Reduced order modeling has gained considerable attention in recent decades owing to the advantages offered in reduced computational times and multiple solutions for parametric problems. The focus of this manuscript is the application of model order reduction techniques in various engineering and scientific applications including but not limited to mechanical, naval and aeronautical engineering. The focus here is kept limited to computational fluid mechanics and related applications. The advances in the reduced order modeling with proper orthogonal decomposition and reduced basis method are presented as well as a brief discussion of dynamic mode decomposition and also some present advances in the parameter space reduction. Here, an overview of the challenges faced and possible solutions are presented with examples from various problems.

Advances in reduced order methods for parametric industrial problems in computational fluid dynamics

Mola A.
2020-01-01

Abstract

Reduced order modeling has gained considerable attention in recent decades owing to the advantages offered in reduced computational times and multiple solutions for parametric problems. The focus of this manuscript is the application of model order reduction techniques in various engineering and scientific applications including but not limited to mechanical, naval and aeronautical engineering. The focus here is kept limited to computational fluid mechanics and related applications. The advances in the reduced order modeling with proper orthogonal decomposition and reduced basis method are presented as well as a brief discussion of dynamic mode decomposition and also some present advances in the parameter space reduction. Here, an overview of the challenges faced and possible solutions are presented with examples from various problems.
2020
Free-form deformation
Geometrical parameterization
Incompressible and compressible flows
Mechanical engineering
Model order reduction
Naval and nautical engineering
File in questo prodotto:
File Dimensione Formato  
eccomas2016_AROMA.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Nessuna licenza
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/20573
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
social impact