In this chapter we present some recent numerical studies on fluid–structure interaction problems in the presence of free surface flow. We consider the dynamics of a rowing boat, simulated as a rigid body. We focus on an approach based on formulating the floating body problem as an inequality constraint on the water elevation. A splitting procedure is used to develop an efficient numerical scheme where the inequality constraint is imposed only on a wave-like equation representing an hydrostatic approximation of the hydrodynamic equations. Numerical tests demostrate the effectiveness of the proposed procedure.

Numerical simulation of the dynamics of boats by a variational inequality approach

Mola A.;
2009

Abstract

In this chapter we present some recent numerical studies on fluid–structure interaction problems in the presence of free surface flow. We consider the dynamics of a rowing boat, simulated as a rigid body. We focus on an approach based on formulating the floating body problem as an inequality constraint on the water elevation. A splitting procedure is used to develop an efficient numerical scheme where the inequality constraint is imposed only on a wave-like equation representing an hydrostatic approximation of the hydrodynamic equations. Numerical tests demostrate the effectiveness of the proposed procedure.
2009
978-0-387-95856-9
978-0-387-95857-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/37078
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact