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Abstract

A new data-enabled control technique for uncertain linear time-invariant systems, recently conceived by
Coulson et al., builds upon the direct optimization of controllers over input/output pairs drawn from a large
dataset. We adopt an optimal transport-based method for compressing such large dataset to a smaller synthetic
dataset of representative behaviours, aiming to alleviate the computational burden of controllers to be implemented
online. Specifically, the synthetic data are determined by minimizing the Wasserstein distance between atomic
distributions supported on both the original dataset and the compressed one. We show that a distributionally
robust control law computed using the compressed data enjoys the same type of performance guarantees as the
original dataset, at the price of enlarging the ambiguity set by an easily computable and well-behaved quantity.
Numerical simulations confirm that the control performance with the synthetic data is comparable to the one
obtained with the original data, but with significantly less computation required.

I. INTRODUCTION

In recent years, traditional model-based controller design has been giving way to data-driven ap-
proaches. The growing complexity of modern control problems, which often precludes the use of
classical system identification procedures, along with the increasing data storage capacity, make learning
from data a timely and attractive new direction for the system-and-control community.

Two recent trends in control originated from different, but nearly complementary, views of a well-
known result in subspace identification, i.e., the so called Willems’ lemma [1]. Specifically, this technical
result establishes that a nonparametric linear time-invariant (LTI) realization of an unknown system can
be recovered from a data matrix of noise-free input/output measurements. Thus, an early research
direction adopted the Willems’ lemma to perform explicit data-dependent parametrization analysis and
control of systems [2]–[4]. The second more recent direction, which is central in this paper, designed
data-enabled (robust) optimal controllers without this intermediate modelling step [5]–[7].

To ensure that the column space of the data matrix spans all possible trajectories of a corresponding
LTI system, however, the Willems’ lemma relies on the persistent excitation of the system input. This
directly translates to a requirement on the input/output observations length, and therefore one might
be induced to collect extremely large datasets. As an undesired consequence, especially for the second
line of research introduced above, this may pose several computational challenges to the real-time
implementation of optimization-based control laws, thus limiting the scope of possible applications.
Systems that require fast sampling rates, for instance, may not be amenable to this new approach to
control design. Moreover, practitioners may choose short control horizons to alleviate the computational
burden, thereby resulting in poor control performance or even system instability. Designing suitable
procedures to select the most representative data within large (possibly noisy) datasets is essential to
overcome these problems.

Data compression and dimensionality reduction have been widely adopted in the systems-and-control
community to extrapolate synthetic sets of samples that “best” capture the information content of noise-
corrupted datasets. Statistical and manifold learning [8], [9], principal component analysis [10]–[12],
or subspace identification approaches [13]–[15], represent only a few of the most popular techniques.
Conceptually, these methods tacitly neglect the stochastic nature of the noise itself, eliminating the less
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significant components (according to some criterion), or those potentially associated with noise, at a
later stage only.

In contrast to the aforementioned literature, we propose to design a synthetic set of samples via
an offline procedure based on optimal transport [16], [17] techniques. Specifically, the Wasserstein
distance represents the key tool to define an optimization problem that minimizes the distance between
the discrete measure associated with our synthetic dataset and the empirical distribution of the original
noisy data. The resulting linear program (LP) turns out to be a variational Wasserstein problem [17,
§9], wherein each atom of the synthetic dataset can be identified with a specific barycentre for a cluster
of the original samples, thereby serving as a proxy a whole set of observed system behaviours. In the
context of the data-enabled robust control technique of [6], we show that a control law computed via
the repeated solution of a distributionally robust optimization problem, built upon a Wasserstein ball
as an ambiguity set, enjoys exactly the same type of performance guarantees as a controller designed
using the full original dataset, at the price of enlarging the ambiguity radius by a quantity that depends
on the number of synthetic atoms adopted. We show that this additional ambiguity radius vanishes as
the number of atoms in our synthetic dataset tends to the cardinality of the original dataset.

The paper is organized as follows: we recall some fundamentals of optimal transport in §II, and
introduce the robust control problem addressed in §III. We formalize and discuss the variational Wasser-
stein problem associated with the design of synthetic datasets in §IV. Finally, we compare the control
performances obtained over the original and compressed datasets through numerical simulations in §V.

Notation: For vectors (x1, . . . , xN) ∈ Rn and I := {1, . . . , N}, we denote col((xi)i∈I) := (x>1 , . . . , x
>
N)>.

Given a matrix X ∈ Rn×m, its (i, j) entry is denoted by [X]i,j . The symbol 〈·, ·〉 denotes an inner
product in the appropriate space, i.e., 〈x, y〉 = x>y for (x, y) ∈ Rn and 〈X, Y 〉 = trace

(
X>Y

)
for

(X, Y ) ∈ Rn×m. The probability simplex Σn := {σ ∈ Rn
+ | 1>nσ = 1}, where 1n is n-dimensional vector

of elements equal to 1. For any point x ∈ Rn, δx is the Dirac unit mass on x. Given a collection of
points {xi}i∈I ∈ Rn, conv({xi}i∈I) represents their convex hull, while P̂ = 1

|I|
∑

i∈I δxi is the associated
uniform discrete probability distribution. The dual norm of an arbitrary norm ‖ · ‖ on Rn is ‖x‖∗ :=
sup‖y‖≤1 〈x, y〉. The conjugate function of f : Rn → R is defined by f ∗(ξ) := supx∈Rn 〈ξ, x〉 − f(x).
Quantities denoted with (̂·) are either directly measured, or depend on data.

II. FUNDAMENTALS OF OPTIMAL TRANSPORT

We first recall the definition of the Wasserstein distance for continuous measures. Then, by considering
discrete distributions, we define the associated optimal transport problem that we will apply to our
synthetic and empirical datasets.

A. Wasserstein distance between probability measures
Let Ω be an arbitrary space endowed with a metric d, and P(Ω) be the set of Borel probability

measures on Ω.
Definition 1: ([16, Ch. 7]) Given any p ∈ [1,+∞), the p-Wasserstein distance Wp : P(Ω)×P(Ω)→

R+ between two probability measures (P,Q) ∈ P(Ω) is defined as

Wp(P,Q) :=

(
inf

π∈Π(P,Q)

∫
Ω×Ω

dp(x, y) dπ(x, y)

)1/p

, (1)

where Π(P,Q) denotes the set of all probability measures on Ω × Ω that have marginals P and Q,
respectively. �

Roughly speaking, the decision variable π of the infinite-dimensional optimization problem in (1)
coincides with a transportation plan for moving a mass distribution described by P to another one
described by Q, while d is the associated transportation cost. Then, given any ε > 0, we define the
Wasserstein ball of radius ε, centred around the distribution P, as Bε(P) := {Q ∈ P(Ω) | Wp(P,Q) ≤
ε}.



B. Discrete probability distributions
Now, let us consider two families of N and M points in Ω, i.e., X = {x1, . . . , xN} and Y =
{y1, . . . , yM}, respectively. Given weights α ∈ ΣN , β ∈ ΣM , we can construct discrete probability
distributions P̂ and Q̂ as P̂ =

∑
i∈N αiδxi and Q̂ =

∑
i∈M βiδyi , where N := {1, . . . , N}, M :=

{1, . . . ,M}. In this special case, the Wasserstein distance happens to correspond to the optimal value
of a network problem, as (1) translates to the following LP [17]:

Wp(P̂, Q̂) = min
T∈T (α,β)

〈T,D(X, Y )〉. (2)

Here, D ∈ RN×M is the matrix of pairwise distances between points in X and Y , raised to the power
p, defined as [D]i,j := dp(xi, yj), for all xi ∈ X and yj ∈ Y . Moreover, every element of the decision
matrix T ∈ RN×M in (2), i.e., [T ]i,j =: ti,j , determines the coupling between pairs (xi, yj) ∈ X × Y ,
whose value specifies the amount of mass flowing from the point xi ∈ X toward the point yj ∈ Y . For
any α ∈ ΣN and β ∈ ΣM , the admissible couplings lie in the feasible set T (α, β), defined as

T (α, β) := {T ∈ RN×M
+ | T 1M = α, T> 1N = β}. (3)

The set of matrices in (3) is called the transportation polytope, since it is convex, bounded and
defined by a set of N +M equality constraints. Note that as long as T (α, β) is nonempty, the solution
to the LP in (2), attained on the vertices of T , may not be unique. Finally, since Wp defines a metric,
in the discrete setting (2) we have Wp(P̂, Q̂) = 0 if and only if α = β [17, Prop. 2.2], and therefore
the triangle inequality holds as Wp(P̂, Q̂) ≤ Wp(P̂, Ĝ) +Wp(Ĝ, Q̂), for any discrete measures P̂, Q̂,
Ĝ ∈ P(Ω).

We henceforward focus on the Kantorovich-Rubinstein distance obtained by setting p = 1, and
consequently write W(P,Q) without subscript. We will assume that the metric d is induced by an
arbitrary norm ‖ · ‖ on Rn.

III. THE DATA-ENABLED CONTROL PARADIGM

We start by formalizing the optimal control problem we wish to consider. After a brief digression on
nonparametric models for deterministic LTI systems, we will recall from [6] a distributionally robust
reformulation of the control problem.

A. Constrained optimal control of uncertain LTI systems
We consider discrete time, stochastic systems in the form:{

x(k + 1) = Ax(k) +Bu(k) + Eν(k),

y(k) = Cx(k) +Du(k) + Fν(k),
(4)

where A ∈ Rn×n, B ∈ Rn×m, E ∈ Rn×q, C ∈ R`×n, D ∈ R`×m and F ∈ R`×q. The state, control input,
output and disturbance at time instant k ∈ Z are x(k) ∈ Rn, u(k) ∈ Rm, y(k) ∈ R` and ν(k) ∈ Rq,
respectively. The uncertainty ν(k) is drawn from an unknown probability distribution Pν , supported
on Υ ⊆ Rq. We will assume throughout that the system matrices defining (4) are unknown, and that
we have access to input/output measurements only, i.e., (û(k), ŷ(k)), k ∈ Z. Note that, in view of
the dynamics in (4), any output measurement ŷ(k) can be affected by the realization of the stochastic
disturbance ν(k), for any k ∈ Z.

A typical approach to steer the behaviour of (4), particularly in the presence of state or input
constraints, is stochastic model predictive control [18]. To this end, we consider a finite horizon control
problem over horizon length K ∈ N, where we aim to design a constrained sequence of control inputs,
i.e., u := col(u(k), . . . , u(k+K − 1)) ∈ U , for some compact, convex set U ⊆ RmK , while minimizing



a predefined cost function J : RmK × R`K → R. Specifically, in view of the uncertain nature of (4),
the finite horizon control problem translates into the following stochastic program:

inf
u∈U

EPKν [J(u, y)], (5)

where PKν := Pν × . . .×Pν is the K-fold product distribution characterizing ν over the whole horizon
K. Next, we formulate the same working assumptions as in [6].

Standing Assumption 1: The pair (A,B) is controllable. �

Standing Assumption 2: For all (u, y) ∈ RmK×R`K , J(u, y) is a separable function, namely J(u, y) :=
J1(u) + J2(y), where J1 : RmK → R, J2 : R`K → R are convex and continuous. In addition, J2 is such
that Ξ := {ξ ∈ R`K | J∗2 (ξ) <∞} ⊆ R`K is a bounded set. �

B. Nonparametric models for deterministic LTI systems
Let us first consider a deterministic version of the system in (4), i.e., with ν(k) = 0, for any k ∈ Z.

The Willems’ fundamental lemma [1, Th. 1] provides the theoretical means to construct data-consistent,
minimal, nonparametric models for unknown, deterministic LTI systems [2]–[4], [6]. Specifically, assume
that we have available (noise-free) data from an experiment of length N , ({û(i)}N−1

i=0 , {ŷ(i)}N−1
i=0 ), for dif-

ferent time shifts. Without loss of generality, assume also that k = 0 corresponds to the instant of initial
observation. This data can then be organized within a matrix HK := col(Û0,K,N−K+1, Ŷ0,K,N−K+1) ∈
R(m+`)K×N−K+1, where

Û0,K,N−K+1 :=


û(0) û(1) · · · û(N−K)
û(1) û(2) · · · û(N−K+1)

...
... . . . ...

û(K−1) û(K) · · · û(N−1)

 (6)

and Ŷ0,K,N−K+1 ∈ R`K×N−K+1 is defined similarly. The first subscript refers to the time index of the
top-left entry of a given matrix, the second refers to the number of block-rows, and the third to the
number of columns. Note that both Û0,K,N−K+1 ∈ RmK×N−K+1 and Ŷ0,K,N−K+1 have constant vector
entries along the block anti-diagonals, and therefore HK belongs to the class of block-Hankel matrices.

The Willems’ fundamental lemma restricts the class of input sequences over the horizon K to the
persistently exciting signals, as defined next.

Definition 2: ([1]) A measured signal ẑ ∈ Rw, observed over N samples, is persistently exciting of
order K if the corresponding Hankel matrix Ẑ0,K,N−K+1, defined equivalently to (6), has full rank wK.
�

It follows that for a signal to be persistently exciting of order K, its length N must satisfy N ≥
(w+1)K−1. Then, by relying on Definition 2, we restate the Willems’ fundamental lemma as follows:

Lemma 1: ([1, Th. 1]) Let col({û(i)}N−1
i=0 ) be a persistently exciting control signal of order n + K.

Then col(u, y) is a K-long input/output trajectory of the deterministic version of the system in (4) if
and only if col(u, y) ∈ Im(HK). �

Lemma 1 establishes that if N is chosen large enough and signals are persistently exciting, then
every realisable input/output trajectory of the deterministic system is a linear combination of collected
input/output data. In other words, for any K-long input/output trajectory col(u, y), there will always
exist some g ∈ RN−K+1 such that col(u, y) = HKg.

By making use of Lemma 1, our goal is next to restate the deterministic version of the finite
horizon control problem in (5) by rearranging a measured N -long, input/output trajectory, col(û, ŷ) :=
({û(i)}N−1

i=0 , {ŷ(i)}N−1
i=0 ). Specifically, as in [6, §III.A], by starting from the current time k ∈ N, we

assume that the control input û is persistently exciting of order Ki + K + n, for some Ki ∈ N. We



then split HKi+K into block matrices Ûf , Ŷf , Ûb and Ŷb. Here, Ûf ∈ RmK×N−(Ki+K)+1 and Ŷf ∈
R`K×N−(Ki+K)+1 consist of the last K-block rows of HKi+K , corresponding to data matrices for the
“forward” propagation (i.e., from k ∈ N onward) of control sequence and output prediction, respectively.
Conversely, Ûb ∈ RmKi×N−(Ki+K)+1 and Ŷb ∈ R`Ki×N−(Ki+K)+1, which correspond to the first Ki-
block rows of HKi+K , define the consistency constraints associated with less recent measurements (i.e.,
“backward” data), together with ûi := col(û(k−Ki), . . . , û(k−1)) and ŷi := col(ŷ(k−Ki), . . . , ŷ(k−1)).
Thus, the deterministic version of (5) follows directly from Lemma 1 and reads as:

min
g

J(Ûfg, Ŷfg)

s.t.
[

Ûb

Ŷb

]
g =

[
ûi
ŷi

]
,

Ûfg ∈ U ,

(7)

where the decision variable g belongs to RN−(Ki+K)+1.

C. A distributionally robust data-enabled control problem
For uncertain systems, the optimization problem in (7) is complicated by the realization of noise

terms ν(k) drawn from the distribution Pν . In particular, system noise complicates satisfaction of the
consistency constraint Ŷbg = ŷi.

As proposed in [6], a possible approach is to soften this consistency constraint, directly penalizing
the term Ŷbg − ŷi in the cost function as follows

min
g∈G

J(Ûfg, Ŷfg) + ρ‖Ŷbg − ŷi‖1, (8)

where G := {g ∈ RN−(Ki+K)+1 | Ûfg ∈ U , Ûbg = ûi} depends on input measurements only.
The optimization problem in (8) can be manipulated to obtain a distributionally robust, semi-infinite
reformulation. Specifically, we note that all random objects can be gathered into a matrix

[
Yb yi
Uf 0

]
,

whose j-th row is denoted by κ>j . Any such row corresponds to a random vector distributed according
to some probability Pκj , and supported on Θkj ⊆ RN−(Ki+K)+2, for all j ∈ {1, . . . , `(Ki + K)}.
Note that every Pκj and Θkj is determined starting from the unknown distribution Pν and support
Υ, respectively. Define κ := col((κj)

`(Ki+K)
j=1 ), a random vector supported on Θ :=

∏`(Ki+K)
j=1 Θkj ⊆

R`(Ki+K)(N−(Ki+K)+2) and distributed according to Pκ :=
∏`(Ki+K)

j=1 Pκj , and let v := col(g,−1) and
V := G×{−1} ⊆ RN−(Ki+K)+2. With the notation introduced, and taking into account the realization of
the random objects in κ, the cost function in (8) turns out to be J((Ûf , 0)v, (κ̂`Ki+1v, . . . , κ̂`(Ki+K)v))+
ρ‖(κ̂1v, . . . , κ̂`Kiv)‖1 =: f(κ̂, v). Therefore, based on the measurements κ̂, the so-called in-sample
performance of (8) is minv∈V EP̂κ [f(κ, v)], and admits the following distributionally robust, semi-infinite
variation over the Wasserstein ball centred at the empirical distribution P̂κ:

inf
v∈V

sup
Q∈Bε(P̂κ)

EQ[f(κ, v)]. (9)

The optimal value of (9) is known to upper bound the out-of-sample performance, EPκ [f(κ, v)], with
high confidence [6], [19]. Note that EPκ [f(κ, v)] denotes the quantity of interest in studying (5), as it
depends on the unknown distribution Pκ. We will assume that this distribution is light-tailed, which is
key to the results in [6], [19]:

Assumption 1: There exists some a > 0 such that EPκ [e‖κ‖
a
] :=

∫
Θ
e‖κ‖

a
Pκ(dκ) <∞. �



Under Assumption 1, which is satisfied automatically if Θ is compact, [19, Th. 3.5] establishes that
for any given confidence parameter β > 0, there exists some data-driven ambiguity radius, ε = ε(β) > 0,
which guarantees the following probabilistic bound

PKi+Kκ

{
EPκ [f(κ, v)] ≤ sup

Q∈Bε(P̂κ)

EQ[f(κ, v)]

}
≥ 1− β. (10)

However, solving the problem (9) is not trivial to solve since it is semi-infinite. Using the results in
[19], [6, Th. 4.2] shows that considering Bε(P̂κ) as an ambiguity set in (9) allows for a finite, convex
reformulation. Specifically, the optimal value of (9) is upper bounded by

min
v∈V

[
f(κ̂, v) + ε ·max

(
sup
ξ∈Ξ

‖ξ‖∞‖col(g, 0)‖∗, ρ‖v‖∗
)]

. (11)

Thus, by denoting v? as an optimal solution to (11), the control law u? = Ûfg
? enjoys the data-

driven probabilistic guarantees in (10), obtaining good control performance with respect to the possible
realizations of the stochastic output trajectory y associated with the ambiguity set Bε(P̂κ).

Some consideration of the optimization problem in (11) is in order. First, we note that the cost
function is convex since it corresponds to the sum of a (separable) convex function, f , and the pointwise
maximum between dual norms, and is therefore also convex. Moreover, by defining ζ(·) := ρ ‖ · ‖1,
max

(
supξ∈Ξ ‖ξ‖∞‖col(g, 0)‖∗, ρ‖v‖∗

)
is equivalent to

inf
λ≥0

λε

s.t. supξ∈Ξ ‖ξ‖∞‖col(g, 0)‖∗ ≤ λ,

supξ∈Ξ′ ‖ξ‖∞‖v‖∗ ≤ λ,

where Ξ′ := {ξ ∈ R`K | ζ∗(ξ) <∞} is a bounded set. In fact, by the definition of the conjugate function,
ζ∗(ξ) = 0 if ‖ξ‖∞ ≤ ρ, while ζ∗(ξ) =∞ otherwise. It therefore follows that (11) amounts to solving a
conic optimization problem where the dimension of the decision variable v is N − (Ki +K) + 1, and
N is a design parameter chosen so that N ≥ (m + 1)(n + Ki + K) − 1, i.e., the persistent excitation
assumption is satisfied. The large amount of data that one should collect may pose several challenges in
the online implementation of distributionally robust controllers. Alternatively, one may also choose short
control horizons K, resulting in poor control performance or instability of the controlled system. This
motivates us to develop a procedure to compress the information brought by the dataset HKi+K into
a smaller synthetic set of representative system behaviours. In the next section, we formalize the data
compression problem as a variational Wasserstein problem, proposing a solution procedure to design
such a synthetic dataset.

IV. DATA COMPRESSION AS A VARIATIONAL WASSERSTEIN PROBLEM

In this section we propose an offline, optimal transport-based procedure that can compress a possibly
large dataset of system trajectories to a smaller, synthetic one of representative behaviours, i.e., to select
a limited set of synthetic representative samples that “best” summarize the information content. This
clearly affects the control problem addressed by imposing a lower computational burden in solving
an optimization problem similar to (11), hence making distributionally robust control approaches more
appealing for online implementation. Moreover, we show that the optimal solution obtained by means
of our synthetic dataset enjoys probabilistic guarantees of the same type in (10) on a Wasserstein ball
with an enlarged ambiguity radius. Essentially, the marginal increase in the radius of the Wasserstein
ball depends on the number of samples adopted, and vanishes as the size of the synthetic dataset grows
to that of the original dataset.
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Fig. 1: Schematic two-dimensional representation of the Wasserstein barycentres problem in (13). Each
synthetic atom (red star) identifies a specific barycentre associated to a cluster (dashed red lines) of
original samples (blue circles).

Let the dimensions of a matrix of input/output measurements over some horizon L ∈ N, HL ∈ Rr×R,
be fixed, i.e., N ≥ (m + 1)(n + L) − 1 be chosen so that the control input û is persistently exciting
of order n + L as in Lemma 1, where r := (m + `)L, R := N − L + 1. The empirical distribution of
such measurements is defined as P̂κ = 1

R

∑
i∈R δhi , where R := {1, . . . , R} and hi is the i-th column

of HL. Our goal is to find a set of locations SL := [s1 . . . sS] ∈ Rp×S , with S ≤ R, whose empirical
probability distribution P̂s = 1

S

∑
i∈S δsi , S := {1, . . . , S}, is closest to that of the original dataset.

Hence, our problem can be formulated as an optimal transport problem

min
SL

W(P̂κ, P̂s) = min
SL

min
T∈T (1R/R,1S/S)

〈T,D(HL,SL)〉. (12)

Our optimization problem has a strong practical interpretation. Specifically, an optimal solution to
(12), S ?

L , is one that produces a distribution P̂s closest to the original one in the Wasserstein distance,
and is therefore the one that minimizes the transport cost between the two distributions P̂s and P̂κ.
With a slight abuse of notation, we define by η(S) the optimal value to (12), which clearly depends
on S, the number of samples adopted. This quantity is key in characterizing the robustness properties
of the control approach that we are about to introduce. The nested optimization program in (12) is a
variational Wasserstein problem, representing a particular case of the Wasserstein barycentres problem
[20]. Specifically, it directly falls into the set of k-means problems [21]. In addition, for semi-discrete
settings the benefit of adopting the Wasserstein distance as a metric to compare probability measures
has been proved in many theoretical and practical problems, from dictionary and statistical learning
[22], [23], to vision and image processing [24], [25].

A. On the optimal transport problem (12)
Despite its appealing structure and strong practical interpretation, the variational Wasserstein problem

in (12) is convex in each single variable, i.e., SL and T , but not jointly. In practice, this might produce
locally optimal solutions, where every atom defining each optimal S ?

L identifies a specific barycentre



for a subset of samples in HL. Specifically, in our setting, (12) corresponds to

min
SL

min
T∈T (1R/R,1S/S)

∑
j∈S

∑
i∈R

ti,j‖hi − sj‖. (13)

For any fixed j ∈ S , every ti,j ≥ 0 defines the quantity of a predefined sample hi of HL that is
associated with a barycentre sj – see, e.g., Fig.1 for a schematic representation. In this specific example,
each sample hi is associated to the j-th barycentre only, i.e., ti,j = 1 and ti,h = 0, for all h ∈ S \ {j},
meaning that there are no overlapping clusters. In principle, as ti,j ≥ 0, the information associated with
any sample hi may be distributed among several barycentres, thereby producing overlapping clusters.
It is easily shown that every atom defining S ?

L belongs to conv(HL).
Since the inner minimization problem in (13) represents the pointwise minimum of linear functions,

we note that the Wasserstein distance is not smooth in its arguments. To circumvent this problem, the
cost function in (12) can be regularized by means of a strictly convex, weighted entropic term, i.e.,
γ 〈T, log(T )〉, for some γ > 0. The benefits are twofold [26]: i) the inner optimization problem in (12)
admits a closed form, which translates to a matrix balancing problem, and ii) the Wasserstein distance is
differentiable. To solve (13) one may also rely on the convexity in each single variable of the Wasserstein
distance, for which possible solution algorithms are, e.g., the typical alternate block-coordinate descent
methods [27], [28].

B. Robust performance guarantees
From [19, Th. 3.5], we know that, for any confidence parameter β, there exists some ε > 0, that

depends only on the amount of available data, such that the optimal value of (9) upper bounds the
out-of-sample EPκ [f(κ, v)]. Our approach then amounts to first solving the optimal transport problem
in (12), computing a synthetic set of atoms SL, and then reformulating the robust optimization problem
in (9) with a Wasserstein ball centred on P̂s instead of P̂κ, i.e.,

inf
v∈V

sup
Q∈Bε(P̂s)

EQ[f(κ, v)]. (14)

The fact that S < R in general, namely we are designing a reduced set of synthetic samples relative
to the original dataset, intuitively has two main implications:

i) The optimal value in (14) can still achieve the performance bound in (10) with high confidence,
at a price of considering a larger radius of the ambiguity set Bε(P̂s) (see Proposition 1). We show
that the additional term accounting for additional robustness vanishes as the number of atoms tends
to the cardinality of the original dataset;

ii) The robust optimization problem in (14) can be manipulated to obtain a tractable convex refor-
mulation equivalent to the one in (11), but defined on a lower dimensional space. In fact, while
the optimization variable in (11) has dimension R = N − L + 1, where N is chosen so that the
condition on the persistency of excitation is met, which leads to R ≥ (n+ 1) + 1

m+1
(mN − 1), the

finite, convex formulation obtained by manipulating (14) establishes that v simply belongs to RS .
We remark that, instead, the number of constraints defining V does not change since it depends on

the control horizon L (design parameter). Despite this dimensionality mismatch, for simplicity’s sake
we will keep the same notation in the rest of the paper.

Next, by relying on the definition of η(S) following (12), we show that an optimal solution to the
robust optimization problem in (14) upper bounds the out-of-sample performance EPκ [f(κ, v)] with
high confidence.

Proposition 1: Let β ∈ (0, 1) be some given confidence parameter, and let S ≤ R be fixed. Under
Assumption 1, there exists some ε̄ = ε̄(β, S) > 0 such that, for all v ∈ V ,

PSκ

{
EPκ [f(κ, v)] ≤ sup

Q∈Bε̄(P̂s)
EQ[f(κ, v)]

}
≥ 1− β.



Algorithm 1: Receding horizon robust synDeePC

Offline: Given HKi+K , set S ≤ N − (Ki +K) + 1, compute S ?
Ki+K

∈ argminSKi+K
W(P̂κ, P̂s)

Initialization: Set V̂(0), κ̂(0) and ε̄
Iteration (k ∈ N):
(S1) Compute

v?(k) := argmin
v∈V(k)

[
f(κ̂(k), v) + ε̄ ·max

(
supξ∈Ξ ‖ξ‖∞‖col(g, 0)‖∗, ρ‖v‖∗

)]
(S2) Set u?(k) = Ufv

?(k), apply u?1(k)

(S3) Collect measurements, update V(k+1), κ̂(k+1)

TABLE I: Main simulation parameters

K Ki N Ts c ρ ε(β)

30 1 214 0.05 200 105 10−3

�
Proof: First, given any S ≤ R, we recall that η(S) corresponds to the Wasserstein distance between

the discrete probability distribution associated with the original dataset, P̂κ, and the computed synthetic
one, P̂s. Thus, the triangle inequality for the Wasserstein metric ensures that the distance between the
real, unknown distribution Pκ and P̂s can be upper bounded as follows

W(Pκ, P̂s)≤W(Pκ, P̂κ) +W(P̂κ, P̂s)=W(Pκ, P̂κ) + η(S).

Moreover, in view of Assumption 1, it follows from [19, Th. 3.4] that, for any fixed β ∈ (0, 1), there
exists some ε(β) > 0 such that PRκ {W(Pκ, P̂κ) ≤ ε(β)} ≥ 1− β. Therefore, since P̂s is an empirical
distribution as well, we obtain PSκ{W(Pκ, P̂s) ≤ ε(β) + η(S)} ≥ 1 − β. This latter relation, which
can be equivalently restated as PSκ{Pκ ∈ Bε̄(P̂s)} ≥ 1 − β, where ε̄ := ε(β) + η(S), directly implies
EPκ [f(κ, v)] ≤ supQ∈Bε̄(P̂s)EQ[f(κ, v)] with probability 1− β, thus concluding the proof.

We note that the Wasserstein distance between P̂κ and the empirical distribution associated with the
compressed dataset, P̂s, can be made arbitrarily small by increasing the number of atoms S, since
minSL

W(P̂κ, P̂s) → 0 as S → R, and hence η(S) → 0. In this case, we recover the radius of the
ambiguity set in [6, Th. 4.1], although the behaviour of η(S) is not monotonically decreasing to 0
as we will see in the next section. Finally, we remark that the optimization problem in (14) admits a
tractable reformulation identical to the one in (11), but which can be solved online with significantly
lower computational burden. This then paves the way to adopt possibly longer control horizons L, thus
enhancing the control performance and without compromising the closed-loop stability of the system.
These aspects are investigated in the next section.

V. NUMERICAL SIMULATIONS

In this section we apply the data-enabled predictive control (DeePC) method presented in [6] with
an additional, offline step that computes a synthetic dataset, thus renamed synDeePC (Algorithm 1).
Specifically, we compare control and computational performance when considering the original dataset
and a compressed one when steering a linear model of a quadcopter in a receding horizon fashion.



Fig. 2: Wasserstein distance vs. number of synthetic atoms.

Simulations are run in Matlab by using Gurobi [29] as a solver for (S1) in Algorithm 1, on a laptop
with a Quad-Core Intel Core i5 2.4 GHz CPU and 8 Gb RAM. The main parameters adopted are
summarized in Table I.

The linear model adopted is valid around a hover position, where the state vector is col(x, y, z, ẋ, ẏ, ż, φ, θ, ψ, φ̇, θ̇, ψ̇) ∈
R12. Here, x, y and z are the three spatial coordinates and relative velocities (ẋ, ẏ, ż), while φ, θ, and
ψ are the angular ones, with relative rates (φ̇, θ̇, ψ̇). The control inputs are represented by four identical
rotors, constrained to the set U = [−0.7007, 0.2993]4(Ki+K) due to physical limitations. By assuming full
state measurement, we use the same state-space matrices adopted in [6, §V], as well as same original
cost function, J(u, y) = ‖u‖1 + c‖y − r‖1, where r denotes a parametrized, 8-figure trajectory with
fixed altitude. The parameter Ts in Table I represents the temporal resolution with which the reference
trajectory is sampled (i.e., the sampling time). Moreover, with the adopted values, the 184 columns of
the matrix H31 are filled by means of random inputs drawn from a uniform distribution on U : this is
to guarantee the persistency of excitation for the (syn)DeePC, according to Definition 2.

Some a-priori considerations on the choice of the parameter S in Algorithm 1 can be made, e.g., in
a data-driven fashion. Specifically, we evaluate the behaviour of the Wasserstein distance W(P̂κ, P̂s)
when S varies, solving the offline step without regularization by means of a standard block-descent
algorithm [27]. Thus, according to Fig. 2, the function η(S) takes reasonable values for S ≤ 92, leading
to an offline step in Algorithm 1 taking less than three minutes. Interestingly, we note that the effect of
the local minima seems to prevent the Wasserstein distance from decreasing monotonically for values
of S > 92, i.e., R/2, as in Fig. 2.

In Fig. 3 and 4, we compare the trajectory tracking performances of the quadrotor controlled by means
of the DeePC with full dataset H31 (solid lines) and synthetic dataset, S31, obtained first by reducing
to the 50% the total number of samples, i.e., S = 92 (solid-dashed lines), which also correspond to a
reduction of the 70% w.r.t. the total number of samples when considering a longer control horizon, i.e.,
K = 50 (dotted lines). An example of a typical constrained input signal for the rotors can be found
in Fig. 5, where the behaviour of the first element of u? in all three cases is shown. Here, we used an
equivalent statistic for the noise acting on each measurement channel, i.e., ν ∼ N (0, 2−7), whose value
is chosen to match the experimental setup in [30]. As shown in Fig. 4, where the position errors of the
spatial coordinates are illustrated, the performances of the robust controller computed by means of the
synthetic dataset S31 do not degrade markedly compared with the one computed by means of H31, also
exhibiting an almost overlapping behaviour when the control horizon K increases (S51). Moreover, from
our numerical experience, the step (S1) in Algorithm 1 with a compressed dataset takes approximately



Fig. 3: Dynamical evolution of the controlled quadcopter while following a figure-8 trajectory.

Fig. 4: Spatial coordinate tracking errors.

Fig. 5: First element of the control input u?.



Fig. 6: Computational time with Gurobi [29] over the whole trajectory tracking control problem.

Fig. 7: Trajectory tracking performance of the controlled quadcopter with a higher level of noise,
ν ∼ N (0, 1−3).

0.64[s] on average, in sharp contrast to the 1.73[s] required by the original dataset, see Fig. 6. On the
other hand, a longer control horizon does not lead to a much higher computational time, i.e., 0.85[s],
while considering the whole dataset would take around 3[s] to solve the DeePC optimization problem.

Finally, we investigate how a higher level of noise acting on the measurements reflects on the control
performance. Specifically, we assume an equivalent statistic on the channels, i.e., ν ∼ N (0, 1−6). In
this case, with N = 214 and main parameters as in Tab. I, we experienced that both controllers do not
accomplish the trajectory tracking problem, directly leading to instability. For this reason, we decide
to collect 3N measurements. As shown in Fig. 7, while the original DeePC is not able to follow the
figure-8 reference from the very beginning (solid lines), the synDeePC in Algorithm 1 with S = 306
introduces an offset on the y-axis tracking only, while keeping good performance on both x and z axes
(solid-dashed lines).

VI. CONCLUSION AND OUTLOOK

The optimal transport approach promises to be a key tool for the design of synthetic datasets
guaranteeing both robust performance and reasonable computational burden for real-time implementation



of data-driven controllers. Specifically, we have investigated the benefits of adopting the Wasserstein
metric to compress the informative content of a large dataset into a smaller one, also illustrating the
performance of the robust controller obtained by means of the synthetic dataset compared to the original
one. Future research directions will focus on the impact that the discrete measure adopted to compare the
empirical distribution associated with the original data, i.e., the vector β in (2), has on the robustness.
Intuitively, if one was to allow variable weights in β, we envision that Fig. 2 would be necessarily
monotone, assuming one could solve to global optimality. The reason is that the (S + 1)-th point could
always be placed at an arbitrary location with zero mass, and this would require the same Wasserstein
distance as with S synthetic points only. It would also mean that η(S) = 0 for all S > R. Moreover,
given the input/output structure of the gathered data, we will investigate also the possibility to use
different distances to define the Wasserstein metric, as well as a jointly convex reformulation of the
whole program in (12).
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