By and large the process of learning concepts that are embedded in time is regarded as quite a mature research topic. Hidden Markov models, recurrent neural networks are, amongst others, successful approaches to learning from temporal data. In this paper, we claim that the dominant approach minimizing appropriate risk functions defined over time by classic stochastic gradient might miss the deep interpretation of time given in other fields like physics. We show that a recent reformulation of learning according to the principle of Least Cognitive Action is better suited whenever time is involved in learning. The principle gives rise to a learning process that is driven by differential equations, that can somehow describe the process within the same framework as other laws of nature.

On the role of time in learning

Betti Alessandro;Gori Marco
2021

Abstract

By and large the process of learning concepts that are embedded in time is regarded as quite a mature research topic. Hidden Markov models, recurrent neural networks are, amongst others, successful approaches to learning from temporal data. In this paper, we claim that the dominant approach minimizing appropriate risk functions defined over time by classic stochastic gradient might miss the deep interpretation of time given in other fields like physics. We show that a recent reformulation of learning according to the principle of Least Cognitive Action is better suited whenever time is involved in learning. The principle gives rise to a learning process that is driven by differential equations, that can somehow describe the process within the same framework as other laws of nature.
2021
9789811550928
9789811550935
Cognitive action
Laws of learning
Online learning
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/34887
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact