crack
propagation path entirely.

Figure 18 presents the Force vs. displacement curve for the grading in the x- and y-direction for Case-A,
along with the initial guess design and final optimized designs, along with their crack propagation. The
results indicate that the load-carrying capacity for grading in the x-direction and y-direction showed an
improvement of 48.4332% and 50.3908%, respectively, compared to the initial guess design.

Similarly, for Case-B, the Force vs. displacement curve, along with the initial guess design and final
optimized design, are presented in Figure. 19. The results show that the load-carrying capacity increases
by 26.4289% for grading in the x-direction and 61.7192% for grading in the y-direction.

In conclusion, the results of this study indicate that topology optimization is effective in improving the
load-carrying capacity of notched specimens in both x- and y-directions, as demonstrated by the significant
improvement observed in the final optimized designs compared to the initial design guesses.
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5. Conclusions

The article explores topology optimization in the context of functionally graded materials (FGMs)
through two strategies. Firstly, it investigates topology optimization of compliance with FGM, empha-
sizing the design differences when considering FGM as the design material. This is achieved through various
numerical examples. Secondly, it presents a SIMP topology optimization framework for maximizing fracture
resistance in FGMs within the context of additive manufacturing.

The mathematical formalism is established by applying the variational method to fracture. Furthermore,
Γ−convergence is established for every distribution of the density function, providing insights into the
mechanical behavior of FGMs.

Through the minimization of compliance, the study reveals that compliance in FGMs is directly propor-
tional to the Young’s modulus ratio (elastic mismatch) and inversely proportional to the grading parameters
when the Young’s modulus ratio is greater than 1. Conversely, for Young’s modulus ratios less than 1, com-
pliance is directly proportional to the grading constant and inversely proportional to the elastic mismatch.

In the context of maximizing fracture resistance, the article presents two examples that showcase the
effects of elastic mismatch, strength mismatch, inclusion mismatch, and inclusion strength mismatch, high-
lighting the differences between their homogeneous constituents. Detailed analyses of the optimum shapes
are provided, and an improvement in performance compared to the initial designs is demonstrated, illus-
trating the capability of the model.

In conclusion, the article provides an overall assessment of FGMs in terms of minimizing compliance and
maximizing fracture resistance, making them suitable for relevant applications in the industry.
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7. Appendix

7.1. Half Three-point bending with Hole

Material properties considered
E1 = 210, E2 = E1 ∗ R, volume f = 50%, Rmin = 4 and the grading profile is defined as

E(x) = E1 + (E2 − E1) ∗ Vf (x); Vf =
(x
h

)z
(61)

where z is the grading constant. The variation of optimum design for the grading in the x-direction
is presented in Fig. 20, and the grading in the y-direction is presented in Fig. 21. The pictures are
self-explanatory and hence the analysis is omitted here for the sake of brevity.

7.2. Multi-Objective Optimisation

Material properties considered
E1 = 210, E2 = E1 ∗ R, volume f = 40%, Rmin = 6 and the grading profile is defined as

E(x) = E1 + (E2 − E1) ∗ Vf (x); Vf =
(x
h

)z
(62)

where z is the grading constant. The variation of optimum design for the grading in the x-direction and
y-direction is presented in Fig. 24, The pictures are self-explanatory and hence the analysis is omitted here
for the sake of brevity.

8. Plate with notch: Results for Case-C
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Figure 20: The Design domain, boundary conditions, external load for optimization of a symmetric MBB beam with a hole
along with the optimized design for FGM with grading in the x-direction for different grading profiles.
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Figure 21: The Design domain, boundary conditions, external load for optimization of a symmetric MBB beam with a hole
along with the optimized design for FGM with grading in y-direction for different grading profiles.
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Figure 22: The Design domain, boundary conditions, external load for optimization of a cantilever beam with two load cases,
and the optimized design for FGM with grading in x-direction and y-direction (separately) for different grading profiles.
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Figure 23: Grading in the x-direction for 5 percent volume fraction of inclusion for Case-C
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Case-C: Grading in y direction
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Figure 24: Grading in y-direction for 5 percent volume fraction of inclusion for Case-C
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