Modern languages are equipped with static type checking/inference that helps programmers to keep a clean programming style and to reduce errors. However, the ever-growing size of programs and their continuous evolution require building fast and efficient analysers. A promising solution is incrementality, aiming at only re-typing the diffs, i.e. those parts of the program that change or are inserted, rather than the entire codebase. We propose an algorithmic schema that drives an incremental usage of existing, standard typing algorithms with no changes. Ours is a grey-box approach: just the shape of the input, that of the results and some domain-specific knowledge are needed to instantiate our schema. Here, we present the foundations of our approach and the conditions for its correctness. We show it at work to derive two different incremental typing algorithms. The first type checks an imperative language to detect information flow and non-interference, and the second infers types for a functional language. We assessed our proposal on a prototypical implementation of an incremental type checker. Our experiments show that using the type checker incrementally is (almost) always rewarding.
Using standard typing algorithms incrementally
Galletta L.
2019-01-01
Abstract
Modern languages are equipped with static type checking/inference that helps programmers to keep a clean programming style and to reduce errors. However, the ever-growing size of programs and their continuous evolution require building fast and efficient analysers. A promising solution is incrementality, aiming at only re-typing the diffs, i.e. those parts of the program that change or are inserted, rather than the entire codebase. We propose an algorithmic schema that drives an incremental usage of existing, standard typing algorithms with no changes. Ours is a grey-box approach: just the shape of the input, that of the results and some domain-specific knowledge are needed to instantiate our schema. Here, we present the foundations of our approach and the conditions for its correctness. We show it at work to derive two different incremental typing algorithms. The first type checks an imperative language to detect information flow and non-interference, and the second infers types for a functional language. We assessed our proposal on a prototypical implementation of an incremental type checker. Our experiments show that using the type checker incrementally is (almost) always rewarding.File | Dimensione | Formato | |
---|---|---|---|
NFM_main.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
606.77 kB
Formato
Adobe PDF
|
606.77 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.