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Abstract— Testing is essential for verifying and validating
control designs, especially in safety-critical applications. In
particular, the control system governing an automated driving
vehicle must be proven reliable enough for its acceptance on the
market. Recently, much research has focused on scenario-based
methods. However, the number of possible driving scenarios
to test is in principle infinite. In this paper, we formalize
a learning-based optimization framework to generate corner
test-cases, where we take into account the operational design
domain. We examine the approach on the case of a feedback
control system for automated driving, for which we suggest
the design of the objective function expressing the criticality
of scenarios. Numerical tests on two logical scenarios of the
case study demonstrate that the approach can identify critical
scenarios within a limited number of closed-loop experiments.

I. INTRODUCTION

Advancements in algorithmic design, increasing experi-
ence through self-driving prototype vehicles, as well as first
certifications for Level 4 automated vehicles [1] indicate
rapid progress in the automated driving (AD) domain. Safety
argumentation of such highly automated vehicles plays a key
role in introducing AD to open roads. To achieve certification
of AD systems, a proof that the vehicle operates safely
must be provided. To this end, verification and validation
(V&V) strategies are an essential stage for providing safety
argumentations [2], [3].

Due to the innumerable amount of possible scenarios
that can happen during real-world driving, AD software
architectures are designed to be continuously updatable even
after system deployment. To enable such updates, which
might be safety critical, there is an intrinsic need for scalable
V&V methods. While coverage-driven V&V strategies will
play an important role for safety argumentation, it is of
particular importance to be capable of extracting safety-
critical test scenarios.

A large amount of research has focused on scenario-based
methods [4], [5], for which an Operational Design Domain
(ODD) is appropriately defined to limit the infinite scope of
the applicability of the AD system. An ODD provides the
set of conditions under which the AD system is designed to
function [1]. By viewing a closed-loop test case as a scenario
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within an ODD, critical scenarios are the test cases that can
lead to harm.

Different exploration methods have been studied in the
literature to find critical/corner test cases [4]. These methods
can be broadly classified into naı̈ve-search (see, e.g., [6],
[7]) and guided-search (see, e.g., [8]–[10]) methods. Because
test cases are chosen independently during the naı̈ve search,
parallelizing the process can speed up the procedure. On
the other hand, test-case simulations can be computationally
expensive and time-consuming. Hence, it is preferred to
use exploration methods that can reduce the number of
simulation experiments. For instance, surrogate-based black-
box optimization methods (guided-search methods) can be
applied [11], [12]. In addition, when the critical test cases are
rare to identify (e.g., when the critical test cases are in a small
region within the search domain), guided-search methods
such as optimization and learning-based testing are often
more experiment-efficient compared to naı̈ve-search methods
such as sampling and combinatorial testing methods [4].

Nevertheless, most naı̈ve search methods are applied when
the other actors in the scenario do not involve parameter
trajectories [4] because the search space can increase dra-
matically with versatile trajectories of other actors. In these
cases, naı̈ve-search methods become infeasible. Also, limited
research has been devoted to using an optimization-based
method to explore the scenario space that involves parametric
trajectories [4], [13].

A. Contribution

In this paper, we formalize a learning-based optimization
framework for determining safety-critical V&V scenarios
that aims at fast V&V processes. The optimization for-
mulation (i) considers a definition of criticality, (ii) uses
a formalized scenario space, (iii) finds critical scenarios
quickly, and (iv) can explore the scenario space with and
without parametric trajectories.

The main contributions are summarized as follows:

• A holistic formulation and solution strategy dealing with
the posed V&V problem, that takes an ODD description
into account and translates the critical test scenario
identification problem as an optimization problem with
the optimization’s objective function formulated as a
criticality measure;

• A detailed illustration of the overall approach when
analyzing a feedback control system for AD, where we
show how ODD can be selected to lower the number
of optimization parameters when parametric trajectories
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are involved, and we design the objective function to
identify collision occurrence;

• Simulation results obtained by applying and evaluating
the learning-based optimization strategy in two two-lane
AD case studies, showing how the critical test scenarios
identified can support the V&V process also in early
development phases.

The rest of this paper is organized as follows. Section II
describes the problem formulation and the solution strategy.
Following that, two case studies on automated driving are
presented in Section III. Lastly, conclusions and future
research are discussed in Section IV.

II. PROBLEM DESCRIPTION AND SOLUTION STRATEGY

To test the applicability of a designed feedback control
system in an AD vehicle we consider a simulation environ-
ment that consists of a subject vehicle (SV) and a given
controller actuating it for lane keeping and to avoid collisions
with different obstacle vehicles (OVs) (cf. Fig. 1). We want
to apply a scenario-based analysis in which each test scenario
corresponds to a particular behavior of the OVs.

To reduce test efforts, we propose to use a systematic way
to efficiently identify testing scenarios for the V&V of the
designed feedback control system. In particular, we adopt
and formalize the search-based testing framework and use
learning-based optimization as the exploration method [4],
[7] to find critical test scenarios for the control system, i.e.,
particular trajectories of the OVs that lead to collisions with
the SV when the latter is actuated by the given controller.

The overall architecture for the V&V of the designed
feedback control system (System Under Test, SUT) is sum-
marized in Fig. 1. In the following, we first introduce the
general formulation of the optimization problem for critical
test scenario identification. Then, we will describe a suitable
optimization algorithm to solve the formulated problem.
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Fig. 1. Simulation system and the V&V strategy considered in this paper
(SUT: System Under Test).

A. General formulation of the optimization problem

First, we need to define the ODD for the control system,
which parametrizes a functional scenario (a scenario space
with semantic descriptions) into a logical scenario (a state-
space representation of the scenario space) [4], [14]. Param-
eters of a logical scenario can then be further divided into
assumed parameters (APs) and parameters of interest (PoIs),
where PoIs can be constant or vary over time [4]. A particular

scenario known as a concrete scenario can be obtained by
specifying values to each parameter (APs and PoIs) within
the logical scenario [4], [14]. We are interested in identifying
the PoIs that lead to critical behaviors (e.g., short time-to-
collision, and excessive jerk of the SV). In the following,
we use xODD ⊆ Rn as the ODD parameters that define the
logical scenario and xscene ∈ xODD as the scene parameters
(PoIs) that describe snapshots of a logical scenario. For
example, xscene may collect the initial distance between the
subject and an obstacle vehicle and the acceleration of the
latter.

For the control system under consideration, we translate
the critical test scenario identification problem as the follow-
ing optimization problem:

x∗scene ∈ argmin
xscene

fsystem(xscene)

s.t. ℓ ≤ xscene ≤ u

xscene ∈ xODD ∩ χ,

(1)

with the goal to identify a vector x∗scene of critical testing
scenario parameters that can lead to critical behaviors. In (1),
fsystem : Rn 7→ R can be a single assessing criterion
(e.g., time-to-collision, distance between subject and obstacle
vehicles), or a weighted combination of different criteria;
ℓ, u ∈ Rn are vectors of lower and upper bounds, and χ ⊆
Rn imposes further constraints on xscene. Here, we assume
that the objective function and the constraint formulations
for (1) are known or pre-designed. We also stress that often
a closed-form expression of fsystem with xscene is not available
due to the complex way the level of criticality of the system
depends on the variables in xscene, although fsystem(xscene)
can be evaluated through simulations.

B. Optimization algorithm

Surrogate-based optimization methods are suitable to
solve (1) [15]. In this paper, the global optimization al-
gorithm GLIS (GLobal optimization via Inverse distance
weighting and Surrogate radial basis functions) [12] is used
to solve (1). We summarize the main procedures of the GLIS
algorithm in the following paragraphs and refer the reader
to [12] for a more detailed description.

The solution process of GLIS is divided into two phases:
the initial sampling phase and the active learning phase.
The optimization procedure of the GLIS algorithm for crit-
ical test scenario identification is summarized in Fig. 2. A
fixed computational budget Nmax is specified. In the initial
sampling phase, GLIS runs Ninit experiments with different
xscene sampled within the feasible domain. Traces from the
generated concrete scenarios are fed to the optimizer and
the objective function fsystem is evaluated (cf. Figures 1, 2).
At the end of the initial sampling phase (i.e., when N =
Ninit), a surrogate function f̂system is fitted to the initial
samples {(x1scene, f

1
system), . . . , (x

Ninit
scene , f

Ninit
system)} using a radial

basis interpolation function (RBF). In the active learning
phase (i.e., when Ninit < N ≤ Nmax), at each iteration,
we query a new xscene parameter and update the surrogate
function f̂system by refitting f̂system to the exiting and new
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Fig. 2. Optimization procedure of the GLIS algorithm (Scritical refers to the set of vectors xscene that can lead to a critical test scenario).

samples {(x1scene, f
1
system), . . . , (x

N
scene, f

N
system)} using RBF in-

terpolation. Since solely minimizing f̂system to find the next
xN+1

scene to test may easily miss the global optimum, an inverse
distance weighting (IDW) exploration function (weighted by
an exploration parameter δ) is summed with the RBF sur-
rogate function to form an acquisition function a : Rn → R.
The acquisition function a trades off exploitation of the RBF
surrogate and exploration of the IDW function. We query
the next point xN+1

scene for evaluation by minimizing function
a using a global optimization algorithm, e.g., Particle Swarm
Optimization (PSO) [16] or DIRECT [17], which is a simple
task since function a is easy to evaluate. Then, a new
concrete scenario is instantiated with xN+1

scene , and the value
fsystem(x

N+1
scene ) is evaluated. GLIS terminates when Nmax is

reached.

The main benefits of using GLIS are its easy incorporation
of linear and/or nonlinear constraints and cheap computa-
tional cost [12]. Additionally, the IDW exploration term in
the acquisition function a helps to efficiently explore the
feasible domain. Moreover, one can tune the exploration
parameter δ to obtain more focused or diverse results. On
the other hand, one may select different optimization solvers
depending on the particular formulation or prior knowledge
of the objective function and/or constraints in (1). For exam-
ple, Bayesian optimization (BO) [18] can be an alternative
to GLIS. Comparisons between BO and GLIS on various
numerical benchmarks are available in [12].

We remark an important aspect of the proposed method,
related to the fact that we do not guarantee that the global
minimum in (3) is achieved: if the best value x∗scene returned
by the solver is not critical, this does not provide a guarantee
that no critical scenarios exist. This is a limitation of the pro-
posed approach compared to formal method approaches [19]
that aim instead at providing 100% guarantees that all
scenarios are safe. On the other hand, formal methods can be
computationally prohibitive and/or over-conservative, while
our approach can often quickly find critical scenarios, if
they exist, which greatly helps the overall design and V&V
process.

III. AUTOMATED DRIVING CASE STUDIES

In this section, we apply the solution strategy proposed
in Section II to two logical scenarios. Numerical tests are
performed to identify relevant corner test cases for each
logical scenario. Here, we provide the system description of
the SV and a model predictive control (MPC) law governing
it. A similar MPC design was considered in [20], [21] for
preference-based calibration of the controller parameters,
while for this study the controller design is fixed, i.e.,
we assume that the MPC parameters have been already
calibrated.

Computations are run on an Intel i7-8550U 1.8-GHz CPU
laptop with 8GB of RAM. For GLIS, the Latin Hypercube
Sampling (LHS) method [22] (lhsdesign function of the
Statistics and Machine Learning Toolbox of MATLAB [23])
is used in the initial sampling phase of GLIS [12], and
Particle Swarm Optimization (PSO) [24] is used to minimize
the acquisition function in the active learning phase. A
multiquadric RBF is used to fit the surrogate model f̂system,
with its hyperparameter ϵ set to 1 initially and recalibrated
once at iteration ⌊Ninit+(Nmax-Ninit)/2⌋. The exploration
parameter δ in the acquisition function a of GLIS is set
to 2. As noted previously, one may use a larger δ to obtain
more diverse results, at the price of possibly evaluating more
combinations xscene.

A. Simulation model

We consider a simplified simulation environment with
horizontal roads only and in which the SV’s kinematics is
described by the following two-degree-of-freedom bicycle
model in Cartesian coordinates (cf. Fig. 3)

ẋf =v cos(θ + ψ)

ẇf =v sin(θ + ψ)

θ̇ =
v sin(ψ)

L

(2)

where the longitudinal xf and lateral wf [m] positions of
the front wheel determine the reference point of the SV, and
θ [rad] is the yaw angle, defining the three-dimensional state
vector s = [xf wf θ]′, L [m] is the SV length, and the



Fig. 3. Two-degree-of-freedom bicycle model of the SV in Cartesian
coordinates.
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Fig. 4. Logical Scenario 1: the SV and OVs {1, . . . , k} are present on a
one-way horizontal road with two or more lanes.

velocity v [m/s] and steering angle ψ [rad] determine the
vector of manipulated variables u = [v ψ]′.

B. MPC formulation

We use the MPC described in [20], [21] for lane-keeping
and obstacle-avoidance.

The SV is actuated by the designed MPC controller to keep
the lane position and avoid collisions with obstacle vehicles
(OVs). More specifically, when OVs are within a safety dis-
tance, the MPC controller commands the SV to change lane,
decelerate, or accelerate, depending on the relative positions
and other conditions. The “Change lane” decision is made
when three conditions are met (noted in Algorithm 1). The
first and third conditions are trivial and based on common
driving practice. The second condition is used since for a lane
change no additional constraints are imposed on the SV’s
velocity. When the second condition is not met, a collision
is likely to be triggered during lane change. The decision
making process detailed in Algorithm 1 translates to output
constraints imposed in the MPC formulation (cf. Equation
(25) in [21]).

In the following subsections, we discuss the application of
the proposed solution strategy (Section II) to two different
logical scenarios to identify relevant critical test cases for the
MPC controller under test.

C. Logical Scenario 1

A graphic representation of Logical Scenario 1 is shown
in Fig. 4. In the following, we detail its ODD descriptions
(APs and PoIs) that parametrize the functional scenario into
the logical scenario.

ODD description

As shown in Fig. 4, two or more vehicles are present on a
one-way horizontal road with two or more lanes. The APs are

Algorithm 1 Adaptive constraints of the MPC controller
Input: number of OVs (k); SV length (L);

positions of SV and OVs at time step t:
{(xSV

f (t), wSV
f (t)), (xf1(t), wf1(t)), . . . , (xfk(t), wfk(t))};

velocities of SV and OVs at t: {vSV(t), v1(t), . . . , vk(t)};
safety distances: longitudinal (xf,safe) and lateral (wf,safe)

FOR i = 1, . . . , k DO
IF SV and OVi are on the same lane and within safety
distances (both longitudinal and lateral) THEN

IF (OVi is ahead of SV) && (no collision between
SV and OVi will happen in the next step with the
current velocity) && (OVj , ∀j ̸= i, i, j = 1, . . . , k
are out of safety longitudinal (xf,safe) and lateral
distances (wf,safe)) THEN:

Decision: Change lane;
Update:

min wSV
f = wfi + wf,safe IF change from

lower lane to higher lane; OR
max wSV

f = wfi - wf,safe IF change from
higher lane to lower lane;
(Note: ‘lower’ and ‘higher’ here refer to the
relative lateral position of SV w.r.t OVi)

ELSE
Decision: Decelerate or Accelerate;
Update:

min xSV
f = xfi + 1.1L IF OVi is behind of

SV; OR
max xSV

f = xfi - 1.1L IF OVi is ahead of
SV;

ELSE
Decision: Keep the default output constraints;

END.
Output: MPC output constraints.

the number of lanes, the road width, vehicle dimensions, and
the experiment duration texp. OVs {1,. . . ,k} can be placed on
any lane, ahead or behind the SV. They move forward hori-
zontally with a constant speed. We assume that no collision
occurs among them. Here, the APs are the number of OVs
(k), their initial lateral positions {w0

f1, . . . , w
0
fk} and their

constant yaw angles {θ01, . . . , θ0k}. For Logical Scenario 1,
we define the PoIs as OVs’ initial longitudinal positions
{x0f1, . . . , x0fk} and initial velocities {v01 , . . . , v0k}. Different
from OVs, the SV is commanded by a MPC controller to
avoid collision as noted in Section III-B. The APs for the SV
are its initial longitudinal and lateral positions (xSV,0

f , wSV,0
f )

and parameters and constraint values in the MPC controller
(cf. Section III-B).

Numerical tests

We run three numerical tests on Logical Scenario 1 to
identify corner test cases. For all three tests, we set the
road width to 6 m with 2 lanes (3 m/lane) and vehicle
dimensions as L = 4.5 m and W = 1.8 m for both the



SV and OVs. The safety longitudinal (xf,safe) and lateral
(wf,safe) distances are specified to 10 m and 3 m, respectively.
The lateral coordinates of the road (w1

road & w2
road in Fig. 4)

are set to -1.5 and 4.5 m with SV initially placed at the
center of Lane 1, i.e., wSV,0

f = 0 and wSV
f ∈ [-0.6, 3.6]. The

longitudinal positions of both SV and OVs are considered
as relative to xSV,0

f with xSV,0
f = 0. For OVs, their constant

yaw angles are set to 0◦, while k and {w0
f1, . . . , w

0
fk} are

specified in each numerical tests (Table I). The optimization
variables (PoIs) are xscene = [x0f1, v

0
1 , . . . , x

0
fk, v

0
fk].

The objective function fsystem in (1) is required to drive the
optimization process. Depending on the critical scenarios of
interest, different surrogate measures may be used to assess
criticality [4]. Furthermore, single or multiple criteria can
be introduced in the objective function. In this paper, we
propose the following objective function based on collision
occurrence by analyzing the relative positions between the
SV and OVi at different time step t:

min
xscene∈xODD

∑
i=1,...,k

dSV,i
xf ,critical(xscene) + dSV,i

wf ,critical(xscene)

s.t. ℓ ≤ xscene ≤ u & other constraints

where dSV,i
xf ,critical(xscene) =

min
t∈Tcollision

dSV,i
xf

(xscene, t) Ii
collision

L ∼ Ii
collision& Icollision∑

t∈Tsim

dSV,i
xf

(xscene, t) ∼ Icollision

dSV,i
wf ,critical(xscene) =

min
t∈Tcollision

dSV,i
wf

(xscene, t) Ii
collision

wf,safe ∼ Ii
collision& Icollision∑

t∈Tsim

dSV,i
wf

(xscene, t) ∼ Icollision

Ii
collision = True, if ∃t ∈ Tsim, s.t.

(dSV,i
xf

(xscene, t) ≤ L) & (dSV,i
wf

(xscene, t) ≤W ),

Icollision = True, if ∃h ∈ {1, . . . , k}, s.t.

Ih
collision = True.

(3)

Here, dSV,i
xf ,critical(xscene) and dSV,i

wf ,critical(xscene) are the critical
longitudinal and lateral distances between SV and OVi,
respectively, while dSV,i

xf
(xscene, t) and dSV,i

wf
(xscene, t) are the

longitudinal and lateral distances between SV and OVi at
time step t as shown in Fig. 5. Tsim is the set of all time steps
recorded during the experiment and Tcollision ⊆ Tsim is the set
of time steps during the experiment where a collision occurs.
Icollision is the indicator function for collision occurrence:
Icollision = True if collision between SV and any OV occurs
at any time step t ∈ Tsim; Icollision = False otherwise. Ii

collision
is the indicator function for collision occurrence between SV
and OVi.

We note some rationales for the formulation of the objec-
tive function (3). When no collision occurs between SV and
OVi, i.e., when Ii

collision = False, constant values are assigned

SV

Fig. 5. Longitudinal and lateral distances between SV and OVi.

to the critical longitudinal and lateral distances. It is because
the magnitudes of the corresponding longitudinal or lateral
distances are irrelevant concerning criticality (collision oc-
currence in this case) when the controller can avoid collision
under the defined ODD conditions. Therefore, including the
actual distance measurements for non-collision cases will not
help the solution process and are more likely to mislead
the optimizer to find cases where SV and OVi drive side-
by-side at close distances. However, if no collision occurs
between SV and any OV in the scenario (including OVi),
i.e., when Icollision = False, assigning constant values to
every OV makes all the no-collision cases indistinguishable
and provides limited information to the optimizer to guide
the search. Therefore, when Icollision = False, the critical
longitudinal and lateral distances of each OVi are set to the
sum of its longitudinal and lateral distances at every time
step, respectively. Minimizing the distances between SV and
each OVi throughout the experiments increases the chance
of collision occurrence. Since the magnitude of the sum
is significantly higher than the constant distance assigned
(when Ii

collision = False) and the minimum distance identified
during a collision between SV and any OV (when Icollision =
True), it can help guide the search during the optimization
process without outweighing the collision cases. We also
stress that depending on the criticality interested, one can
blend the critical distances differently or use an alternative
function fsystem to guide the search in the optimization
process.

The problem specifications for the numerical tests are
presented in Table I. The number of initial samples (Ninit)
used in GLIS is chosen to be ⌈Nmax/4⌉. Every closed-loop
experiment in each numerical test is simulated for 30 s (texp).
Other constraints are used to prevent collisions among OVs.

To show the efficiency of the proposed approach, we
compare it with a random sampling method. The random
samples are generated using the LHS method as in the initial
sampling phase of GLIS. We run a Monte Carlo simulation
with 20 runs of GLIS and LHS sampling methods to obtain
statistically significant results.

Results

The average numbers of collision cases identified by GLIS
and random sampling methods for different tests and their
95% confidence interval are displayed in Table II. As shown
in the table, the proposed framework can identify collision
cases more frequently than LHS sampling.

In the following, we present the results for one run of
the Monte Carlo simulation for each test to analyze the



TABLE I
NUMERICAL TEST - PROBLEM SPECIFICATION (LOGICAL SCENARIO 1)

Test k {w0
fi} xscene ℓ and u Other constraints Nmax Ninit

1 1 {0} [x0
f1, v

0
1 ]

′ ℓ = [5,30]’; N/A 50 13
u = [50,80]’

2 3 {0,3,3} [x0
f1, v

0
1 , . . . , x

0
f3, v

0
f3]

′ ℓ = [15,30,0,10,10,30]’; x0
f3 − x0

f2 > L; 100 25
u = [50,80,100,80,100,80]’ v03 > v02

3 5 {0,0,3,3,3} [x0
f1, v

0
1 , . . . , x

0
f5, v

0
f5]

′ ℓ = [15,30,0,10,0,10,10,10,20,10]’; x0
f2 − x0

f1 > L; x0
f4 − x0

f3 > L; x0
f5 − x0

f4 > L; 100 25
u = [50,80,100,80,100,80,100,80,100,80]’ v02 > v01 ; v04 > v03 ; v05 > v04

TABLE II
EFFICIENCY COMPARISON (LOGICAL SCENARIO 1)

Sampling method Collision Occurence
Test 1 Test 2 Test 3

GLIS 4± 0 30± 12 32± 14
Random sampling (LHS) 0± 0 2± 1 4± 1
The numbers are rounded to the nearest integers.

TABLE III
NUMERICAL TEST - RESULTS (LOGICAL SCENARIO 1)

Test Iter xscene = [x0
f1, v

0
1 , . . . , x

0
fk, v

0
fk]

1
18 [5 41.72]’
19 [5 36.62]’
21∗ [5 30.89]’

2
51∗ [15.00 30.00 44.14 10.00 49.10 47.39]’
79 [28.09 30.00 70.29 10.00 74.79 31.74]’
40 [34.30 30.00 60.59 10.00 77.80 35.97]’

3
75∗ [15.00 30.00 19.50 30.01 48.54 10.00 60.32 10.00 86.32 51.26]’
97 [22.89 30.00 57.34 30.00 56.06 10.00 68.76 24.45 73.26 41.54]’
76 [29.46 30.00 62.40 36.42 42.87 16.84 65.56 31.00 76.14 42.29]’

Three sample iterations that can lead to collision are shown on the table.
(The ones with ∗ are the ‘best’/most critical ones identified by the optimizer
among these collision scenarios.)

collision cases. The optimization results for the numerical
tests are shown in Table III. In general, within a small
number of experiments, GLIS can find critical test scenarios
under the defined ODD conditions of the MPC controller
of SV under testing. These identified critical scenarios often
reveal features of a scenario that can lead to a collision. This
information can then be used to support controller design and
ODD refinement.

For Test 1, GLIS identifies 4 collision cases within 50
simulation experiments. Three sample iterations that can lead
to collision are shown on Table III. The collision triggering
conditions in this test are small x0f1 and v01 , more specifically,
when both are close to their lower bounds. With this group of
xscene, SV is not able to brake fast enough to avoid collision
with OV1 (Fig. 6). To eliminate these collision cases, one
needs to either update the controller design (e.g., incorpo-
rate larger deceleration rate or use dynamic safety distance
metrics) or refine the ODD definition of the applicability of
the controller (e.g., update the lower bound of x0f1 or v01 or
both).

For Test 2, GLIS finds 64 collision cases within 100
simulation experiments. In all critical cases, a collision
occurs between SV and OV2. Common features of the cases
that triggered a collision are summarized here: (i) a relatively
large x0f1 coupled with a relatively slow v01 and the smaller
x0f1, the greater v01 (Table III); (ii) a slow v02 with a large x0f2.

1

1

2 3

1

3 4 5

2

SV SV SV

Test 1

SV
SV

SV SV SVSV

Test 2

Test 3

SV
SV

SV SV

Fig. 6. Collision cases for Logical Scenario 1.

We note that the exact values of x0f1, v01 , x0f2, and v02 leading
to a collision depend on each other since the simulated
experiment is dynamic. Nevertheless, the combinations that
lead to a collision have the simulation conditions that cause
the MPC controller to have the following decision-making
process: the MPC controller first commands SV to change
the lane to avoid collision with OV1 on Lane 1, and then to
decelerate to avoid OV2 on Lane 2 (Fig. 6). However, SV
cannot decelerate fast enough, leading to a collision with
OV2. Note that lane change is not an option in this case
since OV1 on Lane 1 blocks the way. To fix these critical
scenarios, we need to update either the controller design or
the ODD definitions, as noted in Test 1.

For Test 3, 73 collision cases are identified by GLIS in
100 simulation experiments. Fig. 7 shows the best objective
function value obtained as a function of the number of sim-
ulated experiments. The collision happens between SV and
OV3. The collision triggering conditions of these scenarios
are similar to the ones identified in Test 2. Initially, SV
changes the lane to avoid OV1. After switching lane, SV
collides with OV3 (Fig. 6). The collision is inevitable because
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Fig. 7. Best objective function value obtained as a function of the number
of simulated experiments for Test 3 of Logical Scenario 1. The vertical line
denotes the last experiment in the initial sampling phase of GLIS.

OV3 ahead of SV moves slowly, and SV cannot brake fast
enough. Furthermore, depending on the initial conditions of
OVs, either OV1 or OV2 or both block the way for a lane
change of SV. A similar remedy plan as the previous two
tests can eliminate these collision cases.

Overall, the three numerical tests demonstrate the capabil-
ity of the proposed method to identify critical test scenarios
of the designed controller under the defined ODD conditions.
For Logical Scenario 1, where the movement of OVs are
restricted, by comparing Test 2 and 3, we observe that adding
more OVs in the scenario does not provide more insights for
potential critical scenarios. It is because SV only interacts
with surrounding OVs and its obstacle avoidance mechanism
with each OV is the same. However, Test 3 demonstrates
the ability of GLIS to handle relatively high dimensional
problems.

As a side observation, we noticed that when running the
numerical tests on the initial implementation of the MPC
controller, GLIS occasionally drove the search to “fake“
critical test scenarios attributed to some mis-implementation
(bugs in the code) of the MPC controller. Such initial critical
scenarios were very useful to quickly detect and fix these
implementation errors that were nontrivial to identify a priori.
Therefore, the cyclic interaction between GLIS obtaining
results and the designer interpreting them and altering the
design accordingly can significantly facilitate the V&V cycle
to identify actual corner cases within the defined ODD
conditions.

D. Logical Scenario 2

In the following, we discuss Logical Scenario 2 (Fig. 8)
and the numerical test performed. We note that in Logi-
cal Scenario 2, the trajectory of the OV varies and parametric
trajectories are involved.

SV 1

Fig. 8. Logical Scenario 2: the SV and one OV are present on a one-way
horizontal road with two lanes.

ODD description

The ODD definitions of Logical Scenario 2 are similar to
Logical Scenario 1, with the difference noted as the follow-
ing: (i) the road only has two lanes; (ii) only one OV on the
road; (iii) OV1 is also commanded by an MPC controller to
change the lane. Here, the MPC controller is used to obtain
realistic trajectories of OV1 and, at the same time, keep the
dimension of xscene low. For Logical Scenario 2, the APs for
SV remain the same as in Logical Scenario 1. For OV1, it is
initially placed ahead of SV on Lane 1 and moves forward
horizontally with a constant speed until a switching time,
after which an MPC controller commands OV1 to change
from Lane 1 to Lane 2 at a constant speed (Fig. 8). In this
case, the APs for OV1 are its initial lateral position (w0

f1), its
constant yaw angle (θ01) before switching, and the reference
velocity and reference yaw angle for MPC controller after
switching. We select the PoIs as its initial longitudinal
position (x0f1), initial velocity (v01) and switching time (tc).
The ODD of Logical Scenario 2 is defined as such to provide
a variety of OV trajectories while also reducing the number
of required optimization parameters.

Numerical tests

We run one numerical test on Logical Scenario 2. The
controller under test is the MPC controller for SV as detailed
in Section III-B. The road and vehicle dimensions and
the SV’s initial conditions are set to the same values as
in Logical Scenario 1. Another MPC controller is used
to command OV1 for the lane-changing task after tc. We
emphasize that the MPC controller for OV1 is only designed
for lane-changing without a collision avoidance capability.

The objective function (3) is used with k = 1. Here, the
optimization variables (PoIs) xscene = [x01, v

0
1 , tc], with ℓ =

[11, 30, 0]′ and u = [50, 80, 40]′. For GLIS, Nmax is set to
100 with Ninit = 25, and each experiment is simulated for
30 s (texp).

Results

After 100 simulated experiments, GLIS identifies 9 col-
lision cases. Three sample experiments with a collision are
shown in Table IV. By analyzing the results, the collision
triggering conditions are identified: (i) a combination of a
relatively large x0f1 with a relatively small v01 and a tc < texp;
(ii) a larger x0f1 is coupled with either a smaller v01 or
a lager tc or both. The specific values of x01, v

0
1 , and tc

varies since they are correlated, while the collision triggering
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Fig. 9. Collision cases for Logical Scenario 2.

TABLE IV
NUMERICAL TEST - RESULTS (LOGICAL SCENARIO 2)

Test Iter xscene = [x0
f1, v

0
1 , tc]

1 28 [12.57 46.94 16.75]’
16∗ [17.53 47.48 23.65]’
88 [44.54 41.26 16.02]’

Three sample iterations that can lead to collision are shown on the table.
(The ones with ∗ are the ‘best’/most critical ones identified by the optimizer
among these collision scenarios.)

combinations all have the following features. Initially, SV
changes lane to avoid OV1 on Lane 1, then SV collides with
OV1 after tc on Lane 2 during lane-changing of OV1 (Fig. 9).
The collision is not avoidable since SV does not have enough
response time to decelerate for the sudden lane-changing of
OV1. Additionally, lane-changing is not an option for SV
to avoid OV1. To eliminate these collision cases, one has to
refine the ODD definitions (e.g., increase the lower bound of
v01 , include another lane). Upgrading the MPC controller of
SV without significant changes to the design is not feasible
unless one also incorporates obstacle-avoidance mechanisms
for the MPC controller of OV1.

IV. CONCLUSION

In this paper, we investigated the application of the op-
timization method GLIS for computing safety-critical test
scenarios of a designed feedback control system in an AD
vehicle. The global optimization framework based on learn-
ing a surrogate model of the criticality function introduced
in this paper could effectively determine safety-critical test
scenarios in the considered case studies. The information
obtained from the corner cases found can then be used to
refine the ODD definitions and/or upgrade the design of the
system. Although we focused on analyzing control systems
in this paper, the proposed framework is general and can be
applied to other AD software components, and to many other
V&V tasks in the automotive domain or in other areas.

One difficulty in the proposed framework is the design of
the objective function, which is required to guide the search.
It is often based on multiple criteria, and the formulation can
be hard to determine beforehand. Current research is devoted
to ease the process of objective function definition.
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