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Abstract—Recent research has established the importance of (strict)
dissipativity for proving stability of economic MPC in the case of an
optimal steady state. In many cases, though, steady state operation is
not economically optimal and periodic operation of the system yields
a better performance. In this paper, we propose ways of extending the
notion of (strict) dissipativity for periodic systems. We prove that optimal
P -periodic operation and MPC stability directly follow, similarly to the
steady state case, which can be seen as a special case of the proposed
framework. Finally, we illustrate the theoretical results with several
simple examples.

Index Terms—Periodic Economic MPC, Strict dissipativity

I. INTRODUCTION

Economic MPC is a variant of model predictive control (MPC)
in which the objective consists in directly optimising a given per-
formance index as opposed to tracking a given reference. The main
advantage of economic MPC over tracking MPC becomes apparent in
transients, when the system is steered to steady state while minimising
the given performance index.

Unfortunately, proving stability of economic MPC schemes is
hard, as the stage cost `(x, u) does in general not have a pointwise
minimum on the trajectory the system converges to. The idea of
rotating the cost using the Lagrange multipliers � has been proposed
in [6] in order to prove stability. The proof relies on an equivalent
auxiliary MPC scheme with a rotated stage cost that has a stationary
point at the optimal steady state. The rotated stage cost is obtained
by adding the term �>x��>f(x, u) to the stage cost. In [3], [1] this
idea has been extended to a nonlinear rotation, given by a function
�(x). This generalisation is equivalent to the systems theoretic notion
of strict dissipativity [14], [15] with � as a storage function and allows
one to rotate the stage cost such that it is bounded from below by
a positive definite function. For a given system and stage cost, if
there exists a storage function �(x) that satisfies a strict dissipativity
property, then stability of the MPC scheme is guaranteed.

As opposed to previous techniques for periodic control [4], periodic
economic MPC comes with performance guarantees [3, Theorem 2].
A first extension of the dissipativity framework has been proposed
in [16] for time varying systems: the Lagrange multipliers �k of a
periodic optimal trajectory are used to rotate the cost with a linear
(time varying) term. In contrast to this reference, in this paper we
consider optimal periodic trajectories for time invariant dynamics and
stage costs. To this end, we propose and discuss two different ways of
extending the definition of dissipativity based on the newly introduced
notion of set-valued distance of a point from a periodic trajectory.
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We use this new dissipativity notion to prove optimality properties
of periodic orbits and stability of periodic economic MPC schemes
using appropriate terminal constraints and costs.

The paper is structured as follows. Section II introduces the basic
notation and summarises previous results obtained for the steady
state case. The newly proposed concept of P -periodic dissipativity
is introduced in Section III, and in Section IV previous results on
optimal operation at steady state are extended to the periodic case.
The stability proof for periodic economic MPC is given in Section V.
Some simple examples are presented in Section VI in order to
illustrate the theory. Conclusions and a discussion on future research
directions are given in Section VII.

II. SETTING

We consider discrete time nonlinear systems of the form

xk+1 = f(xk, uk) (1)

with f : X ⇥ U ! X , with X ⇢ Rn and U ⇢ Rm. Solutions for
initial value x and control sequence u are denoted by xu

k (x).
We assume that f is continuous in (x, u) and the system is subject

to state and input constraints (xk, uk) 2 Z ⇢ X ⇥ U for all k � 0.
In the MPC framework, the system is equipped with a stage cost
` : X⇥ U ! R which is assumed to be continuous.

For a given constraint set Z, each initial value x 2 X and any
N � 1 we denote the set of admissible trajectories by ZN (x) :=
{(x,u) | (xk, uk) 2 Z, xk = xu

k (x) 8 k = 0, . . . , N � 1}.
Analogously we define Z1(x). For simplicity of exposition we
assume Z to be compact. An extension of our results to non compact
Z would be possible but would require regional bounds on the
involved functions and assumptions on the sets in which optimal
trajectories evolve. As the corresponding technical overhead might
obscure the main arguments of our paper, we prefer to work with the
compactness assumption. We consider the finite horizon functional

JN (x,u) :=
N�1X

k=0

`(xk, uk) + Vf(xN ),

where Vf(xN ) is the so-called terminal cost. Further, for an initial
state x, we define the infinite horizon averaged functional

Jav
1 (x,u) := lim sup

N!1

1
N

JN (x,u).

Given an initial value x 2 X, the basic model predictive control
(MPC) scheme with nominal system dynamics works as follows:

(i) set the time index i := 0 and initial state xMPC,cl
0 = x

(ii) minimise JN (x,u) over all admissible trajectories (x,u) 2
ZN

⇣
xMPC,cl
i

⌘
and denote the optimal sequence by u?

(iii) set uMPC,cl
i := u?

0, xMPC,cl
i+1 := f

⇣
xMPC,cl
i , uMPC,cl

i

⌘
, i :=

i+ 1 and go to (ii)
Since the stage cost ` is not of tracking type (i.e. does not necessarily
penalise the distance to a given equilibrium) this MPC scheme is often
termed economic MPC [1], [2]. In this setting, the classical notion of
(strict) dissipativity [14], [15] has recently gained renewed interest.

Definition 2.1 (Strict Dissipativity [1]): System (1) is dissipative
with respect to a steady state (xs, us) 2 Z of (1) for supply rate
`(x, u) � `(xs, us) if there exists a storage function � : X ! R
such that the inequality L(x, u) := `(x, u) � `(xs, us) + �(x) �
�(f(x, u)) � 0 holds for all (x, u) 2 Z. If, in addition, there exists
a function ⇢ 2 K1 such that the inequality L(x, u) � ⇢ (kx� xsk)
holds, then the system (1) is strictly dissipative on Z.

If a system equipped with a stage cost ` is (strictly) dissipative,
then this has several consequences:



• The system is optimally operated at (uniformly suboptimally
operated off) steady state [2], [10].

• For economic MPC with terminal constraint, the averaged
performance Jav

1
�
xMPC,cl,uMPC,cl

�
equals `(xs, us) and the

steady state xs is asymptotically stable for the closed loop
solutions. This was shown for endpoint constraints in [6] for
linear storage functions and in [2] for general storage functions
as well as for regional constraints and terminal costs in [1].

• For economic MPC without terminal constraint, the averaged
performance Jav

1
�
xMPC,cl,uMPC,cl

�
equals `(xs, us) + "(N)

and the optimal equilibrium is practically asymptotically stable,
cf. [9], [7]. Moreover, approximate transient optimality was
shown in these references and — under an exponential turnpike
property which in turn is implied by dissipativity and suitable
controllability properties [5] — the error terms converge to 0
exponentially fast as N ! 1.

For general discrete time optimal control problems, it is well
known that the optimal value is not necessarily attained at an
equilibrium. Particularly, it may happen that periodic orbits exhibit
smaller average values than any feasible equilibrium, see, e.g., [2,
Section VII] or our examples below. In this case, the existing theory
based on dissipativity of an equilibrium is not applicable and does
thus not ensure asymptotic stability of the optimal periodic orbit. For
this reason, in the next section we discuss dissipativity notions which
are adapted to characterising periodic orbits.

III. PERIODIC DISSIPATIVITY

In this section, we introduce concepts of P -periodic (strict) dis-
sipativity. In the following sections we analyse how they relate to
optimal P -periodic operation and periodic EMPC stability. Let us
first give definitions of periodic orbits and periodic trajectories.

Definition 3.1 (Periodic Orbit): An ordered P -tuple of points ⇧ =
(x̄p

0 , . . . , x̄
p
P�1), P � 1, is called a feasible P -periodic orbit with

control sequence (ūp
0 , . . . , ū

p
P�1) if (x̄p

k, ū
p
k) 2 Z, k = 0, . . . , P � 1,

x̄p
k+1 = f(x̄p

k, ū
p
k) for k = 0, . . . , P � 2,

and x̄p
0 = f(x̄p

P�1, ū
p
P�1). The number P is called the period of

the orbit ⇧ and if there is no Q � 1 with Q < P such that
(x̄p

k, ū
p
k) = (x̄p

k+Q, ū
p
k+Q) for all k = 0, . . . , P � Q, then P is

called the minimal period of ⇧. Given the corresponding control
sequence ūp

0 , . . . , ū
p
P�1 we define the tuple of state-control pairs

⇧U :=
�
(x̄p

0 , ū
p
0), . . . , (x̄

p
P�1, ū

p
P�1)

�
.

Note that in our terminology an equilibrium is a periodic orbit with
period P = 1. Moreover, for P > 1, the periodic orbit is not unique,
as phase shifts produce an orbit which is defined by the same states
and controls, but in a shifted order. For this reason, we define in
the following the periodic trajectory as a periodic orbit with a fixed
phase, extended infinitely long into the future.

Definition 3.2 (Periodic Trajectory): (i) A sequence XP =
(x0, x1, x2, . . .), is called a feasible P -periodic trajectory with con-
trol sequence UP = (u0, u1, u2, . . .) if (xk, uk) 2 Z, xk = xk+P ,
uk = uk+P for all k = 0, 1, . . ., and

xk+1 = f(xk, uk) for k = 0, 1, . . . .

(ii) Given a P -periodic orbit ⇧ = (x̄p
0 , . . . , x̄

p
P ) and a phase � 2

{0, . . . , P � 1}, we define the infinite sequence

XP
� (⇧) := (x̄p

�, . . . , x̄
p
P�1, x̄

p
0 , . . . , x̄

p
P�1, . . .).

The points on XP
� (⇧) will be denoted by x�

k , i.e, x�
k =

x̄p
(k+�) mod P , where mod is the common modulus operator, and

the corresponding control values by u�
k .

For any P -periodic trajectory, the ordered tuple (x̄p
0 , . . . , x̄

p
P�1) =

(xp
0 , . . . , x

p
P�1) is a P -periodic orbit ⇧. Conversely, for every P -

periodic orbit ⇧ and any � 2 {0, . . . , P � 1} the sequence XP
� (⇧)

from (ii) is a P -periodic trajectory in the sense of (i).
We extend the definition of (strict) dissipativity to periodic orbits

as a generalisation of [1]. To this end, in what follows we denote
the particular periodic orbit for which the system is dissipative by
⇧⇤ with corresponding control sequence u⇤. The corresponding
elements will be denoted by x̄p⇤

k and ūp⇤
k . Given a phase �,

we denote the elements of the corresponding P -periodic trajectory
XP

� (⇧⇤) by (x�⇤
0 , x�⇤

1 , . . .) and the corresponding control values by
(u�⇤

0 , u�⇤
1 , . . .). Let us define the two notions of distance

|x|⇧⇤ := min
x̄p⇤
k 2⇧

kx� x̄p⇤
k k,

|(x, u)|⇧⇤
U
:= min

(x̄p⇤
k ,ūp⇤

k )2⇧U

kx� x̄p⇤
k k+ ku� ūp⇤

k k.

Let us define functions �•(x, u) as

�A(x, u) := ⇢(|(x, u)|⇧U ) (2)

or �B(x, u) := ⇢(|x|⇧), (3)

with ⇢ being a positive definite function. We remark that in case of
(3) function �B(·, ·) does not depend on u, but in order to obtain a
uniform notation in what follows we always write �•(x, u).

Definition 3.3 (P -Periodic (Strict) Dissipativity): The system (1) is
P -periodic dissipative on a set Z ⇢ X⇥U with respect to the supply
rate `(x, u)�`(x�

k , u
�
k) if there exists a feasible P -periodic orbit ⇧⇤

a phase � and bounded storage functions �0, . . . ,�P�1,�P , . . . :
X ! R, with �k+P = �k such that the inequalities

Lk(x, u) := `(x, u)� `(x�
k , u

�
k) + �k(x)� �k+1(f(x, u)) � 0 (4)

hold for all (x, u) 2 Z, where x�
k are the elements of the sequence

XP
� (⇧) and all k = 0, 1, . . .. If, in addition, there exist functions of

the form (2) or (3) such that

Lk(x, u) � �•(x, u), • 2 {A,B} (5)

holds, then the system (1) satisfies P -periodic strict dissipativity of
type A or B, respectively, on Z.

It is easily seen that for (3) this definition is equivalent to
Definition 2.1 in case P = 1. Moreover, for P > 1, (strict)
dissipativity might hold for more than one phase �. It is however
not true that if strict dissipativity holds for one phase � then it holds
for all phases. Indeed, while functions �k could be shifted in time,
the phase � fixes x�

k , u
�
k , see e.g. Example 6.2. While this can be

restrictive if one is interested in the actual computation of Lk(x, u),
this does not constitute any problem for the theoretical results that we
aim at establishing next, i.e. optimal P -periodic operation (uniform
suboptimal non P -periodic operation), and sufficiency of strict P -
periodic dissipativity for P -periodic stability of EMPC.

Remark 3.4: As it holds that |(x, u)|⇧⇤
U
� |x|⇧⇤ , Definition (5) in

the sense A implies Definition (5) in the sense B.

Remark 3.5: Note that, the time-varying and phase-dependent
definition �C

k (x, u) := ⇢(kx � x�
kk) would at first look like the

natural extension of the steady state case. However, in contrast to the
time varying case in [16], this definition does not work in the time
invariant setting of this paper. More precisely, if Lk(x, u) � �C

k (x, u)
for phase �1 and the rotated cost of the P -periodic optimal trajectory
is evaluated for phase �2 6= �1, then we obtain the inequalityPP�1

k=0 Lk(x
�2
k , u�2

k ) �
PP�1

k=0 ⇢(kx�2
k � x�1

k k), which can never
be satisfied since

PP�1
k=0 Lk(x

�2
k , u�2

k ) = 0 and
PP�1

k=0 ⇢(kx�2
k �

x�1
k k) > 0.



IV. OPTIMAL P -PERIODIC OPERATION AND DISSIPATIVITY

A P -periodic orbit ⇧⇤ with corresponding control sequence u⇤ is
called optimal if it has minimal period P ⇤ and corresponds to the
state-control pairs ⇧⇤

U defined as

(P ⇤,⇧⇤
U ) 2 argmin

P,⇧U

1
P

P�1X

k=0

`(xk, uk), (6)

where minimisation is carried out over all periods P � 1 and
all periodic state-control sequences ⇧U of minimal period P . We
emphasise that, in general, the argmin is not unique. Also note that
the minimum might not exist.

The average optimal P -periodic cost (which is independent of �)
is given by

`⇤P :=
1
P

P�1X

k=0

`(x�⇤
k , u�⇤

k ).

For a real vector valued sequence v = (v0, v1, . . .) we define the
set of P -step asymptotic averages as

AvP [v] = {v̄ 2 Rnv : 9tn ! +1 :

lim
n!1

Ptn
k=0

PP�1
j=0 vPk+j

P (tn + 1)
= v̄},

noting that this set is actually independent of P if the sequence v is
bounded.

Let us now define, analogously to [2] and [11], several optimal
P -periodic operation concepts. In the following, we use the notation
`(x,u) = (`(x0, u0), `(x1, u1), . . .).

Definition 4.1 (Optimal P -Periodic Operation): The system (1) is
optimally P -periodically operated at a periodic orbit ⇧⇤ with respect
to the stage cost `, if for each solution satisfying (xk, uk) 2 Z for
all k = 0, 1, . . ., the following holds:

AvP [`(x,u)] ⇢ [`⇤P ,1). (7)

Definition 4.2 (Suboptimal non P -Periodic Operation): The sys-
tem (1) is suboptimally non P -periodically operated at a periodic
orbit ⇧⇤ with respect to the stage cost ` and the functions �• from
(2) or (3), if it is optimally P -periodically operated and in addition
one of the following two conditions holds:

AvP [`(x,u)] ⇢ (`⇤P ,1), (8a)
lim inf
k!1

�•(xk, uk) = 0. (8b)

Definition 4.3 (Uniform Suboptimal non P -Periodic Operation):

The system (1) is uniformly suboptimally non P -periodically oper-

ated at a periodic orbit ⇧⇤ with respect to the stage cost ` and the
functions �• from (2) or (3), if it is suboptimally non P -periodically
operated and in addition for each � > 0 there exists an integer t̄ � 1
such that one of the following two conditions holds:

t�1X

k=0

P�1X

j=0

`(xPk+j , uPk+j)
Pt

� `⇤P , for all t � t̄, (9a)

�•(xk, uk)  �, for P consecutive k 2 [1, t̄]. (9b)

Remark 4.4: We note that the actual behaviour of the trajectories
satisfying (9b) differs depending on �•.

In case of �A, i.e. from (2), if Property (9b) holds for suffi-
ciently small �, then from the continuity of f and from ⇢(kxk �
x̄p⇤
k k + kuk � ūp⇤

k k)  � we obtain f(xk, uk) ⇡ x̄p⇤
k+ with

k+ = k + 1 (mod P ⇤). Since the periodic orbit consists of finitely
many distinct points, for sufficiently small � > 0 this implies
⇢(kf(xk, uk) � x̄p⇤

j k + kuk+1 � ūp⇤
j k) > � for all j 6= k+. On

the other hand, �A(f(xk, uk), uk+1)  � implies that there must be

some j with ⇢(kf(xk, uk)� x̄p⇤
j k+kuk+1� ūp⇤

j k)  � which yields
⇢(kf(xk, uk)� x̄p⇤

k+k+kuk+1� ūp⇤
k+k)  �. As a consequence, any

state-control sequence sufficiently close to ⇧⇤
U and satisfying strict

dissipativity with respect to the supply rate `(xk, uk)� `(xp⇤
k , up⇤

k )
and �A, approximately follows the periodic motion.

In contrast to this, in case of �B, i.e. from (3), we can only
conclude that the solution stays near the set ⇧⇤

U but it need not
approximately follow the periodic motion. While it is possible to re-
establish approximate periodicity in case ⇧⇤

U is the unique minimiser
of 1

P

PP�1
k=0 `(xk, uk) over all (not necessarily periodic) orbits of

length P , this will require additional arguments in the subsequent
proofs and does not directly follow from (3), see also Remark 5.7.

We can now state the following theorem relating dissipativity and
optimal operation of the system.

Theorem 4.5: Assume that system (1) is (strictly) P -periodically
dissipative on Z with respect to the supply rate `(xk, uk) �
`(x�⇤

k , u�⇤
k ) and �• from (2) or (3). Assume, moreover, that the

storage functions �k are bounded. Then system (1) is optimally
P -periodically operated (uniformly suboptimally non P -periodically
operated) at the optimal P -periodic trajectory XP

� (⇧⇤).

Proof: The proof follows with appropriate adaptations from the
one given in [2, Proposition 6.4] and [11, Theorem 1] for the case
P = 1. We have

0 = lim
T!1

�PT (xPT )� �0(x0)
PT

= lim
T!1

T�1X

k=0

P�1X

j=0

�Pk+j+1(xPk+j+1)� �Pk+j(xPk+j)
PT

 lim inf
T!1

T�1X

k=0

P�1X

j=0

`(xPk+j , uPk+j)
PT

� `⇤P .

This establishes the first claim. If strict P -periodic dissipativity holds

0  lim inf
T!1

T�1X

k=0

P�1X

j=0

�•(xPk+j , uPk+j)
PT

 lim inf
T!1

T�1X

k=0

P�1X

j=0

`(xPk+j , uPk+j)
PT

� `⇤P ,

and two cases are possible:
1) lim infT!1

PT�1
k=0

PP�1
j=0

`(xPk+j ,uPk+j)

PT > `⇤P , which im-
plies AvP [`(x, u)] ⇢ (`⇤P ,1), or

2) lim infT!1
PT�1

k=0

PP�1
j=0

`(xPk+j ,uPk+j)

PT = `⇤P , hence
lim infk!1 �•(xk, uk) = 0.

This proves that strict P -periodic dissipativity entails suboptimal
non P -periodic operation. It remains to prove uniform suboptimal
non P -periodic operation.

For each feasible solution and t � 0, (5) and boundedness of
functions �k entails that

�c := �2 sup
0kP�1

x2XZ

|�k(x)|  �Pt(xPt)� �0(x0)


t�1X

k=0

P�1X

j=0

[`(xPk+j , uPk+j)� �•(xPk+j , uPk+j)]� Pt`⇤P .

Let � > 0 be fixed and choose t̄ :=
⌃
c
�

⌥
+ 1. Then two cases are

possible:
1)

Pt�1
k=0

PP�1
j=0 `(xPk+j , uPk+j) > Pt`⇤P for all t � t̄, or

2)
PP�1

j=0 �(xPk+j , uPk+j)  c/t̄ for at least one k 2 [1, t̄],
implying �•(xj , uj)  c/t̄ and thus �•(xj , uj)  � for j =
Pk, . . . , (P + 1)k � 1,

which concludes the proof. ⇤



V. PERIODIC STABILITY OF ECONOMIC MPC

Let us consider the following MPC problem

V i
N (x) = min

x0,u0,...,xN

J i
N (x,u) (10a)

s.t. x0 = x, xk+1 = f(xk, uk), (10b)

(xk, uk) 2 Z, xN 2 XN+i
f , (10c)

where we define x = (x0, . . . , xN ),u = (u0, . . . , uN�1) and
J i
N (x,u) =

PN�1
k=0 `(xk, uk)+V N+i

f (xN ). Note that the (periodic)
terminal set and cost depend on the current time instant i. We note
that this time-dependence can be used in order to induce a fixed phase
for the EMPC closed loop trajectory. Note that the choice of terminal
constraint may or may not fix the phase of the closed-loop trajectory.
One also use terminal costs and constraints which are independent of
i, in which case the phase is not fixed. We also remark that for non
constant XN+i

f the feasible sets Xi
N , i.e., the sets of all x for which

the constraints in (10) can be satisfied, depend periodically on i.
Let us introduce the following assumptions. We remark that

Assumptions 5.2, 5.4 and 5.5 are standard in stability theory for
tracking MPC [13]. Assumption 5.1 is slightly more restrictive than
the state of the art for tracking MPC. We remark, however, that for
practical applications this assumption is not very restrictive. Finally,
Assumption 5.3 is the most important one and the most difficult
to check. For steady-state tracking MPC it is always satisfied with
storage function �(x) = 0.

Assumption 5.1: The sets Z and XN+i
f are compact.

Assumption 5.2: The stage cost `(·, ·) and system dynamics f(·, ·)
are continuous on Z. The terminal cost function V N+i

f (·) is contin-
uous on the terminal region XN+i

f .

Assumption 5.3 (P -Periodic Strict Dissipativity): System (1) is
strictly dissipative at a periodic orbit ⇧⇤ with respect to the supply
rate `(x, u) � `(x�⇤

k , u�⇤
k ) and �• from (2) or (3). Moreover, the

storage functions �k are bounded and continuous in every point
xp⇤
k 2 ⇧⇤.

Assumption 5.4: The value function V i
N (·) is bounded on Xi

N and
continuous in every point xp⇤ 2 ⇧⇤.

Let us define the rotated MPC problem and the corresponding
rotated value function as

V̄ i
N (x) = min

x0,u0,...,xN

J̄ i
N (x,u) s.t. (10b)–(10c) (11)

where we define J̄ i
N (x,u) =

PN�1
k=0 Lk+i(xk, uk) + V̄ N+i

f (xN )
and the rotated terminal and stage cost are phase-dependent and
defined respectively as V̄ N+i

f (x) := V N+i
f (x) + �N+i(x) and

Lk = Lk(modP⇤) from (4). These definitions imply

J̄ i
N (x,u) = J i

N (x,u) + �i(x)�
N�1X

k=0

`(x�⇤
k+i, u

�⇤
k+i) (12)

and thus the rotated MPC Problem (11) delivers the same optimal
trajectories and control sequences as the original Problem (10), see
also [16]. Problem (11) therefore serves as an auxiliary problem
for proving stability, even though the problem solved online is
typically Problem (10), the two MPC formulations have the same
stability properties. For this reason, one could decide to solve online
Problem (11) instead, however, in this second case knowledge of the
storage function is necessary in order to formulate the MPC problem.

Let us consider a family of periodic terminal regions Xk
f ⇢ X and

terminal costs V k
f satisfying the following assumption.

Assumption 5.5: The terminal regions are periodic, i.e., Xk+P
f =

Xk
f for all k � 0 and the periodic terminal regions Xk

f contain the

states x�⇤
k of the periodic trajectory XP

� (⇧⇤) from Assumption 5.3.
Moreover, the terminal costs are periodic, i.e., V k+P

f = V k
f for all

k � 0 and there exists a terminal control law k
f : Xk

f ! U with
k+P
f = k

f for all k � 0 such that, at a given time instant i, for all
x 2 XN+i

f the inclusion x+ := f(x,N+i
f (x)) 2 XN+i+1

f holds and

V N+i+1
f (x+)  V N+i

f (x)� `(x,N+i
f (x)) + `(x�⇤

N+i, u
�⇤
N+i).

We remark that in case Xk
f = {x�⇤

k }, Assumption 5.5 is satisfied
with k

f ⌘ u�⇤
k and V k

f ⌘ 0. The simplest example for time invariant
terminal conditions are Xf = {xp⇤ 2 ⇧⇤} with f(x

p⇤
k ) = up⇤

k and
again Vf ⌘ 0. We also note that Assumption 5.5 is satisfied for the
original MPC problem if and only if it is satisfied for the rotated
problem, see e.g. [1]. For an analysis of a periodic EMPC scheme
without any terminal conditions we refer to [12].

Theorem 5.6: Let Assumptions 5.1, 5.2, 5.3, 5.4 and 5.5 hold. Then
the rotated optimal value function V̄N (x) is a Lyapunov function and,
for �A, i.e. from (2), there exists a phase � such that the trajectory
x�⇤
k corresponding to the optimal periodic orbit ⇧⇤ is asymptotically

stable for the closed loop system. For �B, i.e. from (3), the optimal
periodic orbit ⇧⇤ is an asymptotically stable set for the closed loop
system.

Proof: The proof uses ideas similar to the steady state case [1] with
appropriate adaptations. We define �⇤(x) := infu2U �A(x, u) =
�B(x, u). Assumptions 5.1 and 5.2, Formula (12) and the bounded-
ness and continuity in every xp⇤

k from ⇧⇤ of V i
N and � ensured

by Assumptions 5.3 and 5.4 imply that V̄ i
N is also bounded on

Xi
N and continuous in every xp⇤

k from ⇧⇤. Moreover, the strict
dissipativity Assumption 5.3 implies V̄ i

N (x) � Lk(x, u) � �⇤(x)
and Lk(x

p⇤
k , up⇤

k ) = 0 implies V̄ i
N (xp⇤

i ) = 0. Together, these
properties ensure the existence of K functions ↵̂ and ↵ such that

↵̂(�⇤(x))  V̄ i
N (x)  ↵(�⇤(x)).

Note that local loss of controllability near the periodic optimal
trajectory can entail a discontinuity of V i

N (·) at ⇧⇤ and hence of
V̄ i
N (·). If the cost V̄ i

N (·) is not continuous at the periodic optimal
trajectory, we cannot establish the upper bound V̄ i

N (x)  ↵(�⇤(x)).
In order to prove descent of the rotated value function V̄ i

N (x), let
us define the optimal (open loop) state and control trajectory as

xMPC
i = (xMPC

0,i , . . . , xMPC
N,i ), uMPC

i = (uMPC
0,i , . . . , uMPC

N�1,i).

Let us moreover define a feasible candidate trajectory for the MPC
problem at the next time step as

x̄i+1 = (xMPC
1,i , . . . , xMPC

N,i , f(xMPC
N,i ,k

f,i(x
MPC
N,i ))),

ūi+1 = (uMPC
1,i , . . . , uMPC

N�1,i,
k
f,i(x

MPC
N,i )).

The rotated objective value associated with this trajectory is given by

J̄ i+1
N (x̄i+1, ūi+1) = V̄ i

N (xMPC
0,i )� Li(x

MPC
0,i uMPC

0,i )

� V N+i
f (xMPC

N,i ) + V N+i
f (f(xMPC

N,i ,N+i
f (xMPC

N,i )))

+ `(xN ,N+i
f (xN ))� `(x�⇤

N+1+i, u
�⇤
N+1+i)

 V̄ i
N (xMPC

0,i )� Li(x
MPC
0,i , uMPC

0,i ),

where the last inequality follows from Assumption 5.5. Optimality
implies V̄ i+1

N (xMPC
1,i )  J̄ i+1

N (x̄i+1, ūi+1) and hence

V̄ i+1
N (xMPC

1,i )� V̄ i
N (xMPC

0,i )  �Li(x
MPC
0,i , uMPC

0,i )

 ��•(xMPC
0,i , uMPC

0,i ).

The periodic family of rotated value functions is hence a family
of Lyapunov functions for the nonlinear system; particularly, V̄ i

N

converges to 0 along the closed loop trajectory. From this, for �B

from (3), the claimed stability properties immediately follow.
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Fig. 1. Example 6.1. Left graph: closed-loop trajectory (continuous line)
obtained starting from x̂0 = �3. The periodic optimal states are displayed
in dashed line. Right graph: Value function of the rotated MPC problem.

For �A from (2), the lower bound ↵̂(�⇤(x)) of the Lyapunov
functions only implies the convergence of the states of the closed
loop to ⇧⇤ but not necessarily of the controls. Hence, the proof
so far only shows asymptotic stability of the set ⇧⇤ but not of
the periodic trajectory x�⇤

k corresponding to ⇧⇤. However, from the
last inequality, above, we obtain �A(xMPC

0,i , uMPC
0,i )  V̄ i

N (xMPC
0,i )

implying that since V i tends to 0 the value �A(xMPC
0,i , uMPC

0,i ) also
tends to 0. By (2) this yields that |(xMPC

0,i , uMPC
0,i )|⇧u tends to 0

as V i
N tends to 0 and thus asymptotic stability of the trajectory

corresponding to the periodic orbit ⇧⇤ follows by similar arguments
as in Remark 4.4. ⇤

Remark 5.7: In case of strict dissipativity of type B, i.e. with �B

from (3), asymptotic stability of the periodic trajectory x�⇤
k follows

if the optimal periodic orbit ⇧⇤ is the unique minimiser of JP (x,u)
over all (not necessarily periodic) orbits of length P . Indeed, in this
case for xMPC

0,i sufficiently close to ⇧⇤, due to continuity XMPC
i

must approximately follow x�⇤
k because otherwise we would obtain

a contradiction to the optimality of xMPC
i .

Remark 5.8: A straightforward adaptation of the proof of [1,
Theorem 18] shows that under the conditions of Theorem 5.6 the
averaged infinite horizon functional along the closed loop satisfies

Jav
1 (xMPC,cl,uMPC,cl)  `⇤P .

VI. EXAMPLES

The following examples illustrate the proposed concepts.

Example 6.1 (Strict Dissipativity of type B):

Consider the 1d dynamics f(x, u) = �x+ u and stage cost

`(x, u) = (x� 2)(x� 1)(x+ 1)(x+ 2).

The optimal trajectory can either be of period P = 1, i.e. one of
the two steady states x1,2

s = ±
p
10
2 , or of period P = 2, with ⇧⇤ =⇣p

10
2 ,�

p
10
2

⌘
and up⇤

1 = up⇤
0 = 0. Using �0(x) = �1(x) = 0, it

can be verified that L0(x, u) = L1(x, u) satisfy the strict dissipation
of type B, i.e. with �B(·, ·) from (3).

As the control is not constrained and it does not enter the cost,
MPC will stabilise the system in one step. The solution of the MPC
problem is not unique and we can conclude from Definition (3) that
the system will be stabilised to the set of states included in the
periodic optimal trajectory. However, both staying at one of the steady
states and moving to the other one is optimal. Using the initial condi-
tion x̂0 = �3 and the terminal constraint xN = (�1)i+N+1

p
10/2,

all possible closed-loop trajectories and the value of the rotated
problem are displayed in Figure 1. Note that, as expected, the system
is stabilised to the optimal operation in one step. Moreover, using
the terminal constraints xN = (�1)i+N p

10/2, xN = �
p
10/2

or xN =
p
10/2 yields the exact same closed-loop result. The

Fig. 2. Example 6.2: graph of the rotated stage costs L1 = L2.
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Fig. 3. Example 6.2. Left: closed-loop trajectory starting from x̂0 = �3 by
using terminal constraint TC1 (solid line) and TC2 (dotted line). The periodic
optimal states are displayed in dashed line. Right: Value function of the rotated
MPC problem for terminal constraint TC1 (solid line) and TC2 (dotted line).

same holds if one uses no terminal constraints but the terminal cost
Vf(x) = `(x, 0), i.e. the cost of stabilising the system in one step.

Example 6.2 (Strict Dissipativity of type A): Consider the 1d system
with dynamics f(x, u) = u and stage cost

`(x, u) = x4 � x3/3� 2x2 + x+ (x+ u)2.

Using �1(x) = �x4/2+x3/6+x2�x/2+2/3, �2(x) = �x4/2+
x3/6 + x2 � x/2, ⇧ = (1,�1) and ⇧U = ((1,�1), (�1, 1)), and
phase � = 0 one obtains

L1(x, u) = L2(x, u) =
x4

2
� x3

6
+

x
2
+ 1 +

u4

2
� u3

6
+

u
2
+ 2xu.

One checks that this polynomial has exactly two local minima at
(1,�1) and (�1, 1) at which its value is 0, cf. Figure 2. Hence, it is
positive elsewhere and since it grows unboundedly for |x|, |u| ! 1,
we can find ⇢ 2 K1 such that (5) holds with �•(·, ·), • = {A,B}.
Note that using the wrong phase, i.e. � = 1, leads to a function L2

which attains negative values so that (5) can never hold.
We consider an MPC scheme with horizon N = 5, initial

condition x̂0 = �3 and terminal constraint xN = (�1)i+N+1

(TC1), terminal constraint xN = (�1)i+N (TC2), or terminal cost
Vf(x) = `(x,(x)), with (x) = �1 for x � 0 and (x) = 1
otherwise.

The closed-loop trajectories obtained by using the two proposed
terminal point constraints and the value of the rotated problem are
displayed in Figure 3. In this example the phase of the terminal
constraint does determine the phase of the closed-loop trajectory.
The closed-loop results obtained with the terminal cost formulation
differ only very slightly from the one obtained using TC1 and are
indistinguishable by eye inspection. ⇤

Example 6.3 (Strict Dissipativity of type B for a 2d system): Define
x = [z, y]T and consider the system dynamics and stage cost

f(x, u) = [�0.9 z + y u, �y]>,

`(x, u) = (z � 1.9)(z � 0.9)(z + 1.1)(z + 2.1) + (u� 20)2,



21

z
0-1-0.5-2

0

u

0.5

0

2

4

6

8

10

18

16

14

12

L
0
(z
,−

1,
u
)

0.5
0

u
-0.5210

z
-1-2

0

2

4

6

20

18

16

14

12

10

8L
1
(z
,1
,u

)

Fig. 4. Example 6.3: Rotated stage cost L0(z, y, u) with y = �1 fixed (left)
and L1(z, y, u) with y = 1 fixed (right).

with constraint y 2 {�1, 1}.
Let us consider the case {yp⇤

0 , yp⇤
1 } = {1,�1}. The optimal

trajectory is periodic with period P = 2 and can be computed nu-
merically: ⇧⇤ = {(zp⇤0 , yp⇤

0 )T , (zp⇤1 , yp⇤
1 )T } with zp⇤0 ⇡ �1.8294,

zp⇤1 ⇡ 1.6719, {up⇤
0 , up⇤

1 } ⇡ {0.0254, 0.3247} and Lagrange
multipliers associated to the z-variable of the dynamic constraints
{�p

0 ,�
p
1} ⇡ {39.9492,�39.3506}. Using �0(x) = (ay � b)(z �

z0) + (1� y)e and �1(x) = (ay� b)(z� z1), with a =
�p
0��p

1
2 and

b =
�p
0+�p

1
2 , we obtain

L0(x, u) = `(x, u)� `(x0, u0) + �0(x)� �1(f(x, u)) + (1� y)e,

L1(x, u) = `(x, u)� `(x1, u1) + �1(x)� �0(f(x, u))� (1 + y)e.

Computing the minima of these functions reveals that for e ⇡
6.89763344 the functions Lk satisfy the strict dissipation inequal-
ities (5) for �A(·, ·), cf. Figure 4.

For an MPC scheme with horizon N = 5 and an initial
condition x̂0 = (�3, 1) with terminal constraint xN = (z̄ +

(�1)i+N�z̄, (�1)i+N ), with z̄ =
zp0+zp1

2 , �z̄ =
zp0�zp1

2 , the
closed-loop trajectory and the value of the rotated problem are
displayed in Figure 5. Note that any terminal constraint having
yN+i = (�1)i+N+1 would be infeasible, while any constraint having
xN = (z̄+(�1)i+N+1�z̄, (�1)i+N ) would not contain the periodic
optimal trajectory and therefore violate Assumption 5.5.

We have implemented the same scheme using the terminal cost
given by Vf(x) = `(x,(x)), with x = (z, y) and (x) = zp1 +0.9z
for y � 0 and (x) = �(zp0 +0.9z) otherwise. The resulting closed
loop trajectory is very close to the one obtained using the terminal
point constraint.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we have presented an extension of strict dissipativity
to the case of optimal periodic operation. We have proven that several
previous results obtained for the steady state case extend to our setting
for periodic operation. These theoretical results have been illustrated
using several numerical examples. In particular, analogously to the
steady state case (see Section II), if a system equipped with a stage
cost ` is P -periodically (strictly) dissipative, then:

• The system is optimally operated at (uniformly suboptimally
operated off) the P -periodic orbit (Theorem 4.5)

• For economic MPC with terminal constraint and cost, the
averaged performance Jav

1
�
xMPC,cl,uMPC,cl

�
equals `⇤P (Re-

mark 5.8) and the P -periodic orbit ⇧⇤ is an asymptotically
stable set of points for the closed loop system (Theorem 5.6).
If, moreover, strict dissipativity of type A holds, then the P -
periodic orbit ⇧⇤ is an asymptotically stable trajectory for the
closed loop system (Theorem 5.6).

The proposed setting straightforwardly extends to the case of
multistep MPC [8, Section 7.4]. The major limitations of the current
theory, both for the steady state and the periodic case, include
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Fig. 5. Example 6.3. Left: closed-loop trajectory (continuous line) obtained
starting from x̂0 = (�3, 1). The periodic optimal states are displayed in
dotted line. Right: Value function of the rotated MPC problem.

1) while sufficiency of strict dissipativity for stability has been
proven in [1] and in the current paper, to the authors’ knowl-
edge, no result on its necessity has been obtained yet

2) in general it can be very difficult to prove the existence of a
storage function which satisfies the strict dissipativity condition

3) the storage function is assumed to be bounded and continuous
in xp⇤

k from ⇧⇤

4) in all our examples, functions Lk are identical for all k. So far
we were not able to determine whether this is just a coincidence
or whether there is a systematic reason for this fact.

Future research will aim at developing the theory further so as to
overcome these limitations.
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