Online Social Media represent a pervasive source of information able to reach a huge audience. Sadly, recent studies show how online social bots (automated, often malicious accounts, populating social networks and mimicking genuine users) are able to amplify the dissemination of (fake) information by orders of magnitude. Using Twitter as a benchmark, in this work we focus on what we define credulous users, i.e., human-operated accounts with a high percentage of bots among their followings. Being more exposed to the harmful activities of social bots, credulous users may run the risk of being more influenced than other users; even worse, although unknowingly, they could become spreaders of misleading information (e.g., by retweeting bots). We design and develop a supervised classifier to automatically recognize credulous users. The best tested configuration achieves an accuracy of 93.27% and AUC-ROC of 0.93, thus leading to positive and encouraging results.

Do you really follow them? Automatic detection of credulous twitter users

De Nicola R.;
2019-01-01

Abstract

Online Social Media represent a pervasive source of information able to reach a huge audience. Sadly, recent studies show how online social bots (automated, often malicious accounts, populating social networks and mimicking genuine users) are able to amplify the dissemination of (fake) information by orders of magnitude. Using Twitter as a benchmark, in this work we focus on what we define credulous users, i.e., human-operated accounts with a high percentage of bots among their followings. Being more exposed to the harmful activities of social bots, credulous users may run the risk of being more influenced than other users; even worse, although unknowingly, they could become spreaders of misleading information (e.g., by retweeting bots). We design and develop a supervised classifier to automatically recognize credulous users. The best tested configuration achieves an accuracy of 93.27% and AUC-ROC of 0.93, thus leading to positive and encouraging results.
2019
Data Mining; Disinformation; Gullibility; Humans-bots interactions; Social networks; Supervised learning; Twitter
File in questo prodotto:
File Dimensione Formato  
Balestrucci2019_Chapter_DoYouReallyFollowThemAutomatic.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Nessuna licenza
Dimensione 277.21 kB
Formato Adobe PDF
277.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/14897
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
social impact