In this paper we introduce a methodology for extracting mobility profiles of individuals from raw digital traces (in particular, GPS traces), and study criteria to match individuals based on profiles. We instantiate the profile matching problem to a specific application context, namely proactive car pooling services, and therefore develop a matching criterion that satisfies various basic constraints obtained from the background knowledge of the application domain. In order to evaluate the impact and robustness of the methods introduced, two experiments are reported, which were performed on a massive dataset containing GPS traces of private cars: (i) the impact of the car pooling application based on profile matching is measured, in terms of percentage shareable traffic; (ii) the approach is adapted to coarser-grained mobility data sources that are nowadays commonly available from telecom operators. In addition the ensuing loss in precision and coverage of profile matches is measured. Copyright 2011 ACM.

Mining mobility user profiles for car pooling

Pinelli F.;Nanni M.;
2011-01-01

Abstract

In this paper we introduce a methodology for extracting mobility profiles of individuals from raw digital traces (in particular, GPS traces), and study criteria to match individuals based on profiles. We instantiate the profile matching problem to a specific application context, namely proactive car pooling services, and therefore develop a matching criterion that satisfies various basic constraints obtained from the background knowledge of the application domain. In order to evaluate the impact and robustness of the methods introduced, two experiments are reported, which were performed on a massive dataset containing GPS traces of private cars: (i) the impact of the car pooling application based on profile matching is measured, in terms of percentage shareable traffic; (ii) the approach is adapted to coarser-grained mobility data sources that are nowadays commonly available from telecom operators. In addition the ensuing loss in precision and coverage of profile matches is measured. Copyright 2011 ACM.
2011
9781450308137
Spatio-temporal data mining
Trajectory patterns
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/23998
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 117
social impact