The notion of reversible computing is attracting interest because of its applications in diverse fields, in particular the study of programming abstractions for fault tolerant systems. Reversible CCS (RCCS), proposed by Danos and Krivine, enacts reversibility by means of memory stacks. Ulidowski and Phillips proposed a general method to reverse a process calculus given in a particular SOS format, by exploiting the idea of making all the operators of a calculus static. CCSK is then derived from CCS with this method. In this paper we show that RCCS is at least as expressive as CCSK.
Static VS Dynamic Reversibility in CCS
MEZZINA C
2016-01-01
Abstract
The notion of reversible computing is attracting interest because of its applications in diverse fields, in particular the study of programming abstractions for fault tolerant systems. Reversible CCS (RCCS), proposed by Danos and Krivine, enacts reversibility by means of memory stacks. Ulidowski and Phillips proposed a general method to reverse a process calculus given in a particular SOS format, by exploiting the idea of making all the operators of a calculus static. CCSK is then derived from CCS with this method. In this paper we show that RCCS is at least as expressive as CCSK.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.