We present a mathematical model to predict pedestrian motion over a finite horizon, intended for use in collision avoidance algorithms for autonomous driving. The model is based on a road map structure, and assumes a rational pedestrian behavior. We compare our model with the state-of-the art and discuss its accuracy, and limitations, both in simulations and in comparison to real data.

A Computationally Efficient Model for Pedestrian Motion Prediction

Zanon, Mario;
2018-01-01

Abstract

We present a mathematical model to predict pedestrian motion over a finite horizon, intended for use in collision avoidance algorithms for autonomous driving. The model is based on a road map structure, and assumes a rational pedestrian behavior. We compare our model with the state-of-the art and discuss its accuracy, and limitations, both in simulations and in comparison to real data.
2018
978-3-9524-2698-2
File in questo prodotto:
File Dimensione Formato  
pedestrian_model.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Nessuna licenza
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11771/11184
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
social impact