The classic computational scheme of convolutional layers leverages filter banks that are shared over all the spatial coordinates of the input, independently on external information on what is specifically under observation and without any distinctions between what is closer to the observed area and what is peripheral. In this paper we propose to go beyond such a scheme, introducing the notion of Foveated Convolutional Layer (FCL), that formalizes the idea of location-dependent convolutions with foveated processing, i.e., fine-grained processing in a given-focused area and coarser processing in the peripheral regions. We show how the idea of foveated computations can be exploited not only as a filtering mechanism, but also as a mean to speed-up inference with respect to classic convolutional layers, allowing the user to select the appropriate trade-off between level of detail and computational burden. FCLs can be stacked into neural architectures and we evaluate them in several tasks, showing how they efficiently handle the information in the peripheral regions, eventually avoiding the development of misleading biases. When integrated with a model of human attention, FCL-based networks naturally implement a foveated visual system that guides the attention toward the locations of interest, as we experimentally analyze on a stream of visual stimuli.

Foveated neural computation

Betti Alessandro;Gori Marco;
2023

Abstract

The classic computational scheme of convolutional layers leverages filter banks that are shared over all the spatial coordinates of the input, independently on external information on what is specifically under observation and without any distinctions between what is closer to the observed area and what is peripheral. In this paper we propose to go beyond such a scheme, introducing the notion of Foveated Convolutional Layer (FCL), that formalizes the idea of location-dependent convolutions with foveated processing, i.e., fine-grained processing in a given-focused area and coarser processing in the peripheral regions. We show how the idea of foveated computations can be exploited not only as a filtering mechanism, but also as a mean to speed-up inference with respect to classic convolutional layers, allowing the user to select the appropriate trade-off between level of detail and computational burden. FCLs can be stacked into neural architectures and we evaluate them in several tasks, showing how they efficiently handle the information in the peripheral regions, eventually avoiding the development of misleading biases. When integrated with a model of human attention, FCL-based networks naturally implement a foveated visual system that guides the attention toward the locations of interest, as we experimentally analyze on a stream of visual stimuli.
2023
9783031264085
9783031264092
Convolutional neural networks
Foveated convolutional layers
Visual attention
File in questo prodotto:
File Dimensione Formato  
FNC.pdf

non disponibili

Descrizione: Foveated Neural Computation
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 897.39 kB
Formato Adobe PDF
897.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/34938
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact