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a b s t r a c t

We study opinion dynamics on networks with a nontrivial community structure, assum-
ing individuals can update their binary opinion as the result of the interactions with an
external influence with strength h ∈ [0, 1] and with other individuals in the network. To
model such dynamics, we consider the Ising model with an external magnetic field on
a family of finite networks with a clustered structure. Assuming a unit strength for the
interactions inside each community, we assume that the strength of interaction across
different communities is described by a scalar ϵ ∈ [−1, 1], which allows a weaker but
possibly antagonistic effect between communities. We are interested in the stochastic
evolution of this system described by a Glauber-type dynamics parametrized by the
inverse temperature β . We focus on the low-temperature regime β → ∞, in which
homogeneous opinion patterns prevail and, as such, it takes the network a long time to
fully change opinion. We investigate the different metastable and stable states of this
opinion dynamics model and how they depend on the values of the parameters ϵ and
h. More precisely, using tools from statistical physics, we derive rigorous estimates in
probability, expectation, and law for the first hitting time between metastable (or stable)
states and (other) stable states, together with tight bounds on the mixing time and
spectral gap of the Markov chain describing the network dynamics. Lastly, we provide a
full characterization of the critical configurations for the dynamics, i.e., those which are
visited with high probability along the transitions of interest.

© 2023 Published by Elsevier B.V.

1. Introduction

The Ising model was originally introduced to study ferromagnetism [1] and is probably one of the most studied models
n statistical physics. The spins are arranged in a given graph structure and each of them can be in one of two states +1
‘‘upwards’’) or −1 (‘‘downwards’’). These spins interact with each other in a stochastic fashion but each spin has the
endency to align with its neighbors as this results in low-energy configurations for the system. In the statistical physics
iterature, researchers have primarily considered the Ising model on lattice structures or complete graphs (in which case
t is also known as Curie–Weiss model), for a comprehensive historical perspective of this model we refer to [2].
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Later, the Ising model has also been used to study a wide range of physical and nonphysical phenomena, and, in
particular, as a first simple canonical model for public opinion dynamics [3–8] in presence of a binary choice. In this
context, the state of a spin describes the current opinion of an individual, the external magnetic field captures the exposure
to biased information and/or one-sided marketing/campaigning, and the couplings between neighboring spins model the
effect of peer interactions on personal opinions.

The basic Ising model can be augmented to have more than two opinions and possibly asymmetric interactions between
them, like in [9] where the authors consider an Ising-like model with three opinions but where the two most extreme
opinions do not interact with each other. Since we are mostly interested in the interplay between opinion dynamics and
network topology, in this paper we focus on the simpler case of a binary opinion. The voter model is another Ising-like
model to study the evolution of binary opinions which features a different (and possibly irreversible) majority update rule,
see e.g. [10–12]. For a more broad review of mathematical and physical opinion dynamics models, we refer the interested
reader to [13].

In Ising-like binary opinion models, the temperature of the system approximates all the more or less random events
which may influence individuals’ opinions but are not explicitly accounted for in the model, cf. [8]. In this paper, we
study the Ising model in the low-temperature limit, which is instrumental to describe a situation where peer interactions
and external factors have a strong influence on everyone’s opinion. The low temperature favors homogeneous opinion
patterns in which there are fewer individuals that disagree with the peers they interact with, which at a macroscopic
level means that opinions become very rigid and hard to change, e.g., on a very polarizing issue.

It is clear that assuming the underlying structure is a lattice or the complete graph is not ideal when modeling public
opinion dynamics, since individuals have very heterogeneous social networks and interaction patterns. In particular, it is
reasonable to assume that each individual has only a finite number of interactions and that he/she would tend to align
more with the opinion of individuals in the community we belong to rather than that of complete strangers. Aiming
to understand the role of the community structure in opinion dynamics, in this paper we consider a very heterogeneous
family of networks with very dense communities and very weak interactions between these communities. Various opinion
dynamics models have been studied on networks with a community structure, e.g., [14,15], but mostly by means of
numerical simulations, while in this paper we focus on rigorous mathematical results.

By choosing a specific network structure, one may model also unilateral influences and/or negative influences. For this
reason, the Ising model for binary opinion dynamics has been studied on signed networks [16] and directed networks [17].
Being primarily interested in the role of communities on opinion dynamics, in this paper, we restrict ourselves to the
nonsigned and undirected networks.

The structure of the network heavily influences both static (i.e., the configurations’ energy) and dynamic properties
(the likelihood of the system’s trajectories) of the Ising model. In this setting, it is of interest to study the metastability
or tunneling phenomena that the opinion dynamic model may exhibit. In the presence of a nonzero external magnetic
field, the spins/opinions tend to align in the direction of the field, hence making the energy level of the two homogeneous
configurations with identical spins (the ‘‘consensus’’ configurations) different. In this setting, the metastable state of the
system describes the diffusion of a second very rigid opinion that is not aligned with the mainstream one.

Informally, the metastable configurations are those in which the system persists for a long time before reaching one
of the stable configurations, i.e., those minimizing the system’s energy. In the context of the clustered network that we
consider in this paper, the set of metastable states heavily depends on the relative strength of the interactions between the
network communities and that of the external magnetic field. In absence of an external magnetic field, the two opinions
are equally likely and the two homogeneous opinion patterns are both stable states. In this case, it is still interesting
to study how, starting with all individuals agreeing on one opinion, the whole network can transition to the opposite
opinion, how long this will take and what are the most likely trajectories of this process.

In this paper, we thus analyze the Ising model on a specific family of clustered networks, by identifying the set of
metastable and stable states and by estimating the asymptotic behavior of the transition time between them in the
low-temperature limit.

In order to study the metastability phenomenon, we adopt the statistical mechanics framework known as pathwise
pproach, which is the first dynamical approach to these phenomena initiated in [18], developed in [19,20], and later
ummarized in the monograph [21]. This approach relies on a detailed knowledge of the energy landscape and large-
eviation estimates to give a quantitative answer to the dynamical properties of the system during the transition
rom metastable to stable states. In particular, using this approach is possible to provide a convergence in probability,
xpectation, and law of the transition time, together with the description of the critical configurations and the tube
f typical trajectories followed by the system. The pathwise approach has been later extended in [22] to analyze the
unneling phenomenon, that is the asymptotic behavior of a system with more than one stable state and, in particular, its
ransition from a stable state to another stable state. A modern version of the pathwise approach can be found in [22–25].
he pathwise approach was used to study the low-temperature behavior of finite-volume models with single-spin-flip
lauber dynamics, e.g. [26–33], with Kawasaki dynamics, e.g. [34–39], and with parallel dynamics, e.g. [40–42].
Another approach is the potential-theoretic approach initiated in [43]. This method focuses on a precise analysis of

itting times of metastable sets with the help of potential theory. A crucial role in this approach is played by the so-
alled capacities, which can be estimated by exploiting variational principles, and might lead to sharper estimates for
he transition time from metastable states to stable states. We refer to the monograph [44] for a detailed discussion
2
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f this approach and its applications to specific models. The interested reader may look at [45–48] for the analysis
f finite-volume Ising models at low temperature. The potential-theoretic approach, however, is not always equivalent
o the pathwise approach because they intrinsically rely on different definitions of metastable states. The situation is
articularly delicate for evolutions of infinite-volume systems, irreversible systems, and degenerate systems, as discussed
n [23,24,49,50]. More recent approaches are developed in [51–54].

The rest of the article is organized as follows. In Section 2, we formally introduce the Ising model and the clustered
etwork structure we consider in this paper and outline the main results for the transition time and the critical
onfigurations for the dynamics. In Section 3, we give some definitions and present some preliminary results. In Section 4,
e prove the main results in absence of an external magnetic field, whereas Section 5 is devoted to the proofs for the
ase of a positive external magnetic field. Lastly, in Section 6 we draw our conclusions and outline some future research
irections.

. Model descriptions and main results

.1. Ising model on clustered graphs

In this paper, we are primarily interested in understanding the interplay between opinion dynamics and the community
tructure of the underlying network. Aiming to derive closed-form results, we choose a specific family of simple yet
rototypical clustered networks. More specifically, we consider the Ising model on a graph G consisting of k clusters of
qual size, which are locally complete graphs, and such that each node is connected to a single node in each of the other
lusters. With this choice, we obtain a network with very dense communities that are only sparsely connected to each
ther.
More specifically, for every k ≥ 2 and every n ≥ 2 we consider an undirected graph G = G(k, n) consisting of k clusters,

ach of which is a complete subgraph of size n, in which we further connect each node, i = 1, . . . , n also to its k − 1
‘‘twins’’ in the other k − 1 clusters (those whose labels have the same reminder modulo n), hence obtaining a regular
graph where each node has degree n + k − 2.

The vertex set of G(k, n) is V =
⋃k

i=1 V
(i) where V (i)

:= {n · (i − 1) + 1, . . . , n · i} are the nodes in the ith cluster. The
edge set of G(k, n) is E = Eint ∪ Ecross, where Eint =

⋃k
i=1 E

(i)
int is the collection of internal edges, e.g., edges inside a cluster,

and Ecross that of the edges across clusters, to which we refer as cross-edges. The graph G(k, n) then has 1
2kn(n + k − 2)

dges, n
(k
2

)
of which are cross-edges and

(n
2

)
inside each cluster. Fig. 1 depicts an instance of G(2, 7).

To each site i ∈ V we associate a spin variable σ (i) ∈ {−1, +1}. We interpret σ (i) = +1 (resp. σ (i) = −1) as indicating
hat the spin at site i is pointing upwards (resp. downwards). On the configuration space X = {−1, +1}V , we consider
he following Hamiltonian or energy function with zero external magnetic field

H(σ ) := −

∑
(i,j)∈Eint

σiσj − ϵ
∑

(i,j)∈Ecross

σiσj, (2.1)

here we assume the strength of interaction across clusters is parametrized by a scalar ϵ ∈ [−1, 1], while is equal to 1
long all the other internal edges. It is reasonable to assume that the opinions of individuals that belong to a different
ommunity have less influence over us. For this reason, the interactions across different network clusters are assumed to
e weaker than those inside each cluster, since their strength is equal to |ϵ| ≤ 1. Moreover, by taking negative values for
, we can model situations in which individuals tend to disagree with individuals from other communities.
In the context of the binary opinion dynamics, the presence of a nonzero external magnetic field is instrumental to

escribe a biased external influence, e.g., the exposure to biased information, or one-sided marketing/campaigning. The
resence of a nonzero external magnetic field of intensity h favors configurations in which the spins are aligned in the
irection of the field. Since every individual spin feels the external field, its energetical contribution has to be proportional
o the number of spins with a certain sign and therefore we consider the following Hamiltonian or energy function with
onzero external magnetic field

H(σ ) := −

∑
(i,j)∈Eint

σiσj − ϵ
∑

(i,j)∈Ecross

σiσj − h
∑
i∈V

σi, (2.2)

here h ∈ (0, 1] is the intensity of the external magnetic field.
We assume the systems evolves on X according the single-flip Metropolis dynamics (Xt )t∈N induced by the energy H

and parametrized by the inverse temperature β > 0, whose transition probabilities are given by

P(σ , η) = q(σ , η)e−β[H(η)−H(σ )]+ , for all σ ̸= η, (2.3)

where [·]+ denotes the positive part. The function q(σ , η) is a connectivity matrix independent of β that describes the
possible transitions in X and is defined for every σ ̸= η as

q(σ , η) =

{
1

|V |
if ∃ v ∈ V such that σ (v)

= η,

0 otherwise,
(2.4)
3
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Fig. 1. Example of a configuration σ ∈ C(4, 3, 3) on the network G(2, 7) the with color-coded spins (black for +1 and white for −1). The first cluster
as p1 = 4 spins +1, has p2 = 3 spins +1, and there are a = 3 agreeing edges between plus spins.

here σ (v)
∈ X is the configuration almost identical to σ where only the spin of node v has been flipped, i.e.,

σ
(v)
i =

{
σi if i ̸= v,

−σi if i = v.
(2.5)

Thus, the energy landscape we consider is a tuple (X ,Q,H, ∆) where X is the state space, Q ⊂ X×X is the connectivity
relation defined in (2.4), H is the energy function defined in (2.2), and the cost function ∆ : Q → R+ is defined as
(x, y) := [H(y) − H(x)]+. Note that the chosen energy landscape (X ,Q,H, ∆) is reversible with respect to the Gibbs
easure

µ(σ ) = Z−1 exp(−βH(σ )), (2.6)

here Z =
∑

σ∈X H(σ ) is the normalizing constant.
In the rest of the paper, we focus solely on the case of k = 2 clusters, hence focusing on the family of networks G(2, n).

he reason behind this choice is twofold: firstly, the case k = 2 already exhibits a very diverse and rich behavior, and,
econdly, the more general case with k > 2 clusters is not conceptually harder to tackle, but simply heavier in terms of
otation and terminology.
Having a network with only k = 2 clusters V (1) and V (2) allows for a very compact notation for spin configurations

that are equivalent modulo relabeling of the nodes. For a configuration σ ∈ X and i = 1, 2, let V (i)
+ (σ ) the subset of nodes

in cluster i whose spin is equal +1 in σ and E+(σ ) the subset of edges connecting V (1)
+ (σ ) and V (2)

+ (σ ). For 0 ≤ p1, p2 ≤ n
and 0 ≤ a ≤ n, we define the subset C(p1, p2, a) ⊂ X as

C(p1, p2, a) :=

{
σ ∈ X : |V (1)

+ (σ )| = p1, |V (2)
+ (σ )| = p2, and |E+(σ )| = a

}
.

In words, C(p1, p2, a) is the collection of configurations σ on G(2, n), such that

• σ has 0 ≤ p1 ≤ n spins +1 on the first cluster and 0 ≤ p2 ≤ n spins +1 on the second cluster;
• σ has a of agreeing cross-edges between spins +1 in the first cluster and spins +1 on the second cluster.

ote that the number a of agreeing edges given n, p1, p2 must satisfy the following inequality

max{0, p1 + p2 − n} ≤ a ≤ min{p1, p2}, (2.7)

ince there cannot be a negative amount of edges between any pair of sub-clusters. We remark that the parameters p1,
2 and a uniquely identify the set of configurations in C(p1, p2, a), modulo relabeling of the nodes. Indeed, it implicitly
ives information also about spins −1 in the following sense:

• σ has 0 ≤ n − p1 ≤ n spins −1 on the first cluster and 0 ≤ n − p2 ≤ n spins −1 on the second cluster;
• σ has p1 − a disagreeing cross-edges between spins +1 on the first cluster and spins −1 on the second cluster;
• σ has p2 − a disagreeing cross-edges between spins −1 on the first cluster and spins +1 on the second cluster;
• σ has n+a−p1 −p2 agreeing cross-edges between spins −1 on the first cluster and spins −1 on the second cluster.

Fig. 1 shows an example of a configuration in C(4, 3, 3) on the network G(2, 7).
We further denote by +1, −1 the two homogeneous configurations on G(2, n) consisting of all +1 spins and all −1

pins, see Fig. 2. We refer to the configurations which are not globally homogeneous but are locally uniform inside each
luster as mixed configurations and denote them as ±1, ∓1. Clearly, there are only 2 of them on G(2, n), see Fig. 3.
4
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2

Fig. 2. Representation of the two uniform configurations +1 and −1, where we depict in white (resp. black) the minus (resp. plus) spins.

Fig. 3. Representation of the two mixed configurations ±1 and ∓1, where we depict in white (resp. black) the minus (resp. plus) spins.

.2. Asymptotic behavior of the model in the low-temperature regime

For all values of the external magnetic field h ∈ [0, 1], the considered Ising model exhibits a metastable behavior.
In this subsection, we state our main results, which concern the analysis of the transition either from a metastable to a
stable state, or between two stable states, and the description of the corresponding critical configurations. Even if refer the
reader to Section 3 for the precise definitions of a stable state and a metastable state, we want to provide some intuition
for them before stating the main results. A stable state is easily defined as a configuration that is a global minimum
of the energy H . On the other hand, metastable states cannot be identified only by looking at the energy H , as they are
intrinsically defined by the evolution of the system as those configurations in which the system resides the longest before
arriving in one of the stable states. In terms of the energy landscape, the metastable states are those leaving from which
the dynamics have to overcome the largest energy barrier.

In Section 2.2.1 we state our main results for the case h = 0, while in Section 2.2.2 those for the case h > 0. Our
results concern the asymptotic behavior of the transition times between metastable and stable configurations in the
limit as β → ∞, as well as the identification of the so-called gate of critical configurations, which represents a set
of configurations that will be crossed with very high probability along these transitions (cf. Section 3 for the precise
definition).

2.2.1. Case h = 0
In this subsection we focus on the case h = 0, namely, there is no external magnetic field. The first result we provide

is the identification of metastable and stable states, which is the subject of the following theorem.

Theorem 2.1 (Stable and Metastable States). Let (X ,Q ,H, ∆) be the energy landscape corresponding to the Ising model on
G(2, n). Then, the lowest possible energy is equal to

min
σ∈X

H(σ ) = −n2
+ n − |ϵ|n. (2.8)

The set of stable states is

Xs =

⎧⎨⎩
{+1, −1} if ϵ > 0,
{+1, −1, ±1, ∓1} if ϵ = 0,
{±1, ∓1} if ϵ < 0,

(2.9)

and the set of metastable states is

Xm =

{
{±1, ∓1} if ϵ > 0,

(2.10)

{+1, −1} if ϵ < 0.

5
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The next theorem investigates the asymptotic behavior as β → ∞ of the tunneling time for the system started at
the stable state s1 to reach for the first time the other stable state s2, which we denote by τ

s1
s2 . See (3.1) for the precise

definition. In order to state the theorem, we need to define

Γ 0
s :=

{
n2
2 + |ϵ|n if n is even,

n2−1
2 + |ϵ|(n + 1) if n is odd,

(2.11)

hat represents the maximal value of the energy barrier between two stable states.

heorem 2.2 (Asymptotic Behavior of the Tunneling Time). For any δ > 0 and for any s1, s2 ∈ Xs, the following statements
old

(i) limβ→∞ P(eβ(Γ 0
s −δ) < τ

s1
s2 < eβ(Γ 0

s +δ)) = 1;
(ii) limβ→∞

1
β
logEτ

s1
s2 = Γ 0

s ;

(iii)
τ
s1
s2

Eτ
s1
s2

d
→ Exp(1) as β → ∞;

(iv) there exist two constants 0 < c1 ≤ c2 < ∞ independent of β such that for every β > 0

c1e−βΓ 0
s ≤ ρβ ≤ c2e−βΓ 0

s , (2.12)

where ρβ is the spectral gap of the Markov process.

Remark 2.3. We note that Theorem 2.2(iv) implies that

lim
β→∞

1
β

log tmix(γ ) = Γ 0
s = lim

β→∞

−
1
β

log ρβ , (2.13)

here tmix(γ ) is the mixing time of the Markov process, which quantifies how long it takes the empirical distribution of
he process to get close to the stationary distribution (see Section 3 for the precise definition).

The last result of this section concerns the description of a gate for the transition between the stable states s1 and s2.
o this end, if n is odd, we define

C∗

odd :=

{
C

( n+1
2 , 0, 0

)
∪ C

(
0, n+1

2 , 0
)
∪ C

(
n, n−1

2 , n−1
2

)
∪ C

( n−1
2 , n, n−1

2

)
if ϵ ≥ 0,

C
( n−1

2 , 0, 0
)
∪ C

(
0, n−1

2 , 0
)
∪ C

(
n, n+1

2 , n+1
2

)
∪ C

( n+1
2 , n, n+1

2

)
if ϵ < 0,

(2.14)

otherwise if n is even, we define

C∗

even := C
(n
2
, 0, 0

)
∪ C

(
0,

n
2
, 0

)
∪ C

(
n,

n
2
,
n
2

)
∪ C

(n
2
, n,

n
2

)
. (2.15)

heorem 2.4 (Gate for the Tunneling Transition). If n is even (resp. odd), the set C∗
even (resp. C∗

odd) is a gate for the transition
rom s1 to s2 for any s1, s2 ∈ Xs.

.2.2. Case h > 0
In this subsection, we focus on the case h > 0, which describes the situation in which there is a positive external

agnetic field that favors plus spins. Moreover, we assume that 0 < h ≤ 1 in order to avoid the energetical contribution
f the external magnetic field prevails over the binding energies associated with internal edges. As it will be clear later,
he dynamical behavior of the system is different in the two cases 0 < h ≤ |ϵ| ≤ 1 and 0 ≤ |ϵ| < h ≤ 1, especially when
< 0. Indeed, this corresponds to a different ‘‘importance’’ given to the cross-edges and the external magnetic field. The

irst result we provide is the identification of metastable and stable states, which is the subject of the following theorem.

heorem 2.5 (Stable and Metastable States). Let (X ,Q ,H, ∆) be the energy landscape corresponding to the Ising model on
(2, n). Then, the lowest possible energy is equal to

min
σ∈X

H(σ ) =

{
−n2

+ n − ϵn − 2hn if 0 ≤ ϵ ≤ 1 or 0 < −ϵ < h ≤ 1,
−n2

+ n + ϵn if 0 < h ≤ −ϵ ≤ 1.
(2.16)

he set of stable states is

Xs =

⎧⎨⎩
{+1} if 0 ≤ ϵ ≤ 1 or 0 < −ϵ < h ≤ 1,
{+1, ±1, ∓1} if h = −ϵ, (2.17)

{±1, ∓1} if 0 < h < −ϵ ≤ 1,

6
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nd the set of metastable states is

Xm =

⎧⎨⎩
{−1} if 0 ≤ ϵ ≤ 1 or h = −ϵ,

{±1, ∓1} if 0 < −ϵ < h ≤ 1,
{+1} if 0 < h < −ϵ ≤ 1.

(2.18)

The next theorems investigate the asymptotic behavior as β → ∞ of the tunneling time (resp. transition time to the
table state) for the system started at the stable state s1 (resp. metastable state m) to reach for the first time the other
table state s2 (resp. the stable state s) if 0 < h < −ϵ ≤ 1 (resp. if 0 ≤ ϵ ≤ 1 or 0 < −ϵ < h ≤ 1). See (3.1) for the
recise definition. In order to state the theorems, we need to define:

Γ 1
m :=

⎧⎪⎪⎨⎪⎪⎩
n2
2 + n(ϵ − h) if n is even,

n2−1
2 + (n + 1)(ϵ − h) if n is odd and 0 < h ≤ ϵ ≤ 1,

n2−1
2 + (n − 1)(ϵ − h) if n is odd and 0 ≤ ϵ < h ≤ 1,

(2.19)

Γ 2
m :=

{
n2
2 − n(ϵ + h) if n is even,

n2−1
2 − (n − 1)(ϵ + h) if n is odd,

(2.20)

Γ h
s :=

⎧⎪⎪⎨⎪⎪⎩
n2
2 + n(h − ϵ) if n is even and 0 < h − ϵ < 1,
n2−4

2 + (n + 2)(h − ϵ) if n is even and 1 ≤ h − ϵ < 2,
n2−1

2 + (n + 1)(h − ϵ) if n is odd.

(2.21)

hat represent the maximal values of the energy barrier between the set of metastable states to the set of stable states
r between two stable states.

heorem 2.6 (Asymptotic Behavior of the Tunneling Time). If 0 < h < −ϵ ≤ 1, for any δ > 0 and for any s1, s2 ∈ Xs, the
ollowing statements hold

(i) limβ→∞ P(eβ(Γ h
s −δ) < τ

s1
s2 < eβ(Γ h

s +δ)) = 1;
(ii) limβ→∞

1
β
logEτ

s1
s2 = Γ h

s ;

(iii)
τ
s1
s2

Eτ
s1
s2

d
→ Exp(1) as β → ∞;

(iv) there exist two constants 0 < c1 ≤ c2 < ∞ independent of β such that for every β > 0

c1e−βΓ h
s ≤ ρβ ≤ c2e−βΓ h

s , (2.22)

where ρβ is the spectral gap of the Markov process.

If 0 ≤ ϵ ≤ 1 we set Γ ∗
m = Γ 1

m , whereas if 0 < −ϵ < h ≤ 1 we set Γ ∗
m = Γ 2

m .

heorem 2.7 (Asymptotic Behavior of the Transition Time). If 0 ≤ ϵ ≤ 1 or 0 < −ϵ < h ≤ 1, for any δ > 0, for m ∈ Xm and
∈ Xs, the following statements hold

(i) limβ→∞ P(eβ(Γ ∗
m−δ) < τm

s < eβ(Γ ∗
m+δ)) = 1;

(ii) limβ→∞
1
β
logEτm

s = Γ ∗
m;

(iii) τms
Eτms

d
→ Exp(1) as β → ∞;

(iv) there exist two constants 0 < c1 ≤ c2 < ∞ independent of β such that for every β > 0

c1e−βΓ ∗
m ≤ ρβ ≤ c2e−βΓ ∗

m , (2.23)

where ρβ is the spectral gap of the Markov process.

Remark 2.8. We note that Theorem 2.6(iv) implies that

lim
β→∞

1
β

log tmix(γ ) = Γ h
s = lim

β→∞

−
1
β

log ρβ , (2.24)

here tmix(γ ) is the mixing time of the Markov process (see Section 3 for the precise definition). Analogously, a similar
esult can be also derived for Γ ∗

m from Theorem 2.7(iv).

The last main result of this section concerns the description of a gate for the transition between the stable states s1 and
2 (resp. between the metastable state m and the stable state s) if 0 < h < −ϵ ≤ 1 (resp. if 0 ≤ ϵ ≤ 1 or 0 < −ϵ < h ≤ 1).
o this end, we need the following definitions.
7
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If 0 ≤ ϵ ≤ 1, we define

C∗

1 :=

⎧⎨⎩
C

( n+1
2 , 0, 0

)
∪ C

(
0, n+1

2 , 0
)

if n is odd and 0 < h ≤ ϵ ≤ 1,
C

( n−1
2 , 0, 0

)
∪ C

(
0, n−1

2 , 0
)

if n is odd and 0 ≤ ϵ < h ≤ 1,
C

( n
2 , 0, 0

)
∪ C

(
0, n

2 , 0
)

if n is even.

(2.25)

If 0 < −ϵ < h ≤ 1, we define

C∗

2 :=

{
C

(
n, n−1

2 , n−1
2

)
if n is odd,

C
(
n, n

2 ,
n
2

)
if n is even.

(2.26)

If 0 < h < −ϵ ≤ 1, we define

C∗

3 :=

⎧⎪⎨⎪⎩
C

( n−1
2 , 0, 0

)
∪ C

(
0, n−1

2 , 0
)

if n is odd,

C
( n
2 , 0, 0

)
∪ C

(
0, n

2 , 0
)

if n is even and 0 < h − ϵ < 1,

C
( n−2

2 , 0, 0
)
∪ C

(
0, n−2

2 , 0
)

if n is even and 1 ≤ h − ϵ < 2.

(2.27)

heorem 2.9 (Gate for the Transition). If 0 ≤ ϵ ≤ 1 (resp. 0 < −ϵ < h ≤ 1), the set C∗

1 (resp. C∗

2 ) is a gate for the transition
from the metastable state m to the stable state s. If 0 < h < −ϵ ≤ 1, the set C∗

3 is a gate for the transition from s1 to s2 for
any s1, s2 ∈ {±1, ∓1}.

3. Model-independent definitions and preliminaries

In this section, we provide the definitions and the notation that will be useful throughout the paper, together with
some preliminary results concerning the energetical properties of the configurations.

Paths, hitting, and mixing times

• A path ω is a sequence ω = (ω1, . . . , ωk), with k ∈ N, ωi ∈ X and P(ωi, ωi+1) > 0 for i = 1, . . . , k − 1. We write
ω : η → η′ to denote a path from η to η′, namely with ω1 = η, ωk = η′.

• Given a non-empty set A ⊂ X and a state σ ∈ X , we define the first-hitting time of A with initial state σ at time
t = 0 as

τ σ
A := min{t ≥ 0 : Xt ∈ A |X0 = σ }. (3.1)

• We define the mixing time as

tmix(γ ) := min{n ≥ 0 : max
σ∈X

∥Pn(σ , ·) − µ(·)∥TV ≤ γ }, (3.2)

where ∥ν − ν ′
∥TV :=

1
2

∑
σ∈X |ν(σ ) − ν ′(σ )| for any two probability distributions ν, ν ′ on X . Moreover, the spectral

gap of the Markov chain is defined as

ρβ := 1 − a(2)β , (3.3)

where 1 = a(1)β > a(2)β ≥ · · · ≥ a(|X |)
β ≥ −1 are the eigenvalues of the matrix (P(σ , η))σ ,η∈X defined in (2.3).

ommunication height, stability level, stable and metastable states

• The communication height between a pair η, η′
∈ X is

Φ(η, η′) := min
ω:η→η′

max
ζ∈ω

H(ζ ). (3.4)

• We call stability level of a state ζ ∈ X the energy barrier

Vζ := Φ(ζ , Iζ ) − H(ζ ), (3.5)

where Iζ is the set of states with energy below H(ζ ):

Iζ := {η ∈ X : H(η) < H(ζ )}. (3.6)

We set Vζ := ∞ if Iζ is empty.
• The set of stable states is the set of the global minima of the Hamiltonian and we denote it by Xs.

Moreover, for any s , s ∈ X , we set Γ := Φ(s , s ) − H(s ).
1 2 s s 1 2 1

8
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• The set of metastable states is given by

Xm := {η ∈ X : Vη = max
ζ∈X\Xs

Vζ }. (3.7)

We denote by

Γm := max
ζ∈X\Xs

Vζ (3.8)

the maximum stability level, namely the stability level of the states in Xm. We note that Γm = Φ(m, s)−H(m), where
m ∈ Xm and s ∈ Xs.

Optimal paths, saddles, and gates

• We denote by (η → η′)opt the set of optimal paths as the set of all paths from η to η′ realizing the min–max in X ,
i.e.,

(η → η′)opt := {ω : η → η′ such that max
ξ∈ω

H(ξ ) = Φ(η, η′)}. (3.9)

• The set of minimal saddles between η, η′
∈ X is defined as

S(η, η′) := {ζ ∈ X : ∃ω ∈ (η → η′)opt , ω ∋ ζ such that max
ξ∈ω

H(ξ ) = H(ζ )}. (3.10)

• Given a pair η, η′
∈ X , we say that W ≡ W(η, η′) is a gate for the transition η → η′ if W(η, η′) ⊆ S(η, η′) and

ω ∩ W ̸= ∅ for all ω ∈ (η → η′)opt . In words, a gate is a subset of S(η, η′) that is visited by all optimal paths.

We conclude this section by providing some useful lemmas concerning the energetical properties of the configurations
in C(p1, p2, a), which will be used in the rest of the paper.

Lemma 3.1 (Energy of the Configurations in C(p1, p2, a)). For any σ ∈ C(p1, p2, a), it holds that

H(σ ) = n − ϵn − 2
(
p1 −

n
2

)2
− 2

(
p2 −

n
2

)2
− 2ϵ(2a − p1 − p2) − 2h(p1 + p2 − n). (3.11)

roof. Let σ ∈ C(p1, p2, a). Note that in the first cluster there are
(p1
2

)
(resp.

(n−p1
2

)
) internal edges between plus (resp.

inus) spins, whereas there are p1(n−p1) internal edges between plus and minus spins. By symmetry, analogous relations
an be derived for the second cluster. Moreover, there are n+2a− p1 − p2 (resp. p1 + p2 −2a) cross edges between spins
f the same (resp. different) type and p1 + p2 plus spins in G(2, n). Thus, by using (2.2) we deduce

H(σ ) = −
(n − p1)(n − p1 − 1)

2
−

p1(p1 − 1)
2

−
(n − p2)(n − p2 − 1)

2
−

p2(p2 − 1)
2

+p1(n − p1) + p2(n − p2) − ϵ(n + 4a − 2p1 − 2p2) − 2h(p1 + p2 − n)

= n − ϵn − 2
(
p1 −

n
2

)2
− 2

(
p2 −

n
2

)2
− 2ϵ(2a − p1 − p2) − 2h(p1 + p2 − n). □

(3.12)

From now on, we define up-flip (resp. down-flip) as the move consisting in flipping a minus (resp. plus) spin in a plus
resp. minus) spin.

emma 3.2 (Energy Difference for an Up-Flip). Let σ1 ∈ C(p1, p2, a1) and let σ2 ∈ C(p1 + i, p2 + j, a2), with i, j ∈ {0, 1} such
that i ̸= j. Then,

H(σ2) − H(σ1) =

⎧⎪⎪⎨⎪⎪⎩
2(n − 1 − 2p1 + ϵ − h) if i = 1, p1 ≤ n − 1 and a2 = a1,
2(n − 1 − 2p1 − ϵ − h) if i = 1, p1 ≤ n − 1 and a2 = a1 + 1,
2(n − 1 − 2p2 + ϵ − h) if j = 1, p2 ≤ n − 1 and a2 = a1,
2(n − 1 − 2p2 − ϵ − h) if j = 1, p2 ≤ n − 1 and a2 = a1 + 1.

(3.13)

Proof. In the case i = 1 and p1 ≤ n − 1, by using (3.11), we directly get

H(σ2) − H(σ1) = 2(n − 1 − 2p1 + 2ϵa1 − 2ϵa2 + ϵ − h) =

{
2(n − 1 − 2p1 + ϵ − h) if a2 = a1,
2(n − 1 − 2p1 − ϵ − h) if a2 = a1 + 1.

(3.14)

By symmetry, we get the claim also in the case j = 1 and p ≤ n − 1. □
2

9
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Fig. 4. A schematic representation of the reference path ω̄ with the saddles, the metastable and stable states that it crosses. We depict the minus
resp. plus) spins in white (resp. black).

Fig. 5. A schematic representation of the reference path ω̂ with the saddles, the metastable and stable states that it crosses. We depict the minus
resp. plus) spins in white (resp. black).

emma 3.3 (Energy Difference for a Down-Flip). Let σ1 ∈ C(p1, p2, a1), σ2 ∈ C(p1 − i, p2 − j, a2), with i, j ∈ {0, 1} such that
̸= j. Then,

H(σ2) − H(σ1) =

⎧⎪⎪⎨⎪⎪⎩
−2(n + 1 − 2p1 + ϵ − h) if i = 1, p1 ≥ 1 and a2 = a1,
−2(n + 1 − 2p1 − ϵ − h) if i = 1, p1 ≥ 1 and a2 = a1 − 1,
−2(n + 1 − 2p2 + ϵ − h) if j = 1, p2 ≥ 1 and a2 = a1,
−2(n + 1 − 2p2 − ϵ − h) if j = 1, p2 ≥ 1 and a2 = a1 − 1.

(3.15)

Proof. By proceeding as in the proof of Lemma 3.3, we get the claim. □

Since the configurations in C(p1, p2, a) have all the same energy, see Lemma 3.1, with a slight abuse of notation in the
rest of the paper we denote their energy value by H(p1, p2, a).

4. Proof of the main results: case h = 0

4.1. Reference paths

If ϵ ≥ 0, we define a reference path ω̄ from −1 to +1, while if ϵ < 0 we define a path ω̂ from ±1 to ∓1. In words,
these paths are constructed in the following way. The path ω̄, which starts from −1, consists in flipping one by one the
minus spins in one community until the path reaches either ±1 or ∓1 and afterward the remaining minuses are flipped
one by one until the path reaches +1 (see Fig. 4). The construction of the path ω̂ is made in a similar way (see Fig. 5).

Definition 4.1 (Reference Paths). If ϵ ≥ 0, we define ω̄ : −1 → +1 as the path (ω̄k)2nk=0 such that

ω̄k ∈ C(k, 0, 0) and ω̄n+k ∈ C(n, k, k), for any k = 0, . . . , n. (4.1)

If ϵ < 0, we define ω̂ : ±1 → ∓1 as the path (ω̂k)2nk=0 such that

ω̂k ∈ C(n, k, k) and ω̂n+k ∈ C(n − k, n, n − k), for any k = 0, . . . , n. (4.2)
10
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emma 4.2 (Maximal Energy on the Reference Paths). Let ω̄ : −1 → +1 and ω̂ : ±1 → ∓1 be the paths given in Definition 4.1.
Then,

Φω̄ =

{
H(ω̄ n

2
) = H(ω̄n+ n

2
) = n −

n2
2 if n is even,

H(ω̄ n+1
2
) = H(ω̄n+ n−1

2
) = n −

n2+1
2 + ϵ if n is odd,

(4.3)

nd

Φω̂ =

{
H(ω̂ n

2
) = H(ω̂n+ n

2
) = n −

n2
2 − ϵn if n is even,

H(ω̂ n+1
2
) = H(ω̂n+ n−1

2
) = n −

n2+1
2 − ϵ if n is odd.

(4.4)

roof. Since H(C(n−k, n, n−k)) = H(C(k, 0, 0)), it suffices to study the maxima of the energy along the path ω̄ connecting
1 and +1. From (3.11) and (4.1), we have

H(ω̄k) = −n2
+ n + 2kn − 2k2 + 2kϵ − nϵ,

H(ω̄n+k) = −n2
+ n + 2kn − 2k2 − 2kϵ + nϵ, (4.5)

or any k = 0, . . . , n. By deriving both equations in (4.5) with respect to k, we have that the maxima of the energy along
he path ω̄ are H(ω̄ n+ϵ

2
) and H(ω̄n+ n−ϵ

2
). This means that on the first part of the path (ω̄k)nk=0 the maximum is reached at

he critical value k∗

1 =
n+ϵ
2 , while on the second part of the path (ω̄k+n)nk=0 the maximum is reached at the critical value

∗

2 =
n−ϵ
2 .

Let us focus on the value k∗

1. Note that H(ω̄k) is a concave parabola in k, which is symmetric with respect to k∗

1. Since
e are interested in finding the integer value of k in which this maximum is achieved, we need to compare the distances

k∗

1 −⌊k∗

1⌋ and ⌈k∗

1⌉− k∗

1. The minimal distance indicates the value we are interested in. Consider now the case ϵ ≥ 0, thus

⌊k∗

1⌋ =

⎧⎪⎨⎪⎩
n
2 if n is even,

n−1
2 if n is odd and 0 ≤ ϵ < 1,

n+1
2 if n is odd and ϵ = 1,

⌈k∗

1⌉ =

⎧⎪⎨⎪⎩
n
2 + 1 if n is even,

n+1
2 if n is odd and 0 ≤ ϵ < 1,

n+3
2 if n is odd and ϵ = 1,

(4.6)

nd

⌊k∗

2⌋ =

{
n
2 − 1 if n is even,

n−1
2 if n is odd,

⌈k∗

2⌉ =

{
n
2 if n is even,

n+1
2 if n is odd.

(4.7)

ssume n even. Since ⌊
n+ϵ
2 ⌋ =

n
2 and ⌈

n+ϵ
2 ⌉ =

n
2 + 1, we have that k∗

1 − ⌊k∗

1⌋ =
ϵ
2 ≤ 1 −

ϵ
2 = ⌈k∗

1⌉ − k∗

1 and therefore the
aximum is achieved in H(ω̄ n

2
). By arguing similarly for n odd and k∗

2, we get the claim for ϵ ≥ 0. Since H(ω̄k) = H(ω̂n+k)

and H(ω̄n+k) = H(ω̂k) for any k = 0, . . . , n, the case ϵ < 0 can be studied in a similar way. Note that for ϵ < 0 the values
⌊k∗

i ⌋ and ⌈k∗

i ⌉, with i = 1, 2, are different from the case ϵ > 0. □

Proposition 4.3 (Upper Bounds). Let (X ,Q ,H, ∆) be the energy landscape corresponding to the Ising model on G(2, n), then
Γs ≤ Γ 0

s , where Γ 0
s is defined in (2.11).

Proof. By using (2.8) and Lemma 4.2, we get the claim. □

.2. Lower bounds

For every p ∈ {0, . . . , 2n}, define the manifold C(p) ⊂ X as the subset of configurations in X with exactly p plus spins,
hat is C(p) := {σ ∈ X :

∑
i∈V 1{σi=+1} = p}, see Fig. 6 for an example. By fixing the number of plus spins in each of the

wo clusters and using the notation introduced in Section 2.1, the manifold C(p) can be decomposed as

C(p) =

⋃
0≤p1,p2≤n
p1+p2=p

C(p1, p2, a).

ssuming the current state σ ∈ C(p) for some p, since we consider a single-flip dynamics, every nontrivial update will
ead to new state σ ′ that belongs to either C(p − 1) or C(p + 1).
11



S. Baldassarri, A. Gallo, V. Jacquier et al. Physica A 623 (2023) 128811

F
i

P
s

L

v
p

Fig. 6. Example of a configuration σ on the network G(2, 7) that belongs to the manifold C(10), since it has p = 10 plus spins, specifically p1 = 6
in the first cluster and p2 = 4 in the second cluster (+1/−1 spins are colored in black/white, respectively).

Proposition 4.4 (Local Minima). For every n ≥ 2 and |ϵ| ≤ 1, regardless of the sign of ϵ, the minimum value of the energy H
on the manifold C(p) is given by

H(p) := min
σ∈C(p)

H(σ ) =

{
n − (p − n)2 − p2 − ϵ(n − 2p) if 0 ≤ p ≤ n,
n − (2n − p)2 − (p − n)2 − ϵ(2p − 3n) if n ≤ p ≤ 2n.

(4.8)

urthermore, if 0 ≤ p ≤ n, the minimum is achieved on the subsets C(p, 0, 0) and C(0, p, 0), while if n ≤ p ≤ 2n, the minimum
s achieved on the subsets C(n, p − n, p − n) and C(p − n, n, p − n).

roof. For every fix p, one has to consider all the subsets C(p1, p2, a) which partition C(p). In view of (3.11), we need to
olve the quadratic optimization problem:

min
σ∈C(p)

H(σ ) = n + ϵ(2p − n) + min
p1,p2,a

0≤p1, p2≤n
p1+p2=p

max{0,p−n}≤a≤min{p1,p2}

(
−2

(
p1 −

n
2

)2
− 2

(
p2 −

n
2

)2
− 4ϵa

)
. (4.9)

If ϵ > 0, it is clear from (4.9) that a should be as large as possible to achieve a possibly lower energy. Without loss of
generality, we may assume that p1 ≤ p2 and substituting a = min{p1, p2} = p1 and then p2 = p − p1, we have

min
σ∈C(p)

H(σ ) = n − ϵ(n − 2p) + min
p1

max{0,p−n}≤p1≤p/2

(
−2

(
p1 −

n
2

)2
− 2

(
p − p1 −

n
2

)2
− 4ϵp1

)
. (4.10)

et us define f (p1) :=

(
−2

(
p1 −

n
2

)2
− 2

(
p − p1 −

n
2

)2
− 4ϵp1

)
. Recall that p is only a fixed parameter, so f (p1) single-

ariable concave function of p1, which will then achieve its minimum value at the boundary points. The inequality
1 ≤ p/2 follows from the assumptions p1 + p2 = p and p1 ≤ p2. Recall that p ≤ 2n and let us distinguish two cases:

(a) If 0 ≤ p ≤ n, then the boundary points to consider are p1 ∈ {0, ⌊p/2⌋}, at which the function f (p1) attains the
following values

f (0) = −n2
− 2p2 + 2np,

f (⌊ p
2⌋) =

{
−n2

− p2 + 2np − 2ϵp if p is even,

−n2
− p2 + 2np − 2ϵp + 2ϵ − 1 if p is odd.

(4.11)

By a direct computation, it follows that f (0) ≤ f (⌊ p
2⌋) either whenever ϵ ≤

p
2 if p is even, or whenever ϵ ≤

p+1
2 if p

is odd. From now on, we consider separately the three following cases.
If p = 0, we obtain that f (⌊ p

2⌋) = f (0) and therefore, by using (4.10),

min
σ∈C(0)

H(σ ) = n − n2
− ϵn. (4.12)

If p = 1, we obtain that f (⌊ p
2⌋) = f (0) and therefore, by using (4.10),

min
σ∈C(1)

H(σ ) = 3n − n2
− ϵn + 2ϵ − 2. (4.13)

If 2 ≤ p ≤ n, since |ϵ| ≤ 1, we have that f (0) ≤ f (⌊ p
2⌋). Thus, by using (4.10),

min H(σ ) = n − (p − n)2 − p2 − ϵ(n − 2p). (4.14)

σ∈C(p), 2≤p≤n

12
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(b) If n ≤ p ≤ 2n, then the boundary points to consider are p1 ∈ {p − n, ⌊p/2⌋}, at which the function f (p1) attains the
following values

f (p − n) = −5n2
− 2p2 + 6np − 4ϵp + 4ϵn,

f (⌊ p
2⌋) =

{
−n2

− p2 + 2np − 2ϵp if p is even,

−n2
− p2 + 2np − 2ϵp + 2ϵ − 1 if p is odd.

(4.15)

By a direct computation, it follows that f (p − n) ≤ f (⌊ p
2⌋) either whenever ϵ ≤ n −

p
2 if p is even, or whenever

ϵ ≤ n −
p−1
2 if p is odd. From now on, we consider separately the three following cases.

If n ≤ p ≤ 2n − 2, since |ϵ| ≤ 1, we have that f (p − n) ≤ f (⌊ p
2⌋). Thus, by using (4.10),

min
σ∈C(p), n≤p≤2n−2

H(σ ) = n − (2n − p)2 − (p − n)2 − ϵ(2p − 3n). (4.16)

If p = 2n − 1, we obtain that f (⌊ p
2⌋) = f (n − 1). Thus, by using (4.10),

min
σ∈C(2n−1)

H(σ ) = 3n − n2
− ϵn + 2ϵ − 2. (4.17)

If p = 2n, we obtain that f (⌊ p
2⌋) = f (n). Thus, by using (4.10),

min
σ∈C(2n)

H(σ ) = n − n2
− ϵn. (4.18)

rom the calculations above, it is easy to deduce that if 0 ≤ p ≤ n, the minimum is achieved on the subsets C(p, 0, 0) and
C(0, p, 0), while if n ≤ p ≤ 2n, the minimum is achieved on the subsets C(n, p − n, p − n) and C(p − n, n, p − n).

If ϵ < 0, it is clear from (4.9) that a should be as small as possible to achieve a possibly lower energy. As before,
ithout loss of generality, we assume that p1 ≤ p2 and we substitute p2 = p − p1 in (4.9). We need to distinguish two
ases depending on the value of p.

(a) If 0 ≤ p ≤ n, then a = max{0, p − n} = 0 and (4.9) becomes

min
σ∈C(p)

H(σ ) = n − ϵ(n − 2p) + min
p1

0≤p1≤p/2

(
−2

(
p1 −

n
2

)2
− 2

(
p − p1 −

n
2

)2
)

. (4.19)

The objective function g(p1) := −2
(
p1 −

n
2

)2
− 2

(
p − p1 −

n
2

)2 is concave in p1, so again we search the minimum
among the boundary points p1 ∈ {0, ⌊p/2⌋}, at which the function g(p1) attains the following values

g(0) = −n2
− 2p2 + 2np,

g(⌊ p
2⌋) =

{
−n2

− p2 + 2np if p is even,

−n2
− p2 + 2np − 1 if p is odd.

(4.20)

By a direct computation, it follows that g(0) ≤ g(⌊ p
2⌋) in both cases p even and p odd and, thus,

min
σ∈C(p), 0≤p≤n

H(σ ) = n − (p − n)2 − p2 − ϵ(n − 2p). (4.21)

(b) If n ≤ p ≤ 2n, then a = max{0, p − n} = p − n and (4.9) becomes

min
σ∈C(p)

H(σ ) = n − ϵ(2p − 3n) + min
p1

p−n≤p1≤p/2

g(p1). (4.22)

The objective function g(p1) is concave in p1, so again we search the minimum among the boundary points p1 ∈

{p − n, ⌊p/2⌋}, at which the function g(p1) attains the following values

g(p − n) = −5n2
− 2p2 + 6pn,

g(⌊ p
2⌋) =

{
−n2

− p2 + 2pn if p is even,

−n2
− p2 + 2pn − 1 if p is odd.

(4.23)

By a direct computation, it follows that g(p − n) ≤ g(⌊ p
2⌋) in both cases p even and p odd and, thus,

min
σ∈C(p), n≤p≤2n

H(σ ) = n − (2n − p)2 − (p − n)2 − ϵ(2p − 3n). (4.24)

rom the calculations above, it is easy to deduce that the minimum is achieved on the subsets C(p, 0, 0) and C(0, p, 0) if
≤ p ≤ n, and on the subsets C(n, p − n, p − n) and C(p − n, n, p − n) if n ≤ p ≤ 2n. □

In order to analyze the manifold C(p) with maximal energy, we need to define

p∗

left :=

⎧⎨⎩
n
2 if n is even,
n+1
2 if n is odd and ϵ ≥ 0,

n−1
(4.25)
2 if n is odd and ϵ < 0,

13
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nd

p∗

right :=

⎧⎨⎩
n +

n
2 if n is even,

n +
n−1
2 if n is odd and ϵ ≥ 0,

n +
n+1
2 if n is odd and ϵ < 0.

(4.26)

For any 0 ≤ p ≤ 2n, let Mp ∈ C(p) be the set of configurations with minimal energy.

roposition 4.5 (Lower Bounds). Let (X ,Q ,H, ∆) be the energy landscape corresponding to the Ising model on G(2, n). The
ollowing statements hold:

• the maximum of the energy on
⋃

0≤p≤n Mp is realized by the configurations in C(p∗

left, 0, 0) ∪ C(0, p∗

left, 0);
• the maximum of the energy on

⋃
n≤p≤2n Mp is realized by the configurations in C(n, p∗

right − n, p∗

right − n) ∪ C(p∗

right −

n, n, p∗

right − n).

Moreover, we have that Γs ≥ Γ 0
s , where Γ 0

s is defined in (2.11).

roof. The idea of the proof is to identify, depending on the parity of n and the value of ϵ, the correct manifold that
ould give the desired lower bound. Treating H(p) as a function of a continuous variable, we see that is concave and,
olving for d

dpH(p) = 0, we obtain two stationary points pleft =
n
2 +

ϵ
2 and pright =

3n
2 −

ϵ
2 . They both yield the value

max
0≤p≤2n

H(p) = −
1
2

(
n2

− 2n − ϵ2) . (4.27)

ince pleft and pright can only take integer values, we deduce that the possible integer optimal values are

p∗

1 ∈

{⌊n
2

+
ϵ

2

⌋
,

⌈n
2

+
ϵ

2

⌉}
, p∗

2 ∈

{⌊3n
2

−
ϵ

2

⌋
,

⌈3n
2

−
ϵ

2

⌉}
. (4.28)

y performing the same computations as in the proof of Lemma 4.2, we obtain that p∗

1 = p∗

left and p∗

2 = p∗

right,
here p∗

left (resp. p∗

right) is defined in (4.25) (resp. (4.25)). Furthermore, by Proposition 4.4 we have that the minimum
f the energy on the manifold C(p∗

left) is realized in Mp∗
left

≡ C(p∗

left, 0, 0) ∪ C(0, p∗

left, 0) and on the manifold C(p∗

right) in
Mp∗

right
≡ C(n, p∗

right − n, p∗

right − n) ∪ C(p∗

right − n, n, p∗

right − n). □

orollary 4.6 (Maximal Energy Barrier). We have that

Γs =

{
n2
2 + |ϵ|n if n is even,
n2−1

2 + |ϵ|(n + 1) if n is odd.
(4.29)

roof. We get the claim by combining Propositions 4.3 and 4.5. □

.3. Proof of Theorem 2.1: Identification of stable and metastable states

The proof of Theorem 2.1 readily follows combining Corollary 4.6 with the following two propositions, Propositions 4.7
nd 4.8, to whose proof the rest of the subsection is devoted.

roposition 4.7 (Identification of Stable States). Let (X ,Q ,H, ∆) be the energy landscape corresponding to the Ising model on
G(2, n). Then, the lowest possible value of the energy is equal to

min
σ∈X

H(σ ) = −n2
+ n − |ϵ|n, (4.30)

nd the set of stable states is

Xs =

⎧⎨⎩
{+1, −1} if ϵ > 0,
{+1, −1, ±1, ∓1} if ϵ = 0,
{±1, ∓1} if ϵ < 0.

(4.31)

roposition 4.8 (Identification of Metastable States). Let σ ∈ X \ {+1, ±1, ∓1, −1}, then the stability level of σ is zero,
.e., Vσ = 0. The set of metastable states is

Xm =

{
{±1, ∓1} if ϵ > 0,

(4.32)

{+1, −1} if ϵ < 0.

14
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oreover, we have that

Γs =

{
n2
2 − |ϵ|n if n is even,
n2−1

2 − |ϵ|(n − 1) if n is odd,
(4.33)

nd

Γm =

{
n2
2 − |ϵ|n if n is even,
n2−1

2 − |ϵ|(n − 1) if n is odd.
(4.34)

roof of Proposition 4.7. Recalling that max{p1 + p2 − n, 0} ≤ a ≤ min{p1, p2}, we note that a is a function of p1 and
2. In view of the partition

X =

⋃
0≤p1,p2≤n

max{0,p1+p2−n}≤a≤min{p1,p2}

C(p1, p2, a) (4.35)

nd (3.11), we can calculate the minimum energy as

min
p1, p2

H(p1, p2, a) = n − nϵ + 2 min
p1, p2

(
−

(
p1 −

n
2

)2
−

(
p2 −

n
2

)2
+ ϵ(p1 + p2) − 2ϵa

)
(4.36)

=: n − nϵ + 2 min
p1, p2

f (p1, p2). (4.37)

f ϵ ≥ 0, we have that

min
p1, p2

f (p1, p2) = min
p1, p2

(
−

(
p1 −

n
2

)2
−

(
p2 −

n
2

)2
+ ϵ(p1 + p2) − 2ϵ min{p1, p2}

)
, (4.38)

o the function f (p1, p2) is concave in both variables. Thus, we expect the minimum (p∗

1, p
∗

2) to be achieved at the boundary
of the feasible region. This immediately implies that (p∗

1, p
∗

2) ∈ {(0, 0), (0, n), (n, 0), (n, n)}. By direct computation, we
obtain:

f (0, 0) = f (n, n) = −
n2

2
; f (0, n) = f (n, 0) = −

n2

2
+ nϵ. (4.39)

his implies that the minimum is achieved at (p∗

1, p
∗

2) = (0, 0) and (p∗

1, p
∗

2) = (n, n), which correspond to the configuration
(0, 0, 0) ≡ −1 and C(n, n, n) ≡ +1, respectively.
If ϵ < 0, we have that

min
p1, p2

f (p1, p2) = min
p1, p2

(
−

(
p1 −

n
2

)2
−

(
p2 −

n
2

)2
+ ϵ(p1 + p2) − 2ϵ max{p1 + p2 − n, 0}

)
,

so the function f (p1, p2) is concave in both variables as before. Thus, we deduce that the possible configurations in which
the minimum is achieved are the same as in (4.39). By direct computation, the minimum is attained at (p∗

1, p
∗

2) = (n, 0)
and (p∗

1, p
∗

2) = (0, n), which correspond to the configuration C(n, 0, 0) ≡ ±1 and C(0, n, 0) ≡ ∓1, respectively. □

Proof of Proposition 4.8. Consider a configuration σ ∈ C(p1, p2, a), with 0 ≤ p1, p2 ≤ n and max{p1 + p2 − n, 0} ≤ a ≤

min{p1, p2}. Note that such a configuration σ can communicate via one step of the dynamics with a configuration σ ′ such
hat

σ ′
∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(p1 + 1, p2, a) if p1 ̸= n and a > max{p1 + p2 − n, 0},
C(p1, p2 + 1, a) if p2 ̸= n and a > max{p1 + p2 − n, 0},
C(p1 + 1, p2, a + 1) if p1 ̸= n and a = max{p1 + p2 − n, 0},
C(p1, p2 + 1, a + 1) if p2 ̸= n and a = max{p1 + p2 − n, 0},
C(p1 − 1, p2, a) if p1 ̸= 0 and a < min{p1, p2} or p1 > p2 and a = min{p1, p2},
C(p1, p2 − 1, a) if p2 ̸= 0 and a < min{p1, p2} or p2 > p1 and a = min{p1, p2},
C(p1 − 1, p2, a − 1) if p1 ̸= 0, p1 ≤ p2 and a = min{p1, p2},
C(p1, p2 − 1, a − 1) if p2 ̸= 0, p2 ≤ p1 and a = min{p1, p2}.

(4.40)

n other words, σ ′ is a configuration obtained from σ via either an up-flip or a down-flip in one of the two clusters. First,
e will prove that if σ ∈ C(p1, p2, a) \ {−1, ∓1, ±1, +1}, then H(σ ′) − H(σ ) < 0, with σ ′ one of the configurations
escribed in (4.40). To this end, we consider the following cases.

A. p1 = n and a ≥ max{p1 + p2 − n, 0};
B. p1 ̸= n and a > max{p1 + p2 − n, 0};
C. p1 ̸= n and a = max{p1 + p2 − n, 0}.
15
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ase A. Since it is not possible to have p1 = n and a > max{p1 + p2 − n, 0}, we note that now σ ∈ C(n, p2, p2). Since
/∈ {+1, ±1}, it follows that 0 < p2 < n. By using Lemma 3.2, we deduce that

H(C(n, p2 + 1, p2 + 1)) − H(C(n, p2, p2)) < 0 ⇐⇒ p2 ≥

⌈n − 1
2

−
ϵ

2

⌉
. (4.41)

hus, if p2 satisfies (4.41), then the proof is concluded. Otherwise, by using Lemma 3.3 we deduce that H(C(n, p2 −1, p2 −

1)) − H(C(n, p2, p2)) < 0.
Case B. By using Lemma 3.2, we deduce that

H(C(p1 + 1, p2, a)) − H(C(p1, p2, a)) < 0 ⇐⇒ p1 ≥

⌈n − 1
2

+
ϵ

2

⌉
. (4.42)

hus, if p1 satisfies (4.42), then the proof is concluded. Otherwise, we argue as follows. First, we note that the case p1 = 0
implies a = 0, but this case is not allowed since a > max{p1 + p2 − n, 0}.

If p1 > p2, we get H(σ ′) − H(σ ) < 0 with σ ′ belonging to C(p1 − 1, p2, a). Indeed, by using Lemma 3.3 and the fact
that p1 ≤

⌊
n−1
2 +

ϵ
2

⌋
, we have that

H(C(p1 − 1, p2, a)) − H(C(p1, p2, a)) < 0. (4.43)

If p1 ≤ p2, we get H(σ ′)−H(σ ) < 0 with σ ′ belonging to C(p1 − 1, p2, a− 1). Indeed, by using Lemma 3.3 and the fact

that p1 ≤

⌊
n−1
2 +

ϵ
2

⌋
, we have that

H(C(p1 − 1, p2, a − 1)) − H(C(p1, p2, a)) < 0. (4.44)

ase C. First of all, we note that if p2 = n then we repeat the argument as in case A. Thus, we assume p2 ̸= n. By using
emma 3.2, we deduce that

H(C(p1 + 1, p2, a + 1)) − H(C(p1, p2, a)) < 0 ⇐⇒ p1 ≥

⌈n − 1
2

−
ϵ

2

⌉
, (4.45)

H(C(p1, p2 + 1, a + 1)) − H(C(p1, p2, a)) < 0 ⇐⇒ p2 ≥

⌈n − 1
2

−
ϵ

2

⌉
. (4.46)

hus, if p1 satisfies (4.45) or p2 satisfies (4.46), then the proof is concluded. Otherwise, a = max{p1 + p2 − n, 0} = 0 and
e have p1 ̸= 0 or p2 ̸= 0 since σ ̸= −1. Without loss of generality, we suppose p1 ̸= 0 and we apply Lemma 3.3. Since

1 ≤

⌊
n−1
2 −

ϵ
2

⌋
, we obtain

H(C(p1 − 1, p2, a)) − H(C(p1, p2, a)) < 0. (4.47)

Thus, we proved that the stability level for every configuration different from {−1, ∓1, ±1, +1} is zero. It remains to
show that Xm = {±1, ∓1} (resp. Xm = {−1, +1}) if 0 < ϵ ≤ 1 (resp. −1 ≤ ϵ < 0) and to compute the maximal stability
level Γm. In the case ϵ = 0, all these states have the same energy and therefore there is no metastable state.

In the case ϵ > 0, we have Xs = {−1, +1}. By considering the part of the path ω̄ : −1 → +1 defined in (4.1)
connecting ±1 to +1, and by using (4.3), we deduce that

Γm ≤

{
n2
2 − ϵn if n is even,

n2−1
2 − ϵ(n − 1) if n is odd.

o prove also the reverse inequality, we argue as in the proof of [39, eq. (3.86)]. The case ϵ < 0 can be treated in an
nalogous way. □

.4. Proof of Theorem 2.2: Asymptotic behavior of the tunneling time

Recalling (4.34), we observe that in all above cases Γs − Γm = 2n|ϵ| > 0 in the case ϵ ̸= 0, which means that the
corresponding energy landscape exhibits the absence of deep cycles. In the case ϵ = 0, we deduce that Γs − Γm = 0,
indeed all the states {+1, ±1, ∓1, −1} are stable. Thanks to [22, Lemma 3.6], we deduce that for our model the quantity
Γ̃ (B), with B ⊊ X , defined in [22, eq. (21)] is such that Γ̃ (X \ {s2}) = Γs. Moreover, thanks to the property of absence
f deep cycles, [22, Proposition 3.18] implies that Θ(s1, s2) = Γs for s1, s2 ∈ Xs. Thus, Theorem 2.2(i) follows from [22,
orollary 3.16]. Moreover, Theorem 2.2(ii) follows from [22, Theorem 3.17] provided that [22, Assumption A] is satisfied:
his is implied by the absence of deep cycles and [22, Proposition 3.18]. Finally, Theorem 2.2(iii) follows from [22, Theorem
.19] provided that [22, Assumption B] is satisfied: this is implied by the absence of deep cycles and the argument carried
ut in [22, Example 4]. Theorem 2.2(iv) follows from [22, Proposition 3.24] with Γ̃ (X \ {s }) = Γ for any s ∈ X .
2 s 2 s

16
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Fig. 7. A schematic representation of the reference path ω̌ with the saddles, the metastable, and stable states that it crosses. We depict the minus
(resp. plus) spins in white (resp. black).

Fig. 8. A schematic representation of the reference path ω̃ with the saddles, the metastable, and stable states that it crosses. We depict the minus
(resp. plus) spins in white (resp. black).

4.5. Proof of Theorem 2.4: Gate for the tunneling transition

If 0 ≤ ϵ ≤ 1 (resp. −1 ≤ ϵ < 0), consider an optimal path ω ∈ (−1 → +1)opt (resp. ω ∈ (±1 → ∓1)opt ). Since any
ath from −1 to +1 (resp. from ±1 to ∓1) has to cross each manifold C(p), with 0 ≤ p ≤ 2n (resp. either 0 ≤ p ≤ n or
≤ p ≤ 2n), and due to the optimality of the path ω, by Propositions 4.4 and 4.5 we get the claim.

. Proof of the main results: case h > 0

.1. Reference paths

If ϵ ≥ 0, consider the path ω̄ defined in Definition 4.1.

efinition 5.1 (Reference Paths). If 0 < h < −ϵ ≤ 1, we define ω̌ : ±1 → ∓1 as the path (ω̌k)2nk=0, with

ω̌k ∈ C(n − k, 0, 0) and ω̌n+k ∈ C(0, k, 0), for any k = 0, . . . , n. (5.1)

If 0 < −ϵ < h ≤ 1, we define ω̃ : ±1 → +1 as the path (ω̃k)nk=0, with

ω̃k ∈ C(n, k, k), for any k = 0, . . . , n. (5.2)

For a schematic visualization of the reference paths ω̌ and ω̃, see Fig. 7 and Fig. 8), respectively.

emma 5.2 (Maximal Energy Along the Reference Paths). If ϵ ≥ 0, let ω̄ : −1 → +1 the path defined in Definition 4.1. Then

Φω̄ =

⎧⎪⎪⎨⎪⎪⎩
H(ω̄ n

2
) = n −

n2
2 + hn if n is even,

H(ω̄ n+1
2
) = n −

n2+1
2 + ϵ + h(n − 1) if n is odd and 0 < h ≤ ϵ ≤ 1,

H(ω̄ n−1 ) = n −
n2+1

− ϵ + h(n + 1) if n is odd and 0 ≤ ϵ < h ≤ 1.

(5.3)
2 2

17
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f 0 < h < −ϵ ≤ 1, let ω̌ : ±1 → ∓1 be the path given in (5.1). Then,

Φω̌ =

⎧⎪⎪⎨⎪⎪⎩
H(ω̌ n

2
) = H(ω̌n+ n

2
) = n −

n2
2 + hn if n is even and 0 < h − ϵ < 1,

H(ω̌ n+2
2
) = H(ω̌n+ n−2

2
) = n −

n2
2 − 2(ϵ + 1) + h(n + 2) if n is even and 1 ≤ h − ϵ < 2,

H(ω̌ n+1
2
) = H(ω̌n+ n−1

2
) = n −

n2+1
2 − ϵ + h(n + 1) if n is odd.

(5.4)

f 0 < −ϵ < h ≤ 1, let ω̃ : ±1 → +1 be the path given in (5.2). Then,

Φω̃ =

{
H(ω̃ n

2
) = n −

n2
2 − hn if n is even,

H(ω̃ n−1
2
) = n −

n2+1
2 + ϵ − h(n − 1) if n is odd.

(5.5)

roof. From (3.11) and (4.1), we have

H(ω̄k) = −n2
+ n + 2kn − 2k2 + 2kϵ − nϵ − 2h(k − n),

H(ω̄n+k) = −n2
+ n + 2kn − 2k2 − 2kϵ + nϵ − 2hk, (5.6)

or any k = 0, . . . , n. By deriving both equations in (5.6) with respect to k, we have that the maxima of the energy along
he path ω̄ are H(ω̄ n+ϵ−h

2
) and H(ω̄n+ n−ϵ−h

2
). This means that on the first part of the path (ω̄k)nk=0 the maximum is reached

at the critical value k∗

1 =
n+ϵ−h

2 , while on the second part of the path (ω̄k+n)nk=0 the maximum is reached at the critical
value k∗

2 =
n−ϵ−h

2 .
First, consider the case 0 < h ≤ ϵ ≤ 1. Let us focus on the value k∗

1. Note that H(ω̄k) is a concave parabola in k,
hich is symmetric with respect to k∗

1. Since we are interested in finding the integer value of k in which this maximum
s achieved, we need to compare the distances k∗

1 − ⌊k∗

1⌋ and ⌈k∗

1⌉ − k∗

1. The minimal distance indicates the value we are
nterested in. Since 0 ≤ ϵ − h < 1, we have that

⌊k∗

1⌋ =

{ n
2 if n is even,
n−1
2 if n is odd,

⌈k∗

1⌉ =

{ n
2 + 1 if n is even,
n+1
2 if n is odd,

(5.7)

nd

⌊k∗

2⌋ =

⎧⎨⎩
n
2 − 1 if n is even,
n−1
2 if n is odd and 0 < ϵ + h ≤ 1,

n−3
2 if n is odd and 1 < ϵ + h ≤ 2,

⌈k∗

2⌉ =

⎧⎨⎩
n
2 if n is even,
n+1
2 if n is odd and 0 < ϵ + h ≤ 1,

n−1
2 if n is odd and 1 < ϵ + h ≤ 2.

(5.8)

ssume n even. Since ⌊
n+ϵ−h

2 ⌋ =
n
2 and ⌈

n+ϵ−h
2 ⌉ =

n
2 + 1, we have that k∗

1 − ⌊k∗

1⌋ =
ϵ−h
2 ≤ 1 −

ϵ−h
2 = ⌈k∗

1⌉ − k∗

1 and
herefore the maximum is achieved in H(ω̄ n

2
). By arguing similarly for n odd and for k∗

2, we get the claim.
By arguing as before, we get the claim also for the case 0 ≤ ϵ < h ≤ 1.
Consider now the case 0 < h < −ϵ ≤ 1. From (3.11) and (5.1), we have

H(ω̌k) = −n2
+ n + 2kn − 2k2 − 2kϵ + nϵ + 2hk,

H(ω̌n+k) = −n2
+ n + 2kn − 2k2 + 2kϵ − nϵ − 2h(k − n), (5.9)

or any k = 0, . . . , n. By deriving both equations in (5.9) with respect to k, we have that the maxima of the energy along
he path ω̌ are H(ω̌ n−ϵ+h

2
) and H(ω̌n+ n+ϵ−h

2
). This means that on the first part of the path (ω̌k)nk=0 the maximum is reached

at the critical value k∗

1 =
n−ϵ+h

2 , while on the second part of the path (ω̌k+n)nk=0 the maximum is reached at the critical
value k∗

2 =
n+ϵ−h

2 . We have that

⌊k∗

1⌋ =

⎧⎨⎩
n
2 if n is even,
n−1
2 if n is odd and 0 < h − ϵ < 1,

n+1
2 if n is odd and 1 ≤ h − ϵ < 2,

⌈k∗

1⌉ =

⎧⎨⎩
n+2
2 if n is even,

n+1
2 if n is odd and 0 < h − ϵ < 1,

n+3

(5.10)
2 if n is odd and 1 ≤ h − ϵ < 2,

18
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nd

⌊k∗

2⌋ =

⎧⎨⎩
n−2
2 if n is even,

n−1
2 if n is odd and 0 < h − ϵ ≤ 1,

n−3
2 if n is odd and 1 ≤ h − ϵ < 2,

⌈k∗

2⌉ =

⎧⎨⎩
n
2 if n is even,
n+1
2 if n is odd and 0 < h − ϵ ≤ 1,

n−1
2 if n is odd and 1 ≤ h − ϵ < 2.

(5.11)

y arguing as above, we get the claim.
Consider now the case 0 < −ϵ < h ≤ 1. From (3.11) and (5.2), we have

H(ω̃k) = −n2
+ n + ϵn − 2k2 + 2nk − 2ϵk − 2hk. (5.12)

y deriving the equation in (5.12) with respect to k, we have that the maximum of the energy along the path ω̃ is
H(ω̃ n−ϵ−h

2
). By arguing as before, we get the claim. □

Proposition 5.3 (Upper Bounds). Let (X ,Q ,H, ∆) be the energy landscape corresponding to the Ising model on G(2, n). In the
ase 0 ≤ ϵ ≤ 1, we have Γm ≤ Γ 1

m , where Γ 1
m is defined in (2.19). In the case 0 < −ϵ < h ≤ 1, we have Γm ≤ Γ 2

m , where Γ 2
m

s defined in (2.20). In the case 0 < h < −ϵ ≤ 1, we have Γs ≤ Γ h
s , where Γ h

s is defined in (2.21).

roof. By using (2.16) and Lemma 5.2, we get the claim. □

.2. Lower bounds

roposition 5.4 (Local Minima). For every n ≥ 2 and |ϵ| ≤ 1, regardless the sign of ϵ, the minimum value of the energy H on
he manifold C(p) is given by

H(p) := min
σ∈C(p)

H(σ ) =

{
n − (p − n)2 − p2 − ϵ(n − 2p) − 2h(p − n) if 0 ≤ p ≤ n,
n − (2n − p)2 − (p − n)2 − ϵ(2p − 3n) − 2h(p − n) if n ≤ p ≤ 2n.

urthermore, if 0 ≤ p ≤ n, the minimum is achieved on the subsets C(p, 0, 0) and C(0, p, 0), while if n ≤ p ≤ 2n, the minimum
s achieved on the subsets C(n, p − n, p − n) and C(p − n, n, p − n).

roof. Note that on the manifold C(p), with 0 ≤ p ≤ 2n, the energy contribution of the external magnetic field is equal
o −2h(p − n), which is constant. Thus the claim simply follows by Proposition 4.4 by adding this further term to the
nergy. □

In order to analyze the manifold C(p) with maximal energy, we need to define

p∗

1 :=

⎧⎨⎩
n
2 if n is even,
n+1
2 if n is odd and 0 < h ≤ ϵ ≤ 1,

n−1
2 if n is odd and 0 ≤ ϵ < h ≤ 1,

p∗

2 :=

{ 3n
2 if n is even,
3n−1

2 if n is odd,
(5.13)

and

p∗

3 :=

⎧⎨⎩
n
2 if n is even and 0 < h − ϵ < 1,
n−2
2 if n is even and 1 ≤ h − ϵ < 2,

n−1
2 if n is odd.

(5.14)

In the following proposition, depending on the values of the parameters ϵ and h, we calculate the maximum of the
nergy over different collections of manifolds Mp, since the relevant starting and target configurations are not always +1
nd −1.

roposition 5.5 (Lower Bounds). Let (X ,Q ,H, ∆) be the energy landscape corresponding to the Ising model on G(2, n). The
ollowing statements hold:

• if 0 ≤ ϵ ≤ 1, the maximum of the energy on
⋃

0≤p≤2n Mp is realized by the configurations in C(p∗

1, 0, 0) ∪ C(0, p∗

1, 0).
Moreover, we have that Γm ≥ Γ 1

m , where Γ 1
m is defined in (2.19);

• if 0 < −ϵ < h ≤ 1, the maximum of the energy on
⋃

n≤p≤2n Mp is realized by the configurations in C(n, p∗

2 − n, p∗

2 −

n) ∪ C(p∗

2 − n, n, p∗

2 − n) and Γm ≥ Γ 2
m , where Γ 2

m is defined in (2.20);
• if 0 < h < −ϵ ≤ 1, the maximum of the energy on

⋃
0≤p≤2n Mp is realized by the configurations in C(p∗

3, 0, 0) ∪

C(0, p∗, 0). Moreover, we have that Γ ≥ Γ h, where Γ h is defined in (2.21).
3 s s s
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roof. The idea of the proof is to identify, depending on the parity of n and the values of ϵ and h, the correct manifold
that would give the desired lower bound.

Treating H(p) as a function of a continuous variable, we see that is concave and, solving for d
dpH(p) = 0, we obtain two

stationary points pleft =
n
2 +

ϵ−h
2 and pright =

3n
2 −

ϵ+h
2 . Since pleft and pright can only take integer values, we deduce that

he possible integer optimal values are

p∗

left ∈

{⌊n
2

+
ϵ − h
2

⌋
,

⌈n
2

+
ϵ − h
2

⌉}
, p∗

right ∈

{⌊3n
2

−
ϵ + h
2

⌋
,

⌈3n
2

−
ϵ + h
2

⌉}
.

If 0 ≤ ϵ ≤ 1 (resp. 0 < h < −ϵ ≤ 1), since the path from m ∈ Xm to s ∈ Xs (resp. from s1 ∈ Xs to s2 ∈ Xs) has to cross
ach manifold C(p), with 0 ≤ p ≤ 2n, we need to take into account both p∗

left and p∗

right. Since

H(C( n2 +
ϵ−h
2 )) = n −

n2
2 + nh +

1
2 (ϵ − h)2, H(C( 3n2 −

ϵ+h
2 )) = n −

n2
2 − nh +

1
2 (ϵ + h)2,

y direct computation, we deduce that the maximum is reached in H(C( n2 +
ϵ−h
2 )). By performing the same computations

n the proof of Lemma 5.2, we obtain that p∗

left = p∗

1 (resp. p∗

left = p∗

3) in the case 0 ≤ ϵ ≤ 1 (resp. 0 < h < −ϵ ≤ 1), where
∗

1 (resp. p∗

3) is defined in (5.13) (resp. (5.14)). Furthermore, by Proposition 5.4 we have that the minimum of the energy
n the manifold C(p∗

1) (resp. C(p
∗

3)) is realized in M∗
p1 ≡ C(p∗

1, 0, 0) ∪ C(0, p∗

1, 0) (resp. in M∗
p3 ≡ C(p∗

3, 0, 0) ∪ C(0, p∗

3, 0))
f 0 ≤ ϵ ≤ 1 (resp. 0 < h < −ϵ ≤ 1).

Consider now the case 0 < −ϵ < h ≤ 1. In this case, since for any m ∈ {±1, ∓1} we are interested in the transition
rom m to +1, we have that every path connecting these two states crosses the foliations C(p) with n ≤ p ≤ 2n. Thus in
his case we have that the critical value of p is

p∗

right ∈

{⌊3n
2

−
ϵ + h
2

⌋
,

⌈3n
2

−
ϵ + h
2

⌉}
.

By performing the same computations in the proof of Lemma 5.2, we obtain that p∗

right = p∗

2, where p∗

2 is defined in
(5.13). Furthermore, by Proposition 5.4 we have that the minimum of the energy on the manifold C(p∗

2) is realized in
M∗

p2 ≡ C(n, p∗

2 − n, p∗

2 − n) ∪ C(p∗

2 − n, n, p∗

2 − n). □

Corollary 5.6 (Maximal Energy Barrier). Let (X ,Q ,H, ∆) be the energy landscape corresponding to the Ising model on G(2, n).
If 0 ≤ ϵ ≤ 1, we have that

Γm =

⎧⎪⎪⎨⎪⎪⎩
n2
2 + n(ϵ − h) if n is even,
n2−1

2 + (n + 1)(ϵ − h) if n is odd and 0 < h ≤ ϵ ≤ 1,
n2−1

2 + (n − 1)(ϵ − h) if n is odd and 0 ≤ ϵ < h ≤ 1.

(5.15)

f 0 < −ϵ < h ≤ 1, we have that

Γm =

{
n2
2 − n(ϵ + h) if n is even,
n2−1

2 − (n − 1)(ϵ + h) if n is odd.
(5.16)

f 0 < h < −ϵ ≤ 1, we have that

Γs =

{
n2
2 − n(ϵ + h) if n is even,
n2−1

2 − (n + 1)(ϵ + h) if n is odd.
(5.17)

roof. We get the claim by combining Propositions 5.3 and 5.5. □

.3. Proof of Theorem 2.5: Identification of metastable and stable states

The proof of Theorem 2.5 readily follows combining Corollary 5.6 with the following two propositions, Propositions 5.7
nd 5.8, to whose proof the rest of the subsection is devoted.

roposition 5.7 (Identification of Stable States). Let (X ,Q ,H, ∆) be the energy landscape corresponding to the Ising model on
G(2, n). If 0 ≤ ϵ ≤ 1, Then, the lowest possible energy is equal to

min
σ∈X

H(σ ) =

{
−n2

+ n − ϵn − 2hn if 0 ≤ ϵ ≤ 1 or 0 < −ϵ < h ≤ 1,
−n2

+ n + ϵn if 0 < h ≤ −ϵ ≤ 1,
(5.18)

nd the set of stable states is

Xs =

⎧⎨⎩
{+1} if 0 ≤ ϵ ≤ 1 or 0 < −ϵ < h ≤ 1,
{+1, ±1, ∓1} if h = −ϵ,
{±1, ∓1} if 0 < h < −ϵ ≤ 1.
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roposition 5.8 (Identification of Metastable States). Let (X ,Q ,H, ∆) be the energy landscape corresponding to the Ising model
n G(2, n). Let σ ∈ X \ {+1, ±1, ∓1, −1}, then the stability level of σ is zero, i.e., Vσ = 0. Furthermore, the set of metastable
tates is

Xm =

⎧⎨⎩
{−1} if 0 ≤ ϵ ≤ 1 or h = −ϵ,

{±1, ∓1} if 0 < −ϵ < h ≤ 1,
{+1} if 0 < h < −ϵ ≤ 1.

oreover, in the case 0 ≤ ϵ ≤ 1, we have that

Γm =

⎧⎪⎪⎨⎪⎪⎩
n2
2 + n(ϵ − h) if n is even,
n2−1

2 + (n + 1)(ϵ − h) if n is odd and 0 < h ≤ ϵ ≤ 1,
n2−1

2 + (n − 1)(ϵ − h) if n is odd and 0 ≤ ϵ < h ≤ 1,

(5.19)

hereas in the case 0 < −ϵ < h ≤ 1, we have that

Γm =

{
n2
2 − n(ϵ + h) if n is even,
n2−1

2 − (n − 1)(ϵ + h) if n is odd,
(5.20)

nd in the case 0 < h < −ϵ ≤ 1, we have that

Γs =

⎧⎪⎪⎨⎪⎪⎩
n2
2 + n(h − ϵ) if n is even and 0 < h − ϵ < 1,
n2−4

2 + (n + 2)(h − ϵ) if n is even and 1 ≤ h − ϵ < 2,
n2−1

2 + (n + 1)(h − ϵ) if n is odd,

(5.21)

nd

Γm =

{
n2
2 + n(ϵ + h) if n is even,
n2−1

2 + (n − 1)(ϵ + h) if n is odd.
(5.22)

roof of Proposition 5.7. Recalling that max{p1 + p2 − n, 0} ≤ a ≤ min{p1, p2}, we note that a is a function of p1 and
2. In view of the partition

X =

⋃
0≤p1,p2≤n

max{0,p1+p2−n}≤a≤min{p1,p2}

C(p1, p2, a)

nd (3.11), we can compute the minimum energy as

min
p1, p2

H(p1, p2, a) = n − n(ϵ − 2h) + 2 min
p1, p2

(
−

(
p1 −

n
2

)2
−

(
p2 −

n
2

)2
+ (ϵ − h)(p1 + p2) − 2ϵa

)
(5.23)

=: n − n(ϵ − 2h) + 2 min
p1, p2

f (p1, p2). (5.24)

f ϵ ≥ 0, we have that

min
p1, p2

f (p1, p2) = min
p1, p2

(
−

(
p1 −

n
2

)2
−

(
p2 −

n
2

)2
+ (ϵ − h)(p1 + p2) − 2ϵ min{p1, p2}

)
,

o the function f (p1, p2) is concave in both variables. Thus, we expect the minimum (p∗

1, p
∗

2) to be achieved at the boundary
f the feasible region. This immediately implies that (p∗

1, p
∗

2) ∈ {(0, 0), (0, n), (n, 0), (n, n)}. By direct computation, we
obtain:

f (0, 0) = −
n2

2
; f (0, n) = f (n, 0) = −

n2

2
+ n(ϵ − h); f (n, n) = −

n2

2
− 2hn. (5.25)

This implies that the minimum is achieved at (p∗

1, p
∗

2) = (n, n), which corresponds to the configuration C(n, n, n) ≡ +1,
s claimed.
If ϵ < 0, we have that

min
p1, p2

f (p1, p2) = min
p1, p2

(
−

(
p1 −

n
2

)2
−

(
p2 −

n
2

)2
+ (ϵ − h)(p1 + p2) − 2ϵ max{p1 + p2 − n, 0}

)
,

o the function f (p1, p2) is concave in both variables as before. Thus, we deduce that the possible configurations in
hich the minimum is achieved are the same as in (5.25). By direct computation, the minimum is attained either at
p∗, p∗) = (n, n) whenever h > −ϵ, which corresponds to the configuration C(n, n, n) ≡ +1, or at (p∗, p∗) = (n, 0) and
1 2 1 2
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p∗

1, p
∗

2) = (0, n) whenever h < −ϵ, which corresponds to the configurations C(n, 0, 0) ≡ ±1 and C(0, n, 0) ≡ ∓1. In the
pecial case h = −ϵ, all these configurations realize the minimum of the energy. This concludes the proof. □

roof of Proposition 5.8. Let 0 < ϵ ≤ 1. Consider a configuration σ ∈ C(p1, p2, a), with 0 ≤ p1, p2 ≤ n and
max{p1 + p2 − n, 0} ≤ a ≤ min{p1, p2}. Note that such a configuration σ can communicate via one step of the dynamics
ith a configuration σ ′ as in (4.40). In other words, σ ′ is a configuration obtained from σ via either an up-flip or a down-

lip in one of the two clusters. First, we will prove that if σ ∈ C(p1, p2, a) \ {−1, ∓1, ±1, +1}, then H(σ ′) − H(σ ) < 0,
ith σ ′ one of the configurations described in (4.40). To this end, we consider the following cases.

A. p1 = n and a ≥ max{p1 + p2 − n, 0};
B. p1 ̸= n and a > max{p1 + p2 − n, 0};
C. p1 ̸= n and a = max{p1 + p2 − n, 0}.

ase A. Since it is not possible to have p1 = n and a > max{p1 + p2 − n, 0}, we note that now σ ∈ C(n, p2, p2). Since
/∈ {+1, ±1}, it follows that 0 < p2 < n. By using Lemma 3.2, we deduce that

H(C(n, p2 + 1, p2 + 1)) − H(C(n, p2, p2)) < 0 ⇐⇒ p2 ≥

⌈n − 1
2

−
ϵ + h
2

⌉
. (5.26)

hus, if p2 satisfies (5.26), then the proof is concluded. Otherwise, by using Lemma 3.3 we deduce that H(C(n, p2 −1, p2 −

)) − H(C(n, p2, p2)) < 0.
Case B. By using Lemma 3.2, we deduce that

H(C(p1 + 1, p2, a)) − H(C(p1, p2, a)) < 0 ⇐⇒ p1 ≥

⌈n − 1
2

+
ϵ − h
2

⌉
. (5.27)

hus, if p1 satisfies (5.27), then the proof is concluded. Otherwise, we argue as follows. First, we note that the case p1 = 0
implies a = 0, but this case is not allowed since a > max{p1 + p2 − n, 0}.

If p1 > p2, we get H(σ ′) − H(σ ) < 0 with σ ′ belonging to C(p1 − 1, p2, a). Indeed, by using Lemma 3.3 and the fact
that p1 ≤ ⌊

n−1
2 +

ϵ−h
2 ⌋, we have that

H(C(p1 − 1, p2, a)) − H(C(p1, p2, a)) < 0. (5.28)

If p1 ≤ p2, we get H(σ ′)−H(σ ) < 0 with σ ′ belonging to C(p1 − 1, p2, a− 1). Indeed, by using Lemma 3.3 and the fact
that p1 ≤ ⌊

n−1
2 +

ϵ−h
2 ⌋, we have that

H(C(p1 − 1, p2, a − 1)) − H(C(p1, p2, a)) < 0. (5.29)

ase C. First of all, we note that if p2 = n, then we repeat the argument as in case A. Thus, we assume p2 ̸= n. By using
emma 3.2, we deduce that

H(C(p1 + 1, p2, a + 1)) − H(C(p1, p2, a)) < 0 ⇐H p1 ≤

⌈n − 1
2

−
ϵ + h
2

⌉
, (5.30)

H(C(p1, p2 + 1, a + 1)) − H(C(p1, p2, a)) < 0 ⇐H p2 ≤

⌈n − 1
2

−
ϵ + h
2

⌉
. (5.31)

hus, if p1 satisfies (5.30) or p2 satisfies (5.31), then the proof is concluded. Otherwise, a = max{p1 + p2 − n, 0} = 0 and
e have p1 ̸= 0 or p2 ̸= 0, since σ ̸= −1. Without loss of generality, we suppose p1 ̸= 0 and we apply Lemma 3.3. Since
1 ≤ ⌊

n−1
2 −

ϵ+h
2 ⌋, we obtain

H(C(p1 − 1, p2, a)) − H(C(p1, p2, a)) < 0. (5.32)

Thus, we have proven that the stability level for every configuration σ /∈ {−1, ∓1, ±1, +1} is zero. It remains to identify
the set of metastable states and to compute their stability level Γm.

In the case 0 ≤ ϵ ≤ 1, we have that Xs = {+1}. By considering the path ω̄ : −1 → +1 defined in (4.1), by using (4.3),
e deduce that

Φω̄(±1, +1) − H(±1) < Φω̄(−1, +1) − H(−1) ≤ Γm, (5.33)

here Γm is as in (5.19). In order to prove also the reverse inequality, we argue as in the proof of [39, eq. (3.86)] and thus
m = {−1}.
In the case 0 < −ϵ < h ≤ 1, we have that Xs = {+1}. By arguing as above, we deduce that now

Φω̄(−1, +1) − H(−1) < Φω̄(±1, +1) − H(±1) ≤ Γm, (5.34)

here Γm is as in (5.20) and thus Xm = {±1, ∓1}.
In the case 0 < h < −ϵ ≤ 1, we have that Xs = {±1, ∓1}. By considering the part of the path ω̌ defined in (5.1)

connecting −1 to ∓1, and defining the path ω∗
= (ω∗

1, . . . , ω
∗
n) : +1 → ∓1 as ω∗

k ∈ C(n − k, n, n − k) for k = 0, . . . , n,
we deduce that

Φ (−1, ∓1) − H(−1) < Φ ∗ (+1, ∓1) − H(+1) ≤ Γ , (5.35)
ω̌ ω m
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here Γm is as in (5.22). To prove also the reverse inequality, we argue as in the proof of [39, eq. (3.86)]. Thus
m = {+1}. □

.4. Proof of Theorem 2.6: Asymptotic behavior of the tunneling time

In the case 0 < h < −ϵ ≤ 1, for which we are interested in studying the tunneling time for the transition from s1 to
2, with s1, s2 ∈ {±1, ∓1}, we have that, in view of (5.22),

Γs − Γm =

⎧⎨⎩
−2nϵ if n is even and 0 < h − ϵ < 1,
−2(1 + nϵ − h + ϵ) if n is even and 1 ≤ h − ϵ < 1,
−2(nϵ − h) if n is odd.

n all the above cases we have that Γs − Γm > 0 since ϵ < 0, which means that the corresponding energy landscape
xhibits the absence of deep cycles. Thanks to [22, Lemma 3.6], we deduce that for our model the quantity Γ̃ (B), with
⊊ X , defined in [22, eq. (21)] is such that Γ̃ (X \ {s2}) = Γs. Moreover, thanks to the property of absence of deep

ycles, [22, Proposition 3.18] implies that Θ(s1, s2) = Γs for s1, s2 ∈ Xs. Thus, Theorem 2.6(i) follows from [22, Corollary
.16]. Moreover, Theorem 2.6(ii) follows from [22, Theorem 3.17] provided that [22, Assumption A] is satisfied: this is
mplied by the absence of deep cycles and [22, Proposition 3.18]. Finally, Theorem 2.6(iii) follows from [22, Theorem
.19] provided that [22, Assumption B] is satisfied: this is implied by the absence of deep cycles and the argument carried
ut in [22, Example 4]. Theorem 2.6(iv) follows from [22, Proposition 3.24] with Γ̃ (X \ {s2}) = Γs for any s2 ∈ Xs.

.5. Proof of Theorem 2.7: Asymptotic behavior of the transition time

Concerning the transition from a metastable to a stable state, Theorem 2.7 follows from [25, Theorems 4.1, 4.9 and
.15] together with Theorem 2.5 and Corollary 5.6. Moreover, Theorem 2.7(iv) follows from [22, Proposition 3.24] with
˜ (X \ {s}) = Γm for any s ∈ Xs.

.6. Proof of Theorem 2.9: Gate for the transition

If 0 ≤ ϵ ≤ 1, consider ω ∈ (−1 → +1)opt . Since any path from −1 to +1 has to cross each manifold C(p) with
≤ p ≤ 2n, and due to the optimality of the path ω, the claims follows from Propositions 5.4 and 5.5.
If 0 < −ϵ < h ≤ 1, consider either ω ∈ (±1 → +1)opt or ω ∈ (∓1 → +1)opt . Since any path from either ±1, or

1, to +1 crosses each manifold C(p) with n ≤ p ≤ 2n, and due to the optimality of the path ω, the claims follows from
ropositions 5.4 and 5.5.
If 0 < h < −ϵ ≤ 1, consider ω ∈ (±1 → ∓1)opt . Since any path from ±1 to ∓1 crosses each manifold C(p) with

≤ p ≤ n, due to the optimality of the path ω, the claims follows from Propositions 5.4 and 5.5.

. Conclusions and future work

We investigated opinion dynamics inside a community of individuals via the analysis of metastability for the Ising
odel on the graph G(2, n). Depending on the different parameters ϵ and h, we showed that the stable and metastable
tates of the system are different. Thus, according to the different scenarios, we used the framework of the pathwise
pproach [22,25] to analyze the transition time or tunneling time, respectively, and to describe the critical configurations.
oreover, we showed that the presence of a positive external magnetic field, which can be interpreted as external

nformation or influence, makes the situation much richer, especially in the case ϵ < 0 in which communities tend
o have diverging opinions. More specifically, the set of stable states is completely different according to the role given
o the external information with respect to influence between communities, namely depending on whether h < −ϵ or
ot. This model is our first attempt to analyze the spread of an opinion inside two communities. First, the extension to
general number k of communities naturally arises in this context and will be the focus of future work, together with

he computation of the prefactor for the mean transition time. This represents a challenging task in the case k > 2, as
ne needs to take into account all the mechanisms of spreading the new opinion among different communities. Further,
ne may consider models with more than two opinions (Potts model) or with different interaction strengths among
ommunities. We believe that the opinion dynamics inside a population of individuals with a nontrivial network topology
s a topic of great interest with many several interesting directions to explore further in future research work.
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