Functional magnetic resonance imaging (fMRI) is used to study brain functional connectivity (FC) after filtering the physiological noise (PN). Herein, we employ: adaptive filtering for removing nonstationary PN; random variables (RV) coefficient for FC analysis. Comparisons with standard techniques were performed by quantifying PN filtering and FC in neural vs. non-neural regions. As a result, adaptive filtering plus RV coefficient showed a greater suppression of PN and higher connectivity in neural regions, representing a novel effective approach to analyze fMRI data. © 2013 World Scientific Publishing Company.
Adaptive filtering and random variables coefficient for analyzing functional magnetic resonance imaging data
Handjaras G.;
2013-01-01
Abstract
Functional magnetic resonance imaging (fMRI) is used to study brain functional connectivity (FC) after filtering the physiological noise (PN). Herein, we employ: adaptive filtering for removing nonstationary PN; random variables (RV) coefficient for FC analysis. Comparisons with standard techniques were performed by quantifying PN filtering and FC in neural vs. non-neural regions. As a result, adaptive filtering plus RV coefficient showed a greater suppression of PN and higher connectivity in neural regions, representing a novel effective approach to analyze fMRI data. © 2013 World Scientific Publishing Company.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
piaggi2013.pdf
non disponibili
Descrizione: articolo principale
Tipologia:
Altro materiale allegato
Licenza:
Nessuna licenza
Dimensione
2.12 MB
Formato
Adobe PDF
|
2.12 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.